Abstract

We experimentally demonstrate 2 × 64 Gb/s PAM-4 transmission over a 70 km standard single-mode fiber (SSMF) using two O-band 18G-class directly modulated lasers (DMLs). Only one praseodymium-doped fiber amplifier (PDFA) at the receiver side is used to compensate the transmission loss. Meanwhile, transmission impairments are compensated by a sparse Volterra filter (SVF) equalizer, which can achieve similar system performance but with half the computational complexity (CC), in comparison with a traditional VF equalizer. Finally, we optimize the insignificant factor (IF) of SVF to identify the trade-off between the transmission performance and the CC. Thus, the redundancy of individual SVF kernels can be reasonably removed.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Transmission of 2 × 56  Gb/s PAM-4 signal over 100  km SSMF using 18  GHz DMLs

Shiwei Zhou, Xiang Li, Lilin Yi, Qi Yang, and Songnian Fu
Opt. Lett. 41(8) 1805-1808 (2016)

112 Gb/s transmission over 80 km SSMF using PDM-PAM4 and coherent detection without optical amplifier

Xian Zhou, Kangping Zhong, Jiahao Huo, Lei Gao, Yiguang Wang, Liang Wang, Yanfu Yang, Jinhui Yuan, Keping Long, Li Zeng, Alan Pak Tao Lau, and Chao Lu
Opt. Express 24(15) 17359-17371 (2016)

Transmission of single lane 128 Gbit/s PAM-4 signals over an 80 km SSMF link, enabled by DDMZM aided dispersion pre-compensation

Qiang Zhang, Nebojsa Stojanovic, Changsong Xie, Cristian Prodaniuc, and Piotr Laskowski
Opt. Express 24(21) 24580-24591 (2016)

References

  • View by:
  • |
  • |
  • |

  1. IEEE 802.3bs Ethernet Working Group Home Page (2014),[Online] http://www.ieee802.org/3/bs/index.html .
  2. K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “Experimental Study of PAM-4, CAP-16, and DMT for 100 Gb/s Short Reach Optical Transmission Systems,” Opt. Express 23(2), 1176–1189 (2015).
    [Crossref] [PubMed]
  3. X. Xu, E. Zhou, G. N. Liu, T. Zuo, Q. Zhong, L. Zhang, Y. Bao, X. Zhang, J. Li, and Z. Li, “Advanced modulation formats for 400-Gbps short-reach optical inter-connection,” Opt. Express 23(1), 492–500 (2015).
    [Crossref] [PubMed]
  4. S. Randel, F. Breyer, S. C. J. Lee, and J. W. Walewski, “Advanced Modulation Schemes for Short-Range Optical Communications,” J. Lightwave Technol. 16(5), 1280–1289 (2010).
  5. Q. Zhang, N. Stojanovic, C. Prodaniuc, C. Xie, M. Koenigsmann, and P. Laskowski, “Single-lane 180 Gbit/s PAM-4 signal transmission over 2 km SSMF for short-reach applications,” Opt. Lett. 41(19), 4449–4452 (2016).
    [Crossref] [PubMed]
  6. M. A. Mestre, F. Jorge, H. Mardoyan, J. Estarán, F. Blache, P. Angelini, A. Konczykowska, M. Riet, V. Nodjiadjim, J.-Y. Dupuy, and S. Bigo, ” 100-Gbaud PAM-4 Intensity-Modulation Direct-Detection Transceiver for Datacenter Interconnect,” in Proceedings of European Conference on Optical Communication (ECOC) (2016), paper M.2.C.1.
  7. M. Chagnon, M. Morsy-Osman, M. Poulin, C. Paquet, S. Lessard, and D. V. Plant, “Experimental Parametric Study of a Silicon Photonic Modulator Enabled 112-Gb/s PAM Transmission System With a DAC and ADC,” J. Lightwave Technol. 33(7), 1380–1387 (2015).
    [Crossref]
  8. C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 Transmission Using 18-Gbps DML,” IEEE Photonics J. 8(3), 1–7 (2016).
  9. N. Eiselt, H. Griesser, J. Wei, A. Dochhan, R. Hohenleitner, M. Ortsiefer, M. Eiselt, C. Neumeyr, J. J. V. Olmos, and I. T. Monroy, “Experimental Demonstration of 56 Gbit/s PAM-4 over 15 km and 84 Gbit/s PAM-4 over 1 km SSMF at 1525 nm using a 25G VCSEL,” in Proceedings of European Conference on Optical Communication (ECOC) (2016), paper Th.1.C.1.
  10. C. Sun, S. H. Bae, and H. Kim, “Transmission of 28-Gb/s Duobinary and PAM-4 Signals Using DML for Optical Access Network,” IEEE Photonics Technol. Lett. 29(1), 130–133 (2017).
    [Crossref]
  11. N. Eiselt, S. V. D. Heide, H. Griesser, M. Eiselt, C. Okonkwo, J.-J. V. Olmos, and I. T. Monroy, ” Experimental Demonstration of 112-Gbit/s PAM-4 over up to 80 km SSMF at 1550 nm for Inter-DCI Applications,” in Proceedings of European Conference on Optical Communication (ECOC) (2016), paper M.2.D.1.
    [Crossref]
  12. S. Zhou, X. Li, L. Yi, Q. Yang, and S. Fu, “Transmission of 2 × 56 Gb/s PAM-4 signal over 100 km SSMF using 18 GHz DMLs,” Opt. Lett. 41(8), 1805–1808 (2016).
    [Crossref] [PubMed]
  13. C. Wei, K. Chen, L. Chen, C. Lin, W. Huang, and J. Chen, “High-Capacity Carrierless Amplitude and Phase Modulation for WDM Long-Reach PON Featuring High Loss Budget,” J. Lightwave Technol. 35(4), 1075–1082 (2017).
    [Crossref]
  14. Z. Li, M. S. Erkılınç, R. Bouziane, R. Maher, L. Galdino, K. Shi, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Simplified DSP-Based Signal-Signal Beat Interference Mitigation for Direct-Detection Subcarrier Modulation,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W1A.3.
    [Crossref]
  15. L. Yao, W. A. Sethares, and Y. H. Hu, “Identification of a nonlinear system modeled by sparse Volterra series,” in IEEE Int. Conf. Ser. Syst. Eng., 624–627 (1992).
    [Crossref]
  16. J. Pan and C.-H. Cheng, “Nonlinear Electrical Compensation for the Coherent Optical OFDM System,” J. Lightwave Technol. 29(2), 215–221 (2011).
    [Crossref]
  17. Y. Sun, A. K. Srivastava, J. Zhou, and J. W. Sulhoff, “Optical Fiber Amplifiers for WDM Optical Networks,” Bell Labs Tech. J. 4, 187–206 (1999).
  18. N. Eiselt, H. Griesser, J. Wei, A. Dochhan, M. Eiselt, J. Elbers, J. Olmos, and I. Monroy, “Real-Time Evaluation of 26-GBaud PAM-4 Intensity Modulation and Direct Detection Systems for Data-Center Interconnects,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th1G.3.
    [Crossref]

2017 (2)

C. Sun, S. H. Bae, and H. Kim, “Transmission of 28-Gb/s Duobinary and PAM-4 Signals Using DML for Optical Access Network,” IEEE Photonics Technol. Lett. 29(1), 130–133 (2017).
[Crossref]

C. Wei, K. Chen, L. Chen, C. Lin, W. Huang, and J. Chen, “High-Capacity Carrierless Amplitude and Phase Modulation for WDM Long-Reach PON Featuring High Loss Budget,” J. Lightwave Technol. 35(4), 1075–1082 (2017).
[Crossref]

2016 (3)

2015 (3)

2011 (1)

2010 (1)

S. Randel, F. Breyer, S. C. J. Lee, and J. W. Walewski, “Advanced Modulation Schemes for Short-Range Optical Communications,” J. Lightwave Technol. 16(5), 1280–1289 (2010).

1999 (1)

Y. Sun, A. K. Srivastava, J. Zhou, and J. W. Sulhoff, “Optical Fiber Amplifiers for WDM Optical Networks,” Bell Labs Tech. J. 4, 187–206 (1999).

Bae, S. H.

C. Sun, S. H. Bae, and H. Kim, “Transmission of 28-Gb/s Duobinary and PAM-4 Signals Using DML for Optical Access Network,” IEEE Photonics Technol. Lett. 29(1), 130–133 (2017).
[Crossref]

Bao, Y.

Breyer, F.

S. Randel, F. Breyer, S. C. J. Lee, and J. W. Walewski, “Advanced Modulation Schemes for Short-Range Optical Communications,” J. Lightwave Technol. 16(5), 1280–1289 (2010).

Chagnon, M.

Chen, J.

Chen, K.

Chen, L.

Chen, W.

Cheng, C.-H.

Fu, S.

Gao, Y.

Gui, T.

Hu, R.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 Transmission Using 18-Gbps DML,” IEEE Photonics J. 8(3), 1–7 (2016).

Hu, Y. H.

L. Yao, W. A. Sethares, and Y. H. Hu, “Identification of a nonlinear system modeled by sparse Volterra series,” in IEEE Int. Conf. Ser. Syst. Eng., 624–627 (1992).
[Crossref]

Huang, W.

Kim, H.

C. Sun, S. H. Bae, and H. Kim, “Transmission of 28-Gb/s Duobinary and PAM-4 Signals Using DML for Optical Access Network,” IEEE Photonics Technol. Lett. 29(1), 130–133 (2017).
[Crossref]

Koenigsmann, M.

Laskowski, P.

Lau, A. P. T.

Lee, S. C. J.

S. Randel, F. Breyer, S. C. J. Lee, and J. W. Walewski, “Advanced Modulation Schemes for Short-Range Optical Communications,” J. Lightwave Technol. 16(5), 1280–1289 (2010).

Lessard, S.

Li, C.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 Transmission Using 18-Gbps DML,” IEEE Photonics J. 8(3), 1–7 (2016).

Li, H.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 Transmission Using 18-Gbps DML,” IEEE Photonics J. 8(3), 1–7 (2016).

Li, J.

Li, X.

Li, Z.

Lin, C.

Liu, G. N.

Lu, C.

Luo, M.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 Transmission Using 18-Gbps DML,” IEEE Photonics J. 8(3), 1–7 (2016).

Man, J.

Morsy-Osman, M.

Pan, J.

Paquet, C.

Plant, D. V.

Poulin, M.

Prodaniuc, C.

Randel, S.

S. Randel, F. Breyer, S. C. J. Lee, and J. W. Walewski, “Advanced Modulation Schemes for Short-Range Optical Communications,” J. Lightwave Technol. 16(5), 1280–1289 (2010).

Sethares, W. A.

L. Yao, W. A. Sethares, and Y. H. Hu, “Identification of a nonlinear system modeled by sparse Volterra series,” in IEEE Int. Conf. Ser. Syst. Eng., 624–627 (1992).
[Crossref]

Srivastava, A. K.

Y. Sun, A. K. Srivastava, J. Zhou, and J. W. Sulhoff, “Optical Fiber Amplifiers for WDM Optical Networks,” Bell Labs Tech. J. 4, 187–206 (1999).

Stojanovic, N.

Sulhoff, J. W.

Y. Sun, A. K. Srivastava, J. Zhou, and J. W. Sulhoff, “Optical Fiber Amplifiers for WDM Optical Networks,” Bell Labs Tech. J. 4, 187–206 (1999).

Sun, C.

C. Sun, S. H. Bae, and H. Kim, “Transmission of 28-Gb/s Duobinary and PAM-4 Signals Using DML for Optical Access Network,” IEEE Photonics Technol. Lett. 29(1), 130–133 (2017).
[Crossref]

Sun, Y.

Y. Sun, A. K. Srivastava, J. Zhou, and J. W. Sulhoff, “Optical Fiber Amplifiers for WDM Optical Networks,” Bell Labs Tech. J. 4, 187–206 (1999).

Tao, L.

Walewski, J. W.

S. Randel, F. Breyer, S. C. J. Lee, and J. W. Walewski, “Advanced Modulation Schemes for Short-Range Optical Communications,” J. Lightwave Technol. 16(5), 1280–1289 (2010).

Wei, C.

Xie, C.

Xu, X.

Yang, C.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 Transmission Using 18-Gbps DML,” IEEE Photonics J. 8(3), 1–7 (2016).

Yang, Q.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 Transmission Using 18-Gbps DML,” IEEE Photonics J. 8(3), 1–7 (2016).

S. Zhou, X. Li, L. Yi, Q. Yang, and S. Fu, “Transmission of 2 × 56 Gb/s PAM-4 signal over 100 km SSMF using 18 GHz DMLs,” Opt. Lett. 41(8), 1805–1808 (2016).
[Crossref] [PubMed]

Yao, L.

L. Yao, W. A. Sethares, and Y. H. Hu, “Identification of a nonlinear system modeled by sparse Volterra series,” in IEEE Int. Conf. Ser. Syst. Eng., 624–627 (1992).
[Crossref]

Yi, L.

Yu, S.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 Transmission Using 18-Gbps DML,” IEEE Photonics J. 8(3), 1–7 (2016).

Zeng, L.

Zhang, L.

Zhang, Q.

Zhang, X.

Zhong, K.

Zhong, Q.

Zhou, E.

Zhou, J.

Y. Sun, A. K. Srivastava, J. Zhou, and J. W. Sulhoff, “Optical Fiber Amplifiers for WDM Optical Networks,” Bell Labs Tech. J. 4, 187–206 (1999).

Zhou, S.

Zhou, X.

Zuo, T.

Bell Labs Tech. J. (1)

Y. Sun, A. K. Srivastava, J. Zhou, and J. W. Sulhoff, “Optical Fiber Amplifiers for WDM Optical Networks,” Bell Labs Tech. J. 4, 187–206 (1999).

IEEE Photonics J. (1)

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 Transmission Using 18-Gbps DML,” IEEE Photonics J. 8(3), 1–7 (2016).

IEEE Photonics Technol. Lett. (1)

C. Sun, S. H. Bae, and H. Kim, “Transmission of 28-Gb/s Duobinary and PAM-4 Signals Using DML for Optical Access Network,” IEEE Photonics Technol. Lett. 29(1), 130–133 (2017).
[Crossref]

J. Lightwave Technol. (4)

Opt. Express (2)

Opt. Lett. (2)

Other (7)

N. Eiselt, H. Griesser, J. Wei, A. Dochhan, M. Eiselt, J. Elbers, J. Olmos, and I. Monroy, “Real-Time Evaluation of 26-GBaud PAM-4 Intensity Modulation and Direct Detection Systems for Data-Center Interconnects,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th1G.3.
[Crossref]

IEEE 802.3bs Ethernet Working Group Home Page (2014),[Online] http://www.ieee802.org/3/bs/index.html .

N. Eiselt, H. Griesser, J. Wei, A. Dochhan, R. Hohenleitner, M. Ortsiefer, M. Eiselt, C. Neumeyr, J. J. V. Olmos, and I. T. Monroy, “Experimental Demonstration of 56 Gbit/s PAM-4 over 15 km and 84 Gbit/s PAM-4 over 1 km SSMF at 1525 nm using a 25G VCSEL,” in Proceedings of European Conference on Optical Communication (ECOC) (2016), paper Th.1.C.1.

N. Eiselt, S. V. D. Heide, H. Griesser, M. Eiselt, C. Okonkwo, J.-J. V. Olmos, and I. T. Monroy, ” Experimental Demonstration of 112-Gbit/s PAM-4 over up to 80 km SSMF at 1550 nm for Inter-DCI Applications,” in Proceedings of European Conference on Optical Communication (ECOC) (2016), paper M.2.D.1.
[Crossref]

M. A. Mestre, F. Jorge, H. Mardoyan, J. Estarán, F. Blache, P. Angelini, A. Konczykowska, M. Riet, V. Nodjiadjim, J.-Y. Dupuy, and S. Bigo, ” 100-Gbaud PAM-4 Intensity-Modulation Direct-Detection Transceiver for Datacenter Interconnect,” in Proceedings of European Conference on Optical Communication (ECOC) (2016), paper M.2.C.1.

Z. Li, M. S. Erkılınç, R. Bouziane, R. Maher, L. Galdino, K. Shi, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Simplified DSP-Based Signal-Signal Beat Interference Mitigation for Direct-Detection Subcarrier Modulation,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W1A.3.
[Crossref]

L. Yao, W. A. Sethares, and Y. H. Hu, “Identification of a nonlinear system modeled by sparse Volterra series,” in IEEE Int. Conf. Ser. Syst. Eng., 624–627 (1992).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup of O-band 2 × 64 Gb/s PAM-4 transmission with DSP flow. Insert: (i) optical spectral at the transmitter side; eye-diagram of the PAM-4 signal (ii) before and (iii) after SVF equalizer.

Fig. 2
Fig. 2

BER of 28 GBaud PAM-4 signal versus the received power after 70 km SSMF transmission (a) for two channels and (b) with various equalization techniques.

Fig. 3
Fig. 3

BER of 28 GBaud PAM-4 signal versus the received power after different length SSMF transmission.

Fig. 4
Fig. 4

BER of PAM-4 versus the transmission distance with different symbol rate.

Fig. 5
Fig. 5

BER of 28 GBaud PAM-4 and number of SVF kernels versus IF after 70 km SSMF transmission.

Fig. 6
Fig. 6

Number of SVF kernels in various terms versus IF for (a) second order kernels, and (b) third order kernels.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

y( n )= l 1 =0 L 1 -1 h 1 ( l 1 )x( n l 1 )+ l 1 =0 L 2 -1 l 2 =0 l 1 h 2 ( l 1 , l 2 ) m=1 2 x( n l m ) + l 1 =0 L 3 -1 l 2 =0 l 1 l 3 =0 l 2 h 3 ( l 1 , l 2 , l 3 ) m=1 3 x( n l m ) +e( n )
V DD ( n )= | E carrier + E 0 ( n ) | 2 = | E carrier | 2 +2Re[ E carrier E 0 ( n ) ]+ | E 0 ( n ) | 2
Y= Y ¯ +E= i=1 L w i U i +E
Y= Y ¯ +E= i=1 L v i Q i +E
NMSE= E T E Y T Y = ( Y i=1 L v i Q i ) T ( Y i=1 L v i Q i ) Y T Y =1 i=1 L v i 2 Q i T Q i Y T Y =1 i=1 L D i

Metrics