Abstract

We generate coherent ultraviolet radiation at 313 nm as the third harmonic of an external-cavity diode laser. We use this radiation for laser cooling of trapped beryllium atomic ions and sympathetic cooling of co-trapped beryllium-hydride molecular ions. An LBO crystal in an enhancement cavity generates the second harmonic, and a BBO crystal in a doubly resonant enhancement cavity mixes this second harmonic with the fundamental to produce the third harmonic. Each enhancement cavity is preceded by a tapered amplifier to increase the fundamental light. The 36-mW output power of this all-semiconductor-gain system will enable quantum control of the beryllium ions’ motion.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Development and characterization of a 2.2  W narrow-linewidth 318.6  nm ultraviolet laser

Jieying Wang, Jiandong Bai, Jun He, and Junmin Wang
J. Opt. Soc. Am. B 33(10) 2020-2025 (2016)

Generation of 130  mW of 397.5  nm tunable laser via ring-cavity-enhanced frequency doubling

Yashuai Han, Xin Wen, Jiandong Bai, Baodong Yang, Yanhua Wang, Jun He, and Junmin Wang
J. Opt. Soc. Am. B 31(8) 1942-1947 (2014)

Tunable UV generation at 286 nm by frequency tripling of a high-power mode-locked semiconductor laser

Lew Goldberg and Dahv A. V. Kliner
Opt. Lett. 20(15) 1640-1642 (1995)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Tech. 103, 259–328 (1998).
    [Crossref]
  2. D. J. Wineland, “Nobel lecture: Superposition, entanglement, and raising Schrödinger’s cat,” Rev. Mod. Phys. 85, 1103–1114 (2013).
    [Crossref]
  3. J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484, 489–492 (2012).
    [Crossref] [PubMed]
  4. P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, “Spectroscopy using quantum logic,” Science 309, 749–752 (2005).
    [Crossref] [PubMed]
  5. T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. C. J. Koelemeij, J. C. Bergquist, and D. Wineland, “Observation of the 1S0 →3 P0 clock transition in 27Al+,” Phys. Rev. Lett. 98, 220801 (2007).
    [Crossref]
  6. P. Blythe, B. Roth, U. Fröhlich, H. Wenz, and S. Schiller, “Production of ultracold trapped molecular hydrogen ions,” Phys. Rev. Lett. 95, 183002 (2005).
    [Crossref] [PubMed]
  7. B. Roth, P. Blythe, H. Daerr, L. Patacchini, and S. Schiller, “Production of ultracold diatomic and triatomic molecular ions of spectroscopic and astrophysical interest,” J. Phys. B 39, S1241–S1258 (2006).
    [Crossref]
  8. L. Schmöger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. C. López-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
    [Crossref] [PubMed]
  9. J. J. Bollinger, J. S. Wells, D. J. Wineland, and W. M. Itano, “Hyperfine structure of the 2p2P1/2 state in 9Be+,” Phys. Rev. A 31, 2711–2714 (1985).
    [Crossref]
  10. H. Schnitzler, U. Frölich, T. K. W. Boley, A. E. M. Clemen, J. Mlynek, A. Peters, and S. Schiller, “All-solid-state tunable continuous-wave ultraviolet source with high spectral purity and frequency stability,” Appl. Opt. 41, 7000–7005 (2002).
    [Crossref] [PubMed]
  11. S. Vasilyev, A. Nevsky, I. Ernsting, M. Hansen, J. Shen, and S. Schiller, “Compact all-solid-state continuous-wave single-frequency UV source with frequency stabilization for laser cooling of Be+ ions,” Appl. Phys. B 103, 27–33 (2011).
    [Crossref]
  12. A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
    [Crossref]
  13. H.-Y. Lo, J. Alonso, D. Kienzler, B. C. Keitch, L. E. de Clercq, V. Negnevitsky, and J. P. Home, “All-solid-state continuous-wave laser systems for ionization, cooling and quantum state manipulation of beryllium ions,” Appl. Phys. B 114, 17–25 (2014).
    [Crossref]
  14. F. M. J. Cozijn, J. Biesheuvel, A. S. Flores, W. Ubachs, G. Blume, A. Wicht, K. Paschke, G. Erbert, and J. C. J. Koelemeij, “Laser cooling of beryllium ions using a frequency-doubled 626 nm diode laser,” Opt. Lett. 38, 2370–2372 (2013).
    [Crossref] [PubMed]
  15. H. Ball, M. W. Lee, S. D. Gensemer, and M. J. Biercuk, “A high-power 626 nm diode laser system for Beryllium ion trapping,” Rev. Sci. Instrum. 84, 063107 (2013).
    [Crossref] [PubMed]
  16. J. Mes, E. J. van Duijn, R. Zinkstok, S. Witte, and W. Hogervorst, “Third-harmonic generation of a continuous-wave Ti:Sapphire laser in external resonant cavities,” Appl. Phys. Lett. 82, 4423–4425 (2003).
    [Crossref]
  17. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [Crossref]
  18. T. W. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectrocopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
    [Crossref]
  19. J. D. Jost, Entangled mechanical oscillators, Ph.D. thesis, University of Colorado (2010).
  20. B. Hemmerling, F. Gebert, Y. Wan, D. Nigg, I. V. Sherstov, and P. O. Schmidt, “A single laser system for ground-state cooling of 25Mg+,” Appl. Phys. B 104, 583–590 (2011).
    [Crossref]
  21. L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
    [Crossref]
  22. T. Nayuki, T. Fujii, K. Nemoto, M. Kozuma, M. Kourogi, and M. Ohtsu, “Continuous wavelength sweep of external cavity 630 nm laser diode without antireflection coating on output facet,” Opt. Rev. 5, 267–270 (1998).
    [Crossref]
  23. C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Instrum. 72, 3811–3815 (2001).
    [Crossref]
  24. S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582–595 (1982).
    [Crossref]
  25. C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
    [Crossref]
  26. J. L. Hall and S. A. Lee, “Interferometric real-time display of cw dye laser wavelength with sub-Doppler accuracy,” Appl. Phys. Lett. 29, 367–369 (1976).
    [Crossref]
  27. J. F. Barry, Laser cooling and slowing of a diatomic molecule, Ph.D. thesis, Yale University (2013).
  28. E. Riedle, S. H. Ashworth, J. J. T. Farrell, and D. J. Nesbitt, “Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity,” Rev. Sci. Instrum. 65, 42–48 (1994).
    [Crossref]
  29. V. Ruseva and J. Hald, “Generation of UV light by frequency doubling in BIBO,” Opt. Commun. 236, 219–223 (2004).
    [Crossref]
  30. J. H. Jang, I. H. Yoon, and C. S. Yoon, “Cause and repair of optical damage in nonlinear optical crystals of BiB3O6,” Opt. Mater. 31, 781–783 (2009).
    [Crossref]
  31. SNLO nonlinear optics code available from A. V. Smith, AS-Photonics, Albuquerque, NM.
  32. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
    [Crossref]
  33. T. Freegarde, J. Coutts, J. Walz, D. Leibfried, and T. W. Hänsch, “General analysis of type I second-harmonic generation with elliptical Gaussian beams,” J. Opt. Soc. Am. B 14, 2010–2016 (1997).
    [Crossref]
  34. C. S. Adams and A. I. Ferguson, “Frequency doubling of a single frequency Ti:Al2O3 laser using an external enhancement cavity,” Opt. Commun. 79, 219–223 (1990).
    [Crossref]
  35. Y. Kaneda and S. Kubota, “Theoretical treatment, simulation, and experiments of doubly resonant sum-frequency mixing in an external resonator,” Appl. Opt. 36, 7766–7775 (1997).
    [Crossref]
  36. D. R. Leibrandt and J. Heidecker, “An open source digital servo for atomic, molecular, and optical physics experiments,” Rev. Sci. Instrum. 86, 123115 (2015).
    [Crossref]
  37. W. Paul, “Electromagnetic traps for charged and neutral particles,” Rev. Mod. Phys. 62, 531–540 (1990).
    [Crossref]
  38. W. W. Macalpine and R. O. Schildknecht, “Coaxial resonators with helical inner conductors,” Proc. IRE 47, 2099–2105 (1959).
    [Crossref]

2015 (2)

L. Schmöger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. C. López-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref] [PubMed]

D. R. Leibrandt and J. Heidecker, “An open source digital servo for atomic, molecular, and optical physics experiments,” Rev. Sci. Instrum. 86, 123115 (2015).
[Crossref]

2014 (1)

H.-Y. Lo, J. Alonso, D. Kienzler, B. C. Keitch, L. E. de Clercq, V. Negnevitsky, and J. P. Home, “All-solid-state continuous-wave laser systems for ionization, cooling and quantum state manipulation of beryllium ions,” Appl. Phys. B 114, 17–25 (2014).
[Crossref]

2013 (3)

D. J. Wineland, “Nobel lecture: Superposition, entanglement, and raising Schrödinger’s cat,” Rev. Mod. Phys. 85, 1103–1114 (2013).
[Crossref]

H. Ball, M. W. Lee, S. D. Gensemer, and M. J. Biercuk, “A high-power 626 nm diode laser system for Beryllium ion trapping,” Rev. Sci. Instrum. 84, 063107 (2013).
[Crossref] [PubMed]

F. M. J. Cozijn, J. Biesheuvel, A. S. Flores, W. Ubachs, G. Blume, A. Wicht, K. Paschke, G. Erbert, and J. C. J. Koelemeij, “Laser cooling of beryllium ions using a frequency-doubled 626 nm diode laser,” Opt. Lett. 38, 2370–2372 (2013).
[Crossref] [PubMed]

2012 (1)

J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484, 489–492 (2012).
[Crossref] [PubMed]

2011 (3)

S. Vasilyev, A. Nevsky, I. Ernsting, M. Hansen, J. Shen, and S. Schiller, “Compact all-solid-state continuous-wave single-frequency UV source with frequency stabilization for laser cooling of Be+ ions,” Appl. Phys. B 103, 27–33 (2011).
[Crossref]

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[Crossref]

B. Hemmerling, F. Gebert, Y. Wan, D. Nigg, I. V. Sherstov, and P. O. Schmidt, “A single laser system for ground-state cooling of 25Mg+,” Appl. Phys. B 104, 583–590 (2011).
[Crossref]

2009 (1)

J. H. Jang, I. H. Yoon, and C. S. Yoon, “Cause and repair of optical damage in nonlinear optical crystals of BiB3O6,” Opt. Mater. 31, 781–783 (2009).
[Crossref]

2007 (1)

T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. C. J. Koelemeij, J. C. Bergquist, and D. Wineland, “Observation of the 1S0 →3 P0 clock transition in 27Al+,” Phys. Rev. Lett. 98, 220801 (2007).
[Crossref]

2006 (1)

B. Roth, P. Blythe, H. Daerr, L. Patacchini, and S. Schiller, “Production of ultracold diatomic and triatomic molecular ions of spectroscopic and astrophysical interest,” J. Phys. B 39, S1241–S1258 (2006).
[Crossref]

2005 (2)

P. Blythe, B. Roth, U. Fröhlich, H. Wenz, and S. Schiller, “Production of ultracold trapped molecular hydrogen ions,” Phys. Rev. Lett. 95, 183002 (2005).
[Crossref] [PubMed]

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, “Spectroscopy using quantum logic,” Science 309, 749–752 (2005).
[Crossref] [PubMed]

2004 (1)

V. Ruseva and J. Hald, “Generation of UV light by frequency doubling in BIBO,” Opt. Commun. 236, 219–223 (2004).
[Crossref]

2003 (1)

J. Mes, E. J. van Duijn, R. Zinkstok, S. Witte, and W. Hogervorst, “Third-harmonic generation of a continuous-wave Ti:Sapphire laser in external resonant cavities,” Appl. Phys. Lett. 82, 4423–4425 (2003).
[Crossref]

2002 (1)

2001 (1)

C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Instrum. 72, 3811–3815 (2001).
[Crossref]

1998 (2)

D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Tech. 103, 259–328 (1998).
[Crossref]

T. Nayuki, T. Fujii, K. Nemoto, M. Kozuma, M. Kourogi, and M. Ohtsu, “Continuous wavelength sweep of external cavity 630 nm laser diode without antireflection coating on output facet,” Opt. Rev. 5, 267–270 (1998).
[Crossref]

1997 (2)

1995 (1)

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[Crossref]

1994 (1)

E. Riedle, S. H. Ashworth, J. J. T. Farrell, and D. J. Nesbitt, “Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity,” Rev. Sci. Instrum. 65, 42–48 (1994).
[Crossref]

1991 (1)

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[Crossref]

1990 (2)

C. S. Adams and A. I. Ferguson, “Frequency doubling of a single frequency Ti:Al2O3 laser using an external enhancement cavity,” Opt. Commun. 79, 219–223 (1990).
[Crossref]

W. Paul, “Electromagnetic traps for charged and neutral particles,” Rev. Mod. Phys. 62, 531–540 (1990).
[Crossref]

1985 (1)

J. J. Bollinger, J. S. Wells, D. J. Wineland, and W. M. Itano, “Hyperfine structure of the 2p2P1/2 state in 9Be+,” Phys. Rev. A 31, 2711–2714 (1985).
[Crossref]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

1982 (1)

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582–595 (1982).
[Crossref]

1980 (1)

T. W. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectrocopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[Crossref]

1976 (1)

J. L. Hall and S. A. Lee, “Interferometric real-time display of cw dye laser wavelength with sub-Doppler accuracy,” Appl. Phys. Lett. 29, 367–369 (1976).
[Crossref]

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

1959 (1)

W. W. Macalpine and R. O. Schildknecht, “Coaxial resonators with helical inner conductors,” Proc. IRE 47, 2099–2105 (1959).
[Crossref]

Adams, C. S.

C. S. Adams and A. I. Ferguson, “Frequency doubling of a single frequency Ti:Al2O3 laser using an external enhancement cavity,” Opt. Commun. 79, 219–223 (1990).
[Crossref]

Alonso, J.

H.-Y. Lo, J. Alonso, D. Kienzler, B. C. Keitch, L. E. de Clercq, V. Negnevitsky, and J. P. Home, “All-solid-state continuous-wave laser systems for ionization, cooling and quantum state manipulation of beryllium ions,” Appl. Phys. B 114, 17–25 (2014).
[Crossref]

Ashworth, S. H.

E. Riedle, S. H. Ashworth, J. J. T. Farrell, and D. J. Nesbitt, “Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity,” Rev. Sci. Instrum. 65, 42–48 (1994).
[Crossref]

Ball, H.

H. Ball, M. W. Lee, S. D. Gensemer, and M. J. Biercuk, “A high-power 626 nm diode laser system for Beryllium ion trapping,” Rev. Sci. Instrum. 84, 063107 (2013).
[Crossref] [PubMed]

Barry, J. F.

J. F. Barry, Laser cooling and slowing of a diatomic molecule, Ph.D. thesis, Yale University (2013).

Baumann, T. M.

L. Schmöger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. C. López-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref] [PubMed]

Bergquist, J. C.

T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. C. J. Koelemeij, J. C. Bergquist, and D. Wineland, “Observation of the 1S0 →3 P0 clock transition in 27Al+,” Phys. Rev. Lett. 98, 220801 (2007).
[Crossref]

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, “Spectroscopy using quantum logic,” Science 309, 749–752 (2005).
[Crossref] [PubMed]

Biercuk, M. J.

H. Ball, M. W. Lee, S. D. Gensemer, and M. J. Biercuk, “A high-power 626 nm diode laser system for Beryllium ion trapping,” Rev. Sci. Instrum. 84, 063107 (2013).
[Crossref] [PubMed]

J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484, 489–492 (2012).
[Crossref] [PubMed]

Biesheuvel, J.

Blume, G.

Blythe, P.

B. Roth, P. Blythe, H. Daerr, L. Patacchini, and S. Schiller, “Production of ultracold diatomic and triatomic molecular ions of spectroscopic and astrophysical interest,” J. Phys. B 39, S1241–S1258 (2006).
[Crossref]

P. Blythe, B. Roth, U. Fröhlich, H. Wenz, and S. Schiller, “Production of ultracold trapped molecular hydrogen ions,” Phys. Rev. Lett. 95, 183002 (2005).
[Crossref] [PubMed]

Boley, T. K. W.

Bollinger, J. J.

J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484, 489–492 (2012).
[Crossref] [PubMed]

J. J. Bollinger, J. S. Wells, D. J. Wineland, and W. M. Itano, “Hyperfine structure of the 2p2P1/2 state in 9Be+,” Phys. Rev. A 31, 2711–2714 (1985).
[Crossref]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

Britton, J. W.

J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484, 489–492 (2012).
[Crossref] [PubMed]

Brown, K. R.

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[Crossref]

Clemen, A. E. M.

Couillaud, B.

T. W. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectrocopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[Crossref]

Coutts, J.

Cozijn, F. M. J.

Daerr, H.

B. Roth, P. Blythe, H. Daerr, L. Patacchini, and S. Schiller, “Production of ultracold diatomic and triatomic molecular ions of spectroscopic and astrophysical interest,” J. Phys. B 39, S1241–S1258 (2006).
[Crossref]

de Clercq, L. E.

H.-Y. Lo, J. Alonso, D. Kienzler, B. C. Keitch, L. E. de Clercq, V. Negnevitsky, and J. P. Home, “All-solid-state continuous-wave laser systems for ionization, cooling and quantum state manipulation of beryllium ions,” Appl. Phys. B 114, 17–25 (2014).
[Crossref]

Diddams, S. A.

T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. C. J. Koelemeij, J. C. Bergquist, and D. Wineland, “Observation of the 1S0 →3 P0 clock transition in 27Al+,” Phys. Rev. Lett. 98, 220801 (2007).
[Crossref]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Drewsen, M.

L. Schmöger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. C. López-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref] [PubMed]

Ebrahimzadeh, M.

C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Instrum. 72, 3811–3815 (2001).
[Crossref]

Erbert, G.

Ernsting, I.

S. Vasilyev, A. Nevsky, I. Ernsting, M. Hansen, J. Shen, and S. Schiller, “Compact all-solid-state continuous-wave single-frequency UV source with frequency stabilization for laser cooling of Be+ ions,” Appl. Phys. B 103, 27–33 (2011).
[Crossref]

Esslinger, T.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[Crossref]

Farrell, J. J. T.

E. Riedle, S. H. Ashworth, J. J. T. Farrell, and D. J. Nesbitt, “Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity,” Rev. Sci. Instrum. 65, 42–48 (1994).
[Crossref]

Ferguson, A. I.

C. S. Adams and A. I. Ferguson, “Frequency doubling of a single frequency Ti:Al2O3 laser using an external enhancement cavity,” Opt. Commun. 79, 219–223 (1990).
[Crossref]

Feuchtenbeiner, S.

L. Schmöger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. C. López-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref] [PubMed]

Flores, A. S.

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Fortier, T. M.

T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. C. J. Koelemeij, J. C. Bergquist, and D. Wineland, “Observation of the 1S0 →3 P0 clock transition in 27Al+,” Phys. Rev. Lett. 98, 220801 (2007).
[Crossref]

Freegarde, T.

Freericks, J. K.

J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484, 489–492 (2012).
[Crossref] [PubMed]

Fröhlich, U.

P. Blythe, B. Roth, U. Fröhlich, H. Wenz, and S. Schiller, “Production of ultracold trapped molecular hydrogen ions,” Phys. Rev. Lett. 95, 183002 (2005).
[Crossref] [PubMed]

Frölich, U.

Fujii, T.

T. Nayuki, T. Fujii, K. Nemoto, M. Kozuma, M. Kourogi, and M. Ohtsu, “Continuous wavelength sweep of external cavity 630 nm laser diode without antireflection coating on output facet,” Opt. Rev. 5, 267–270 (1998).
[Crossref]

Gebert, F.

B. Hemmerling, F. Gebert, Y. Wan, D. Nigg, I. V. Sherstov, and P. O. Schmidt, “A single laser system for ground-state cooling of 25Mg+,” Appl. Phys. B 104, 583–590 (2011).
[Crossref]

Gensemer, S. D.

H. Ball, M. W. Lee, S. D. Gensemer, and M. J. Biercuk, “A high-power 626 nm diode laser system for Beryllium ion trapping,” Rev. Sci. Instrum. 84, 063107 (2013).
[Crossref] [PubMed]

Hald, J.

V. Ruseva and J. Hald, “Generation of UV light by frequency doubling in BIBO,” Opt. Commun. 236, 219–223 (2004).
[Crossref]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

J. L. Hall and S. A. Lee, “Interferometric real-time display of cw dye laser wavelength with sub-Doppler accuracy,” Appl. Phys. Lett. 29, 367–369 (1976).
[Crossref]

Hansch, T. W.

T. W. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectrocopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[Crossref]

Hänsch, T. W.

T. Freegarde, J. Coutts, J. Walz, D. Leibfried, and T. W. Hänsch, “General analysis of type I second-harmonic generation with elliptical Gaussian beams,” J. Opt. Soc. Am. B 14, 2010–2016 (1997).
[Crossref]

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[Crossref]

Hansen, A. K.

L. Schmöger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. C. López-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref] [PubMed]

Hansen, M.

S. Vasilyev, A. Nevsky, I. Ernsting, M. Hansen, J. Shen, and S. Schiller, “Compact all-solid-state continuous-wave single-frequency UV source with frequency stabilization for laser cooling of Be+ ions,” Appl. Phys. B 103, 27–33 (2011).
[Crossref]

Heidecker, J.

D. R. Leibrandt and J. Heidecker, “An open source digital servo for atomic, molecular, and optical physics experiments,” Rev. Sci. Instrum. 86, 123115 (2015).
[Crossref]

Hemmerich, A.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[Crossref]

Hemmerling, B.

B. Hemmerling, F. Gebert, Y. Wan, D. Nigg, I. V. Sherstov, and P. O. Schmidt, “A single laser system for ground-state cooling of 25Mg+,” Appl. Phys. B 104, 583–590 (2011).
[Crossref]

Hogervorst, W.

J. Mes, E. J. van Duijn, R. Zinkstok, S. Witte, and W. Hogervorst, “Third-harmonic generation of a continuous-wave Ti:Sapphire laser in external resonant cavities,” Appl. Phys. Lett. 82, 4423–4425 (2003).
[Crossref]

Hollberg, L.

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[Crossref]

Home, J. P.

H.-Y. Lo, J. Alonso, D. Kienzler, B. C. Keitch, L. E. de Clercq, V. Negnevitsky, and J. P. Home, “All-solid-state continuous-wave laser systems for ionization, cooling and quantum state manipulation of beryllium ions,” Appl. Phys. B 114, 17–25 (2014).
[Crossref]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Hume, D. B.

T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. C. J. Koelemeij, J. C. Bergquist, and D. Wineland, “Observation of the 1S0 →3 P0 clock transition in 27Al+,” Phys. Rev. Lett. 98, 220801 (2007).
[Crossref]

Itano, W. M.

T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. C. J. Koelemeij, J. C. Bergquist, and D. Wineland, “Observation of the 1S0 →3 P0 clock transition in 27Al+,” Phys. Rev. Lett. 98, 220801 (2007).
[Crossref]

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, “Spectroscopy using quantum logic,” Science 309, 749–752 (2005).
[Crossref] [PubMed]

D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Tech. 103, 259–328 (1998).
[Crossref]

J. J. Bollinger, J. S. Wells, D. J. Wineland, and W. M. Itano, “Hyperfine structure of the 2p2P1/2 state in 9Be+,” Phys. Rev. A 31, 2711–2714 (1985).
[Crossref]

Ito, M.

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582–595 (1982).
[Crossref]

Jang, J. H.

J. H. Jang, I. H. Yoon, and C. S. Yoon, “Cause and repair of optical damage in nonlinear optical crystals of BiB3O6,” Opt. Mater. 31, 781–783 (2009).
[Crossref]

Jost, J. D.

J. D. Jost, Entangled mechanical oscillators, Ph.D. thesis, University of Colorado (2010).

Kaneda, Y.

Keitch, B. C.

H.-Y. Lo, J. Alonso, D. Kienzler, B. C. Keitch, L. E. de Clercq, V. Negnevitsky, and J. P. Home, “All-solid-state continuous-wave laser systems for ionization, cooling and quantum state manipulation of beryllium ions,” Appl. Phys. B 114, 17–25 (2014).
[Crossref]

Keith, A. C.

J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484, 489–492 (2012).
[Crossref] [PubMed]

Kienzler, D.

H.-Y. Lo, J. Alonso, D. Kienzler, B. C. Keitch, L. E. de Clercq, V. Negnevitsky, and J. P. Home, “All-solid-state continuous-wave laser systems for ionization, cooling and quantum state manipulation of beryllium ions,” Appl. Phys. B 114, 17–25 (2014).
[Crossref]

Kim, K.

T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. C. J. Koelemeij, J. C. Bergquist, and D. Wineland, “Observation of the 1S0 →3 P0 clock transition in 27Al+,” Phys. Rev. Lett. 98, 220801 (2007).
[Crossref]

Kimura, T.

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582–595 (1982).
[Crossref]

King, B. E.

D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Tech. 103, 259–328 (1998).
[Crossref]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

Kobayashi, S.

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582–595 (1982).
[Crossref]

Koelemeij, J. C. J.

F. M. J. Cozijn, J. Biesheuvel, A. S. Flores, W. Ubachs, G. Blume, A. Wicht, K. Paschke, G. Erbert, and J. C. J. Koelemeij, “Laser cooling of beryllium ions using a frequency-doubled 626 nm diode laser,” Opt. Lett. 38, 2370–2372 (2013).
[Crossref] [PubMed]

T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. C. J. Koelemeij, J. C. Bergquist, and D. Wineland, “Observation of the 1S0 →3 P0 clock transition in 27Al+,” Phys. Rev. Lett. 98, 220801 (2007).
[Crossref]

Kohnen, M.

L. Schmöger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. C. López-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref] [PubMed]

König, W.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[Crossref]

Kourogi, M.

T. Nayuki, T. Fujii, K. Nemoto, M. Kozuma, M. Kourogi, and M. Ohtsu, “Continuous wavelength sweep of external cavity 630 nm laser diode without antireflection coating on output facet,” Opt. Rev. 5, 267–270 (1998).
[Crossref]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Kozuma, M.

T. Nayuki, T. Fujii, K. Nemoto, M. Kozuma, M. Kourogi, and M. Ohtsu, “Continuous wavelength sweep of external cavity 630 nm laser diode without antireflection coating on output facet,” Opt. Rev. 5, 267–270 (1998).
[Crossref]

Kubota, S.

Langer, C.

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, “Spectroscopy using quantum logic,” Science 309, 749–752 (2005).
[Crossref] [PubMed]

Lee, M. W.

H. Ball, M. W. Lee, S. D. Gensemer, and M. J. Biercuk, “A high-power 626 nm diode laser system for Beryllium ion trapping,” Rev. Sci. Instrum. 84, 063107 (2013).
[Crossref] [PubMed]

Lee, S. A.

J. L. Hall and S. A. Lee, “Interferometric real-time display of cw dye laser wavelength with sub-Doppler accuracy,” Appl. Phys. Lett. 29, 367–369 (1976).
[Crossref]

Leibfried, D.

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[Crossref]

D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Tech. 103, 259–328 (1998).
[Crossref]

T. Freegarde, J. Coutts, J. Walz, D. Leibfried, and T. W. Hänsch, “General analysis of type I second-harmonic generation with elliptical Gaussian beams,” J. Opt. Soc. Am. B 14, 2010–2016 (1997).
[Crossref]

Leibrandt, D. R.

D. R. Leibrandt and J. Heidecker, “An open source digital servo for atomic, molecular, and optical physics experiments,” Rev. Sci. Instrum. 86, 123115 (2015).
[Crossref]

Leopold, T.

L. Schmöger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. C. López-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref] [PubMed]

Lindsay, I. D.

C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Instrum. 72, 3811–3815 (2001).
[Crossref]

Lo, H.-Y.

H.-Y. Lo, J. Alonso, D. Kienzler, B. C. Keitch, L. E. de Clercq, V. Negnevitsky, and J. P. Home, “All-solid-state continuous-wave laser systems for ionization, cooling and quantum state manipulation of beryllium ions,” Appl. Phys. B 114, 17–25 (2014).
[Crossref]

López-Urrutia, J. R. C.

L. Schmöger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. C. López-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref] [PubMed]

Macalpine, W. W.

W. W. Macalpine and R. O. Schildknecht, “Coaxial resonators with helical inner conductors,” Proc. IRE 47, 2099–2105 (1959).
[Crossref]

Meekhof, D. M.

D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Tech. 103, 259–328 (1998).
[Crossref]

Mes, J.

J. Mes, E. J. van Duijn, R. Zinkstok, S. Witte, and W. Hogervorst, “Third-harmonic generation of a continuous-wave Ti:Sapphire laser in external resonant cavities,” Appl. Phys. Lett. 82, 4423–4425 (2003).
[Crossref]

Micke, P.

L. Schmöger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. C. López-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref] [PubMed]

Mlynek, J.

Mlynek, J. A.

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[Crossref]

Monroe, C.

D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Tech. 103, 259–328 (1998).
[Crossref]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Nayuki, T.

T. Nayuki, T. Fujii, K. Nemoto, M. Kozuma, M. Kourogi, and M. Ohtsu, “Continuous wavelength sweep of external cavity 630 nm laser diode without antireflection coating on output facet,” Opt. Rev. 5, 267–270 (1998).
[Crossref]

Negnevitsky, V.

H.-Y. Lo, J. Alonso, D. Kienzler, B. C. Keitch, L. E. de Clercq, V. Negnevitsky, and J. P. Home, “All-solid-state continuous-wave laser systems for ionization, cooling and quantum state manipulation of beryllium ions,” Appl. Phys. B 114, 17–25 (2014).
[Crossref]

Nemoto, K.

T. Nayuki, T. Fujii, K. Nemoto, M. Kozuma, M. Kourogi, and M. Ohtsu, “Continuous wavelength sweep of external cavity 630 nm laser diode without antireflection coating on output facet,” Opt. Rev. 5, 267–270 (1998).
[Crossref]

Nesbitt, D. J.

E. Riedle, S. H. Ashworth, J. J. T. Farrell, and D. J. Nesbitt, “Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity,” Rev. Sci. Instrum. 65, 42–48 (1994).
[Crossref]

Nevsky, A.

S. Vasilyev, A. Nevsky, I. Ernsting, M. Hansen, J. Shen, and S. Schiller, “Compact all-solid-state continuous-wave single-frequency UV source with frequency stabilization for laser cooling of Be+ ions,” Appl. Phys. B 103, 27–33 (2011).
[Crossref]

Nigg, D.

B. Hemmerling, F. Gebert, Y. Wan, D. Nigg, I. V. Sherstov, and P. O. Schmidt, “A single laser system for ground-state cooling of 25Mg+,” Appl. Phys. B 104, 583–590 (2011).
[Crossref]

Ohtsu, M.

T. Nayuki, T. Fujii, K. Nemoto, M. Kozuma, M. Kourogi, and M. Ohtsu, “Continuous wavelength sweep of external cavity 630 nm laser diode without antireflection coating on output facet,” Opt. Rev. 5, 267–270 (1998).
[Crossref]

Ospelkaus, C.

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[Crossref]

Paschke, K.

Patacchini, L.

B. Roth, P. Blythe, H. Daerr, L. Patacchini, and S. Schiller, “Production of ultracold diatomic and triatomic molecular ions of spectroscopic and astrophysical interest,” J. Phys. B 39, S1241–S1258 (2006).
[Crossref]

Paul, W.

W. Paul, “Electromagnetic traps for charged and neutral particles,” Rev. Mod. Phys. 62, 531–540 (1990).
[Crossref]

Pedregosa-Gutierrez, J.

L. Schmöger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. C. López-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref] [PubMed]

Peters, A.

Petridis, C.

C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Instrum. 72, 3811–3815 (2001).
[Crossref]

Piest, B.

L. Schmöger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. C. López-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref] [PubMed]

Ricci, L.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[Crossref]

Riedle, E.

E. Riedle, S. H. Ashworth, J. J. T. Farrell, and D. J. Nesbitt, “Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity,” Rev. Sci. Instrum. 65, 42–48 (1994).
[Crossref]

Rosenband, T.

T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. C. J. Koelemeij, J. C. Bergquist, and D. Wineland, “Observation of the 1S0 →3 P0 clock transition in 27Al+,” Phys. Rev. Lett. 98, 220801 (2007).
[Crossref]

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, “Spectroscopy using quantum logic,” Science 309, 749–752 (2005).
[Crossref] [PubMed]

Roth, B.

B. Roth, P. Blythe, H. Daerr, L. Patacchini, and S. Schiller, “Production of ultracold diatomic and triatomic molecular ions of spectroscopic and astrophysical interest,” J. Phys. B 39, S1241–S1258 (2006).
[Crossref]

P. Blythe, B. Roth, U. Fröhlich, H. Wenz, and S. Schiller, “Production of ultracold trapped molecular hydrogen ions,” Phys. Rev. Lett. 95, 183002 (2005).
[Crossref] [PubMed]

Ruseva, V.

V. Ruseva and J. Hald, “Generation of UV light by frequency doubling in BIBO,” Opt. Commun. 236, 219–223 (2004).
[Crossref]

Sawyer, B. C.

J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484, 489–492 (2012).
[Crossref] [PubMed]

Schildknecht, R. O.

W. W. Macalpine and R. O. Schildknecht, “Coaxial resonators with helical inner conductors,” Proc. IRE 47, 2099–2105 (1959).
[Crossref]

Schiller, S.

S. Vasilyev, A. Nevsky, I. Ernsting, M. Hansen, J. Shen, and S. Schiller, “Compact all-solid-state continuous-wave single-frequency UV source with frequency stabilization for laser cooling of Be+ ions,” Appl. Phys. B 103, 27–33 (2011).
[Crossref]

B. Roth, P. Blythe, H. Daerr, L. Patacchini, and S. Schiller, “Production of ultracold diatomic and triatomic molecular ions of spectroscopic and astrophysical interest,” J. Phys. B 39, S1241–S1258 (2006).
[Crossref]

P. Blythe, B. Roth, U. Fröhlich, H. Wenz, and S. Schiller, “Production of ultracold trapped molecular hydrogen ions,” Phys. Rev. Lett. 95, 183002 (2005).
[Crossref] [PubMed]

H. Schnitzler, U. Frölich, T. K. W. Boley, A. E. M. Clemen, J. Mlynek, A. Peters, and S. Schiller, “All-solid-state tunable continuous-wave ultraviolet source with high spectral purity and frequency stability,” Appl. Opt. 41, 7000–7005 (2002).
[Crossref] [PubMed]

Schmidt, P. O.

L. Schmöger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. C. López-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref] [PubMed]

B. Hemmerling, F. Gebert, Y. Wan, D. Nigg, I. V. Sherstov, and P. O. Schmidt, “A single laser system for ground-state cooling of 25Mg+,” Appl. Phys. B 104, 583–590 (2011).
[Crossref]

T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. C. J. Koelemeij, J. C. Bergquist, and D. Wineland, “Observation of the 1S0 →3 P0 clock transition in 27Al+,” Phys. Rev. Lett. 98, 220801 (2007).
[Crossref]

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, “Spectroscopy using quantum logic,” Science 309, 749–752 (2005).
[Crossref] [PubMed]

Schmöger, L.

L. Schmöger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. C. López-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref] [PubMed]

Schnitzler, H.

Schwarz, M.

L. Schmöger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. C. López-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref] [PubMed]

Shen, J.

S. Vasilyev, A. Nevsky, I. Ernsting, M. Hansen, J. Shen, and S. Schiller, “Compact all-solid-state continuous-wave single-frequency UV source with frequency stabilization for laser cooling of Be+ ions,” Appl. Phys. B 103, 27–33 (2011).
[Crossref]

Sherstov, I. V.

B. Hemmerling, F. Gebert, Y. Wan, D. Nigg, I. V. Sherstov, and P. O. Schmidt, “A single laser system for ground-state cooling of 25Mg+,” Appl. Phys. B 104, 583–590 (2011).
[Crossref]

Stalnaker, J. E.

T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. C. J. Koelemeij, J. C. Bergquist, and D. Wineland, “Observation of the 1S0 →3 P0 clock transition in 27Al+,” Phys. Rev. Lett. 98, 220801 (2007).
[Crossref]

Stothard, D. J. M.

C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Instrum. 72, 3811–3815 (2001).
[Crossref]

Ubachs, W.

Ullrich, J.

L. Schmöger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. C. López-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref] [PubMed]

Uys, H.

J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484, 489–492 (2012).
[Crossref] [PubMed]

van Duijn, E. J.

J. Mes, E. J. van Duijn, R. Zinkstok, S. Witte, and W. Hogervorst, “Third-harmonic generation of a continuous-wave Ti:Sapphire laser in external resonant cavities,” Appl. Phys. Lett. 82, 4423–4425 (2003).
[Crossref]

VanDevender, A. P.

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[Crossref]

Vasilyev, S.

S. Vasilyev, A. Nevsky, I. Ernsting, M. Hansen, J. Shen, and S. Schiller, “Compact all-solid-state continuous-wave single-frequency UV source with frequency stabilization for laser cooling of Be+ ions,” Appl. Phys. B 103, 27–33 (2011).
[Crossref]

Versolato, O. O.

L. Schmöger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. C. López-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref] [PubMed]

Vuletic, V.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[Crossref]

Walz, J.

Wan, Y.

B. Hemmerling, F. Gebert, Y. Wan, D. Nigg, I. V. Sherstov, and P. O. Schmidt, “A single laser system for ground-state cooling of 25Mg+,” Appl. Phys. B 104, 583–590 (2011).
[Crossref]

Wang, C.-C. J.

J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484, 489–492 (2012).
[Crossref] [PubMed]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Weidemüller, M.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[Crossref]

Wells, J. S.

J. J. Bollinger, J. S. Wells, D. J. Wineland, and W. M. Itano, “Hyperfine structure of the 2p2P1/2 state in 9Be+,” Phys. Rev. A 31, 2711–2714 (1985).
[Crossref]

Wenz, H.

P. Blythe, B. Roth, U. Fröhlich, H. Wenz, and S. Schiller, “Production of ultracold trapped molecular hydrogen ions,” Phys. Rev. Lett. 95, 183002 (2005).
[Crossref] [PubMed]

Wicht, A.

Wieman, C. E.

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[Crossref]

Wilson, A. C.

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[Crossref]

Windberger, A.

L. Schmöger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. C. López-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref] [PubMed]

Wineland, D.

T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. C. J. Koelemeij, J. C. Bergquist, and D. Wineland, “Observation of the 1S0 →3 P0 clock transition in 27Al+,” Phys. Rev. Lett. 98, 220801 (2007).
[Crossref]

Wineland, D. J.

D. J. Wineland, “Nobel lecture: Superposition, entanglement, and raising Schrödinger’s cat,” Rev. Mod. Phys. 85, 1103–1114 (2013).
[Crossref]

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[Crossref]

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, “Spectroscopy using quantum logic,” Science 309, 749–752 (2005).
[Crossref] [PubMed]

D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Tech. 103, 259–328 (1998).
[Crossref]

J. J. Bollinger, J. S. Wells, D. J. Wineland, and W. M. Itano, “Hyperfine structure of the 2p2P1/2 state in 9Be+,” Phys. Rev. A 31, 2711–2714 (1985).
[Crossref]

Witte, S.

J. Mes, E. J. van Duijn, R. Zinkstok, S. Witte, and W. Hogervorst, “Third-harmonic generation of a continuous-wave Ti:Sapphire laser in external resonant cavities,” Appl. Phys. Lett. 82, 4423–4425 (2003).
[Crossref]

Yamamoto, Y.

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582–595 (1982).
[Crossref]

Yoon, C. S.

J. H. Jang, I. H. Yoon, and C. S. Yoon, “Cause and repair of optical damage in nonlinear optical crystals of BiB3O6,” Opt. Mater. 31, 781–783 (2009).
[Crossref]

Yoon, I. H.

J. H. Jang, I. H. Yoon, and C. S. Yoon, “Cause and repair of optical damage in nonlinear optical crystals of BiB3O6,” Opt. Mater. 31, 781–783 (2009).
[Crossref]

Zimmermann, C.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[Crossref]

Zinkstok, R.

J. Mes, E. J. van Duijn, R. Zinkstok, S. Witte, and W. Hogervorst, “Third-harmonic generation of a continuous-wave Ti:Sapphire laser in external resonant cavities,” Appl. Phys. Lett. 82, 4423–4425 (2003).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (5)

S. Vasilyev, A. Nevsky, I. Ernsting, M. Hansen, J. Shen, and S. Schiller, “Compact all-solid-state continuous-wave single-frequency UV source with frequency stabilization for laser cooling of Be+ ions,” Appl. Phys. B 103, 27–33 (2011).
[Crossref]

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[Crossref]

H.-Y. Lo, J. Alonso, D. Kienzler, B. C. Keitch, L. E. de Clercq, V. Negnevitsky, and J. P. Home, “All-solid-state continuous-wave laser systems for ionization, cooling and quantum state manipulation of beryllium ions,” Appl. Phys. B 114, 17–25 (2014).
[Crossref]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

B. Hemmerling, F. Gebert, Y. Wan, D. Nigg, I. V. Sherstov, and P. O. Schmidt, “A single laser system for ground-state cooling of 25Mg+,” Appl. Phys. B 104, 583–590 (2011).
[Crossref]

Appl. Phys. Lett. (2)

J. Mes, E. J. van Duijn, R. Zinkstok, S. Witte, and W. Hogervorst, “Third-harmonic generation of a continuous-wave Ti:Sapphire laser in external resonant cavities,” Appl. Phys. Lett. 82, 4423–4425 (2003).
[Crossref]

J. L. Hall and S. A. Lee, “Interferometric real-time display of cw dye laser wavelength with sub-Doppler accuracy,” Appl. Phys. Lett. 29, 367–369 (1976).
[Crossref]

IEEE J. Quantum Electron. (1)

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582–595 (1982).
[Crossref]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

B. Roth, P. Blythe, H. Daerr, L. Patacchini, and S. Schiller, “Production of ultracold diatomic and triatomic molecular ions of spectroscopic and astrophysical interest,” J. Phys. B 39, S1241–S1258 (2006).
[Crossref]

J. Res. Natl. Inst. Stand. Tech. (1)

D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Tech. 103, 259–328 (1998).
[Crossref]

Nature (1)

J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484, 489–492 (2012).
[Crossref] [PubMed]

Opt. Commun. (4)

C. S. Adams and A. I. Ferguson, “Frequency doubling of a single frequency Ti:Al2O3 laser using an external enhancement cavity,” Opt. Commun. 79, 219–223 (1990).
[Crossref]

V. Ruseva and J. Hald, “Generation of UV light by frequency doubling in BIBO,” Opt. Commun. 236, 219–223 (2004).
[Crossref]

T. W. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectrocopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[Crossref]

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (1)

J. H. Jang, I. H. Yoon, and C. S. Yoon, “Cause and repair of optical damage in nonlinear optical crystals of BiB3O6,” Opt. Mater. 31, 781–783 (2009).
[Crossref]

Opt. Rev. (1)

T. Nayuki, T. Fujii, K. Nemoto, M. Kozuma, M. Kourogi, and M. Ohtsu, “Continuous wavelength sweep of external cavity 630 nm laser diode without antireflection coating on output facet,” Opt. Rev. 5, 267–270 (1998).
[Crossref]

Phys. Rev. A (1)

J. J. Bollinger, J. S. Wells, D. J. Wineland, and W. M. Itano, “Hyperfine structure of the 2p2P1/2 state in 9Be+,” Phys. Rev. A 31, 2711–2714 (1985).
[Crossref]

Phys. Rev. Lett. (2)

T. Rosenband, P. O. Schmidt, D. B. Hume, W. M. Itano, T. M. Fortier, J. E. Stalnaker, K. Kim, S. A. Diddams, J. C. J. Koelemeij, J. C. Bergquist, and D. Wineland, “Observation of the 1S0 →3 P0 clock transition in 27Al+,” Phys. Rev. Lett. 98, 220801 (2007).
[Crossref]

P. Blythe, B. Roth, U. Fröhlich, H. Wenz, and S. Schiller, “Production of ultracold trapped molecular hydrogen ions,” Phys. Rev. Lett. 95, 183002 (2005).
[Crossref] [PubMed]

Proc. IRE (1)

W. W. Macalpine and R. O. Schildknecht, “Coaxial resonators with helical inner conductors,” Proc. IRE 47, 2099–2105 (1959).
[Crossref]

Rev. Mod. Phys. (2)

W. Paul, “Electromagnetic traps for charged and neutral particles,” Rev. Mod. Phys. 62, 531–540 (1990).
[Crossref]

D. J. Wineland, “Nobel lecture: Superposition, entanglement, and raising Schrödinger’s cat,” Rev. Mod. Phys. 85, 1103–1114 (2013).
[Crossref]

Rev. Sci. Instrum. (5)

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[Crossref]

C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Instrum. 72, 3811–3815 (2001).
[Crossref]

H. Ball, M. W. Lee, S. D. Gensemer, and M. J. Biercuk, “A high-power 626 nm diode laser system for Beryllium ion trapping,” Rev. Sci. Instrum. 84, 063107 (2013).
[Crossref] [PubMed]

D. R. Leibrandt and J. Heidecker, “An open source digital servo for atomic, molecular, and optical physics experiments,” Rev. Sci. Instrum. 86, 123115 (2015).
[Crossref]

E. Riedle, S. H. Ashworth, J. J. T. Farrell, and D. J. Nesbitt, “Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity,” Rev. Sci. Instrum. 65, 42–48 (1994).
[Crossref]

Science (2)

L. Schmöger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen, T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. C. López-Urrutia, “Coulomb crystallization of highly charged ions,” Science 347, 1233–1236 (2015).
[Crossref] [PubMed]

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, “Spectroscopy using quantum logic,” Science 309, 749–752 (2005).
[Crossref] [PubMed]

Other (3)

J. D. Jost, Entangled mechanical oscillators, Ph.D. thesis, University of Colorado (2010).

J. F. Barry, Laser cooling and slowing of a diatomic molecule, Ph.D. thesis, Yale University (2013).

SNLO nonlinear optics code available from A. V. Smith, AS-Photonics, Albuquerque, NM.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the laser system. For simplicity, it omits many mirrors, lenses, and diagnostic and control electronics not mentioned in the text. CL: cylindrical lens, DM: dichroic mirror, ECDL: external-cavity diode laser, FP: Fabry–Pérot cavity, FSP: fused-silica plate, HeNe: stabilized helium-neon laser, HWP: half-waveplate, I/θ: laser current or grating-angle control, ISO: optical isolator, MOPA: master-oscillator power amplifier, PBS: polarizing beamsplitter, PC: computer, PD: photodetector, PDH: Pound–Drever–Hall local oscillator, PM: polarization-maintaining fiber, PZT: piezoelectric transducer, SM: single-mode fiber, TA: tapered amplifier

Fig. 2
Fig. 2

Laser frequency noise with (red) and without (blue) current feedback, presented as (a) the spectral frequency noise density and (b) the overlapped Allan deviation.

Fig. 3
Fig. 3

Output power versus input power for the SHG cavity. The theory curve corresponds to nonlinear coefficient γSHG = 1.0 × 10−5 W−1, passive cavity loss of 0.30%, and includes a 20% reflection loss at the crystal output facet.

Fig. 4
Fig. 4

Model of output versus input powers for the SFG cavity. Measured output powers agree to within 15% of the model. Input powers accessible with our system are up to approximately 630 mW in the fundamental (1ω) and 120 mW in the second harmonic (2ω). The model parameters are a nonlinear coefficient γSFG = 2.94 × 10−4 W−1, passive cavity losses of 1.9% in the fundamental and 1.8% in the second harmonic, and mode-match efficiencies of 79.4% in the IR and 84.7% in the blue.

Fig. 5
Fig. 5

Performance of the third-harmonic (UV) output power on (a) short and (b) long timescales. The short-time performance is presented as the overlapped Allan deviation, which shows power fluctuations stay below 3% on most timescales. The long-time trace shows variation under 10%. Near the six-hour mark, the system automatically relocked in less than 10 s following a disturbance.

Fig. 6
Fig. 6

Fluorescence from seven trapped 9Be+ ions with gaps indicating two sympathetically cooled BeH+ ions.

Metrics