Abstract

Based on induced modulation instability, we present a numerical study on harnessing rogue wave for supercontinuum generation in cascaded photonic crystal fibers. By selecting optimum modulation frequency, we achieve supercontinuum with a great improvement on spectrum stability when long-pulse is used as the pump. In this case, rogue wave can be obtained in the first segmented photonic crystal fiber with one zero dispersion wavelength in a controllable manner. Numerical simulations show that spectral range and flatness can be regulated in an extensive range by cascading a photonic crystal fiber with two zero dispersion wavelengths. Some novel phenomena are observed in the second segmented photonic crystal fiber. When the second zero dispersion wavelength is close to the first one, rogue wave is directly translated into dispersion waves, which is conducive to the generation of smoother supercontinuum. When the second zero dispersion wavelength is far away from the first one, rogue wave is translated into the form of fundamental soliton steadily propagating in the vicinity of the second zero dispersion wavelength. Meanwhile, the corresponding red-shifted dispersion wave is generated when the phase matching condition is met, which is beneficial to the generation of wider supercontinuum. The results presented in this work provide a better application of optical rogue wave to generate flat and broadband supercontinuum in cascaded photonic crystal fibers.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Giant dispersive wave generation through soliton collision

M. Erkintalo, G. Genty, and J. M. Dudley
Opt. Lett. 35(5) 658-660 (2010)

An adaptive filter for studying the life cycle of optical rogue waves

Chu Liu, Eric J. Rees, Toni Laurila, Shuisheng Jian, and Clemens F. Kaminski
Opt. Express 18(25) 26113-26122 (2010)

Controlling formation and suppression of fiber-optical rogue waves

Carsten Brée, Günter Steinmeyer, Ihar Babushkin, Uwe Morgner, and Ayhan Demircan
Opt. Lett. 41(15) 3515-3518 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
    [Crossref]
  2. B. Washburn and N. Newbury, “Phase, timing, and amplitude noise on supercontinua generated in microstructure fiber,” Opt. Express 12(10), 2166–2175 (2004).
    [Crossref] [PubMed]
  3. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  4. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography,” Opt. Lett. 27(22), 2010–2012 (2002).
    [Crossref] [PubMed]
  5. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2012)
  6. J. M. Dudley and J. R. Taylor, Supercontinuum Generation In Optical Fibers (Cambridge University, 2010)
  7. S. Zhao, H. Yang, N. Chen, X. Fu, and C. Zhao, “Soliton trapping of dispersive waves in photonic crystal fiber with three zero-dispersion wavelengths,” IEEE Photonics J. 7(5), 7102701 (2015).
  8. W. Wang, H. Yang, P. Tang, C. Zhao, and J. Gao, “Soliton trapping of dispersive waves in photonic crystal fiber with two zero dispersive wavelengths,” Opt. Express 21(9), 11215–11226 (2013).
    [Crossref] [PubMed]
  9. M. Maus, E. Rousseau, M. Cotlet, C. Schweitzer, J. Hofkens, M. Van der Auweraer, F. C. De Schryver, and A. Krueger, “New Picosecond laser system for easy tenability over the whole ultraviolet/visible/near infrared wavelength range based on flexible harmonic generation and optical parametric oscillation,” Rev. Sci. Instrum. 72(1), 36–40 (2001).
    [Crossref]
  10. C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28(4), 216–218 (1976).
    [Crossref]
  11. V. E. Zakharov and L. A. Ostrovsky, “Modulation instability: The beginning,” Physica D 238(5), 540–548 (2009).
    [Crossref]
  12. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19(4), 753–764 (2002).
    [Crossref]
  13. S. Kobtsev and S. Smirnov, “Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump,” Opt. Express 13(18), 6912–6918 (2005).
    [Crossref] [PubMed]
  14. E. J. R. Kelleher, J. C. Travers, S. V. Popov, and J. R. Taylor, “Role of pump coherence in the evolution of continuous-wave supercontinuum generation intiated by modulation instability,” J. Opt. Soc. Am. B 29(3), 502–512 (2012).
    [Crossref]
  15. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
    [Crossref] [PubMed]
  16. D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
    [Crossref] [PubMed]
  17. D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105(23), 233902 (2010).
    [Crossref] [PubMed]
  18. A. Kudlinski, B. Barviau, A. Leray, C. Spriet, L. Héliot, and A. Mussot, “Control of pulse-to-pulse fluctuations in visible supercontinuum,” Opt. Express 18(26), 27445–27454 (2010).
    [Crossref] [PubMed]
  19. Q. Li, F. Li, K. K. Y. Wong, A. P. T. Lau, K. K. Tsia, and P. K. A. Wai, “Investigating the influence of a weak continuous-wave-trigger on picosecond supercontinuum generation,” Opt. Express 19(15), 13757–13769 (2011).
    [Crossref] [PubMed]
  20. S. T. Sørensen, C. Larsen, U. Møller, P. Moselund, C. L. Thomsen, and O. Bang, “Influence of pump power and modulation instability gain spectrum on seeded supercontinuum and rogue wave generation,” J. Opt. Soc. Am. B 29(10), 2875–2885 (2012).
    [Crossref]
  21. S. Zhao, H. Yang, N. Chen, and C. Zhao, “Controlled generation of high-intensity optical rogue waves by induced modulation instability,” Sci. Rep. 7, 39926 (2017).
    [Crossref] [PubMed]
  22. K. Hammani, C. Finot, J. M. Dudley, and G. Millot, “Optical rogue-wave-like extreme value fluctuations in fiber Raman amplifiers,” Opt. Express 16(21), 16467–16474 (2008).
    [Crossref] [PubMed]
  23. J. Peng, N. Tarasov, S. Sugavanam, and D. Churkin, “Rogue waves generation via nonlinear soliton collision in multiple-soliton state of a mode-locked fiber laser,” Opt. Express 24(19), 21256–21263 (2016).
    [Crossref] [PubMed]
  24. P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
    [Crossref] [PubMed]
  25. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
    [Crossref] [PubMed]
  26. T. Sylvestre, A. Vedadi, H. Maillotte, F. Vanholsbeeck, and S. Coen, “Supercontinuum generation using continuous-wave multiwavelength pumping and dispersion management,” Opt. Lett. 31(13), 2036–2038 (2006).
    [Crossref] [PubMed]
  27. J. Fatome, B. Kibler, M. El-Amraoui, J. C. Jules, G. Gadret, F. Desevedavy, and F. Smektala, “Mid-infrared extension of supercontinuum in chalcogenide suspended core fibre through soliton gas pumping,” Electron. Lett. 47(6), 398–400 (2011).
    [Crossref]
  28. G. Genty, J. Dudley, and B. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
    [Crossref]
  29. M. H. Frosz, S. T. Sørensen, and O. Bang, “Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping,” J. Opt. Soc. Am. B 23(8), 1692–1699 (2006).
    [Crossref]
  30. G. Genty and J. M. Dudley, “Route to coherent supercontinuum generation in the long pulse regime,” IEEE J. Quantum Electron. 45(11), 1331–1335 (2009).
    [Crossref]
  31. B. Kibler, C. Finot, and J. M. Dudley, “Soliton and rogue wave statistics in supercontinuum generation in photonic crystal fibre with two zero dispersion wavelengths,” Eur. Phys. J. Spec. Top. 173(1), 289–295 (2009).
    [Crossref]
  32. K. Hammani, C. Finot, R. Habert, A. Mussot, and A. Kudlinski, “Active reduction of fluctuations in fourth-order modulation instability,” Opt. Lett. 37(20), 4305–4307 (2012).
    [Crossref] [PubMed]
  33. A. Mussot, A. Kudlinski, M. Kolobov, E. Louvergneaux, M. Douay, and M. Taki, “Observation of extreme temporal events in CW-pumped supercontinuum,” Opt. Express 17(19), 17010–17015 (2009).
    [Crossref] [PubMed]

2017 (1)

S. Zhao, H. Yang, N. Chen, and C. Zhao, “Controlled generation of high-intensity optical rogue waves by induced modulation instability,” Sci. Rep. 7, 39926 (2017).
[Crossref] [PubMed]

2016 (1)

2015 (1)

S. Zhao, H. Yang, N. Chen, X. Fu, and C. Zhao, “Soliton trapping of dispersive waves in photonic crystal fiber with three zero-dispersion wavelengths,” IEEE Photonics J. 7(5), 7102701 (2015).

2013 (1)

2012 (3)

2011 (2)

Q. Li, F. Li, K. K. Y. Wong, A. P. T. Lau, K. K. Tsia, and P. K. A. Wai, “Investigating the influence of a weak continuous-wave-trigger on picosecond supercontinuum generation,” Opt. Express 19(15), 13757–13769 (2011).
[Crossref] [PubMed]

J. Fatome, B. Kibler, M. El-Amraoui, J. C. Jules, G. Gadret, F. Desevedavy, and F. Smektala, “Mid-infrared extension of supercontinuum in chalcogenide suspended core fibre through soliton gas pumping,” Electron. Lett. 47(6), 398–400 (2011).
[Crossref]

2010 (2)

D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105(23), 233902 (2010).
[Crossref] [PubMed]

A. Kudlinski, B. Barviau, A. Leray, C. Spriet, L. Héliot, and A. Mussot, “Control of pulse-to-pulse fluctuations in visible supercontinuum,” Opt. Express 18(26), 27445–27454 (2010).
[Crossref] [PubMed]

2009 (5)

A. Mussot, A. Kudlinski, M. Kolobov, E. Louvergneaux, M. Douay, and M. Taki, “Observation of extreme temporal events in CW-pumped supercontinuum,” Opt. Express 17(19), 17010–17015 (2009).
[Crossref] [PubMed]

V. E. Zakharov and L. A. Ostrovsky, “Modulation instability: The beginning,” Physica D 238(5), 540–548 (2009).
[Crossref]

G. Genty, J. Dudley, and B. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[Crossref]

G. Genty and J. M. Dudley, “Route to coherent supercontinuum generation in the long pulse regime,” IEEE J. Quantum Electron. 45(11), 1331–1335 (2009).
[Crossref]

B. Kibler, C. Finot, and J. M. Dudley, “Soliton and rogue wave statistics in supercontinuum generation in photonic crystal fibre with two zero dispersion wavelengths,” Eur. Phys. J. Spec. Top. 173(1), 289–295 (2009).
[Crossref]

2008 (2)

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[Crossref] [PubMed]

K. Hammani, C. Finot, J. M. Dudley, and G. Millot, “Optical rogue-wave-like extreme value fluctuations in fiber Raman amplifiers,” Opt. Express 16(21), 16467–16474 (2008).
[Crossref] [PubMed]

2007 (1)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

2006 (3)

2005 (1)

2004 (1)

2003 (2)

P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[Crossref] [PubMed]

2002 (2)

2001 (1)

M. Maus, E. Rousseau, M. Cotlet, C. Schweitzer, J. Hofkens, M. Van der Auweraer, F. C. De Schryver, and A. Krueger, “New Picosecond laser system for easy tenability over the whole ultraviolet/visible/near infrared wavelength range based on flexible harmonic generation and optical parametric oscillation,” Rev. Sci. Instrum. 72(1), 36–40 (2001).
[Crossref]

1976 (1)

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28(4), 216–218 (1976).
[Crossref]

1970 (1)

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[Crossref]

Alfano, R. R.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[Crossref]

Bang, O.

Barviau, B.

Boppart, S. A.

Chau, A. H. L.

Chen, N.

S. Zhao, H. Yang, N. Chen, and C. Zhao, “Controlled generation of high-intensity optical rogue waves by induced modulation instability,” Sci. Rep. 7, 39926 (2017).
[Crossref] [PubMed]

S. Zhao, H. Yang, N. Chen, X. Fu, and C. Zhao, “Soliton trapping of dispersive waves in photonic crystal fiber with three zero-dispersion wavelengths,” IEEE Photonics J. 7(5), 7102701 (2015).

Churkin, D.

Coen, S.

Cotlet, M.

M. Maus, E. Rousseau, M. Cotlet, C. Schweitzer, J. Hofkens, M. Van der Auweraer, F. C. De Schryver, and A. Krueger, “New Picosecond laser system for easy tenability over the whole ultraviolet/visible/near infrared wavelength range based on flexible harmonic generation and optical parametric oscillation,” Rev. Sci. Instrum. 72(1), 36–40 (2001).
[Crossref]

De Schryver, F. C.

M. Maus, E. Rousseau, M. Cotlet, C. Schweitzer, J. Hofkens, M. Van der Auweraer, F. C. De Schryver, and A. Krueger, “New Picosecond laser system for easy tenability over the whole ultraviolet/visible/near infrared wavelength range based on flexible harmonic generation and optical parametric oscillation,” Rev. Sci. Instrum. 72(1), 36–40 (2001).
[Crossref]

Desevedavy, F.

J. Fatome, B. Kibler, M. El-Amraoui, J. C. Jules, G. Gadret, F. Desevedavy, and F. Smektala, “Mid-infrared extension of supercontinuum in chalcogenide suspended core fibre through soliton gas pumping,” Electron. Lett. 47(6), 398–400 (2011).
[Crossref]

Douay, M.

Dudley, J.

G. Genty, J. Dudley, and B. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[Crossref]

Dudley, J. M.

G. Genty and J. M. Dudley, “Route to coherent supercontinuum generation in the long pulse regime,” IEEE J. Quantum Electron. 45(11), 1331–1335 (2009).
[Crossref]

B. Kibler, C. Finot, and J. M. Dudley, “Soliton and rogue wave statistics in supercontinuum generation in photonic crystal fibre with two zero dispersion wavelengths,” Eur. Phys. J. Spec. Top. 173(1), 289–295 (2009).
[Crossref]

K. Hammani, C. Finot, J. M. Dudley, and G. Millot, “Optical rogue-wave-like extreme value fluctuations in fiber Raman amplifiers,” Opt. Express 16(21), 16467–16474 (2008).
[Crossref] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Eggleton, B.

G. Genty, J. Dudley, and B. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[Crossref]

El-Amraoui, M.

J. Fatome, B. Kibler, M. El-Amraoui, J. C. Jules, G. Gadret, F. Desevedavy, and F. Smektala, “Mid-infrared extension of supercontinuum in chalcogenide suspended core fibre through soliton gas pumping,” Electron. Lett. 47(6), 398–400 (2011).
[Crossref]

Fatome, J.

J. Fatome, B. Kibler, M. El-Amraoui, J. C. Jules, G. Gadret, F. Desevedavy, and F. Smektala, “Mid-infrared extension of supercontinuum in chalcogenide suspended core fibre through soliton gas pumping,” Electron. Lett. 47(6), 398–400 (2011).
[Crossref]

Finot, C.

Frosz, M. H.

Fu, X.

S. Zhao, H. Yang, N. Chen, X. Fu, and C. Zhao, “Soliton trapping of dispersive waves in photonic crystal fiber with three zero-dispersion wavelengths,” IEEE Photonics J. 7(5), 7102701 (2015).

Gadret, G.

J. Fatome, B. Kibler, M. El-Amraoui, J. C. Jules, G. Gadret, F. Desevedavy, and F. Smektala, “Mid-infrared extension of supercontinuum in chalcogenide suspended core fibre through soliton gas pumping,” Electron. Lett. 47(6), 398–400 (2011).
[Crossref]

Gao, J.

Genty, G.

G. Genty, J. Dudley, and B. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[Crossref]

G. Genty and J. M. Dudley, “Route to coherent supercontinuum generation in the long pulse regime,” IEEE J. Quantum Electron. 45(11), 1331–1335 (2009).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Habert, R.

Hammani, K.

Harvey, J. D.

Héliot, L.

Hofkens, J.

M. Maus, E. Rousseau, M. Cotlet, C. Schweitzer, J. Hofkens, M. Van der Auweraer, F. C. De Schryver, and A. Krueger, “New Picosecond laser system for easy tenability over the whole ultraviolet/visible/near infrared wavelength range based on flexible harmonic generation and optical parametric oscillation,” Rev. Sci. Instrum. 72(1), 36–40 (2001).
[Crossref]

Jalali, B.

D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105(23), 233902 (2010).
[Crossref] [PubMed]

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[Crossref] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Jules, J. C.

J. Fatome, B. Kibler, M. El-Amraoui, J. C. Jules, G. Gadret, F. Desevedavy, and F. Smektala, “Mid-infrared extension of supercontinuum in chalcogenide suspended core fibre through soliton gas pumping,” Electron. Lett. 47(6), 398–400 (2011).
[Crossref]

Kelleher, E. J. R.

Kibler, B.

J. Fatome, B. Kibler, M. El-Amraoui, J. C. Jules, G. Gadret, F. Desevedavy, and F. Smektala, “Mid-infrared extension of supercontinuum in chalcogenide suspended core fibre through soliton gas pumping,” Electron. Lett. 47(6), 398–400 (2011).
[Crossref]

B. Kibler, C. Finot, and J. M. Dudley, “Soliton and rogue wave statistics in supercontinuum generation in photonic crystal fibre with two zero dispersion wavelengths,” Eur. Phys. J. Spec. Top. 173(1), 289–295 (2009).
[Crossref]

Knight, J. C.

Kobtsev, S.

Kolobov, M.

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Krueger, A.

M. Maus, E. Rousseau, M. Cotlet, C. Schweitzer, J. Hofkens, M. Van der Auweraer, F. C. De Schryver, and A. Krueger, “New Picosecond laser system for easy tenability over the whole ultraviolet/visible/near infrared wavelength range based on flexible harmonic generation and optical parametric oscillation,” Rev. Sci. Instrum. 72(1), 36–40 (2001).
[Crossref]

Kudlinski, A.

Larsen, C.

Lau, A. P. T.

Leonhardt, R.

Leray, A.

Li, F.

Li, Q.

Lin, C.

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28(4), 216–218 (1976).
[Crossref]

Louvergneaux, E.

Maillotte, H.

Marks, D. L.

Maus, M.

M. Maus, E. Rousseau, M. Cotlet, C. Schweitzer, J. Hofkens, M. Van der Auweraer, F. C. De Schryver, and A. Krueger, “New Picosecond laser system for easy tenability over the whole ultraviolet/visible/near infrared wavelength range based on flexible harmonic generation and optical parametric oscillation,” Rev. Sci. Instrum. 72(1), 36–40 (2001).
[Crossref]

Millot, G.

Møller, U.

Moselund, P.

Mussot, A.

Newbury, N.

Oldenburg, A. L.

Ostrovsky, L. A.

V. E. Zakharov and L. A. Ostrovsky, “Modulation instability: The beginning,” Physica D 238(5), 540–548 (2009).
[Crossref]

Peng, J.

Popov, S. V.

Reynolds, J. J.

Ropers, C.

D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105(23), 233902 (2010).
[Crossref] [PubMed]

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[Crossref] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Rousseau, E.

M. Maus, E. Rousseau, M. Cotlet, C. Schweitzer, J. Hofkens, M. Van der Auweraer, F. C. De Schryver, and A. Krueger, “New Picosecond laser system for easy tenability over the whole ultraviolet/visible/near infrared wavelength range based on flexible harmonic generation and optical parametric oscillation,” Rev. Sci. Instrum. 72(1), 36–40 (2001).
[Crossref]

Russell, P.

P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Russell, P. S. J.

Schweitzer, C.

M. Maus, E. Rousseau, M. Cotlet, C. Schweitzer, J. Hofkens, M. Van der Auweraer, F. C. De Schryver, and A. Krueger, “New Picosecond laser system for easy tenability over the whole ultraviolet/visible/near infrared wavelength range based on flexible harmonic generation and optical parametric oscillation,” Rev. Sci. Instrum. 72(1), 36–40 (2001).
[Crossref]

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[Crossref]

Smektala, F.

J. Fatome, B. Kibler, M. El-Amraoui, J. C. Jules, G. Gadret, F. Desevedavy, and F. Smektala, “Mid-infrared extension of supercontinuum in chalcogenide suspended core fibre through soliton gas pumping,” Electron. Lett. 47(6), 398–400 (2011).
[Crossref]

Smirnov, S.

Solli, D. R.

D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105(23), 233902 (2010).
[Crossref] [PubMed]

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[Crossref] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Sørensen, S. T.

Spriet, C.

Stolen, R. H.

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28(4), 216–218 (1976).
[Crossref]

Sugavanam, S.

Sylvestre, T.

Taki, M.

Tang, P.

Tarasov, N.

Taylor, J. R.

Thomsen, C. L.

Travers, J. C.

Tsia, K. K.

Van der Auweraer, M.

M. Maus, E. Rousseau, M. Cotlet, C. Schweitzer, J. Hofkens, M. Van der Auweraer, F. C. De Schryver, and A. Krueger, “New Picosecond laser system for easy tenability over the whole ultraviolet/visible/near infrared wavelength range based on flexible harmonic generation and optical parametric oscillation,” Rev. Sci. Instrum. 72(1), 36–40 (2001).
[Crossref]

Vanholsbeeck, F.

Vedadi, A.

Wadsworth, W. J.

Wai, P. K. A.

Wang, W.

Washburn, B.

Wong, K. K. Y.

Yang, H.

S. Zhao, H. Yang, N. Chen, and C. Zhao, “Controlled generation of high-intensity optical rogue waves by induced modulation instability,” Sci. Rep. 7, 39926 (2017).
[Crossref] [PubMed]

S. Zhao, H. Yang, N. Chen, X. Fu, and C. Zhao, “Soliton trapping of dispersive waves in photonic crystal fiber with three zero-dispersion wavelengths,” IEEE Photonics J. 7(5), 7102701 (2015).

W. Wang, H. Yang, P. Tang, C. Zhao, and J. Gao, “Soliton trapping of dispersive waves in photonic crystal fiber with two zero dispersive wavelengths,” Opt. Express 21(9), 11215–11226 (2013).
[Crossref] [PubMed]

Zakharov, V. E.

V. E. Zakharov and L. A. Ostrovsky, “Modulation instability: The beginning,” Physica D 238(5), 540–548 (2009).
[Crossref]

Zhao, C.

S. Zhao, H. Yang, N. Chen, and C. Zhao, “Controlled generation of high-intensity optical rogue waves by induced modulation instability,” Sci. Rep. 7, 39926 (2017).
[Crossref] [PubMed]

S. Zhao, H. Yang, N. Chen, X. Fu, and C. Zhao, “Soliton trapping of dispersive waves in photonic crystal fiber with three zero-dispersion wavelengths,” IEEE Photonics J. 7(5), 7102701 (2015).

W. Wang, H. Yang, P. Tang, C. Zhao, and J. Gao, “Soliton trapping of dispersive waves in photonic crystal fiber with two zero dispersive wavelengths,” Opt. Express 21(9), 11215–11226 (2013).
[Crossref] [PubMed]

Zhao, S.

S. Zhao, H. Yang, N. Chen, and C. Zhao, “Controlled generation of high-intensity optical rogue waves by induced modulation instability,” Sci. Rep. 7, 39926 (2017).
[Crossref] [PubMed]

S. Zhao, H. Yang, N. Chen, X. Fu, and C. Zhao, “Soliton trapping of dispersive waves in photonic crystal fiber with three zero-dispersion wavelengths,” IEEE Photonics J. 7(5), 7102701 (2015).

Appl. Phys. B (1)

G. Genty, J. Dudley, and B. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[Crossref]

Appl. Phys. Lett. (1)

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28(4), 216–218 (1976).
[Crossref]

Electron. Lett. (1)

J. Fatome, B. Kibler, M. El-Amraoui, J. C. Jules, G. Gadret, F. Desevedavy, and F. Smektala, “Mid-infrared extension of supercontinuum in chalcogenide suspended core fibre through soliton gas pumping,” Electron. Lett. 47(6), 398–400 (2011).
[Crossref]

Eur. Phys. J. Spec. Top. (1)

B. Kibler, C. Finot, and J. M. Dudley, “Soliton and rogue wave statistics in supercontinuum generation in photonic crystal fibre with two zero dispersion wavelengths,” Eur. Phys. J. Spec. Top. 173(1), 289–295 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

G. Genty and J. M. Dudley, “Route to coherent supercontinuum generation in the long pulse regime,” IEEE J. Quantum Electron. 45(11), 1331–1335 (2009).
[Crossref]

IEEE Photonics J. (1)

S. Zhao, H. Yang, N. Chen, X. Fu, and C. Zhao, “Soliton trapping of dispersive waves in photonic crystal fiber with three zero-dispersion wavelengths,” IEEE Photonics J. 7(5), 7102701 (2015).

J. Opt. Soc. Am. B (4)

Nature (2)

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[Crossref] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Opt. Express (8)

W. Wang, H. Yang, P. Tang, C. Zhao, and J. Gao, “Soliton trapping of dispersive waves in photonic crystal fiber with two zero dispersive wavelengths,” Opt. Express 21(9), 11215–11226 (2013).
[Crossref] [PubMed]

J. Peng, N. Tarasov, S. Sugavanam, and D. Churkin, “Rogue waves generation via nonlinear soliton collision in multiple-soliton state of a mode-locked fiber laser,” Opt. Express 24(19), 21256–21263 (2016).
[Crossref] [PubMed]

K. Hammani, C. Finot, J. M. Dudley, and G. Millot, “Optical rogue-wave-like extreme value fluctuations in fiber Raman amplifiers,” Opt. Express 16(21), 16467–16474 (2008).
[Crossref] [PubMed]

A. Mussot, A. Kudlinski, M. Kolobov, E. Louvergneaux, M. Douay, and M. Taki, “Observation of extreme temporal events in CW-pumped supercontinuum,” Opt. Express 17(19), 17010–17015 (2009).
[Crossref] [PubMed]

A. Kudlinski, B. Barviau, A. Leray, C. Spriet, L. Héliot, and A. Mussot, “Control of pulse-to-pulse fluctuations in visible supercontinuum,” Opt. Express 18(26), 27445–27454 (2010).
[Crossref] [PubMed]

Q. Li, F. Li, K. K. Y. Wong, A. P. T. Lau, K. K. Tsia, and P. K. A. Wai, “Investigating the influence of a weak continuous-wave-trigger on picosecond supercontinuum generation,” Opt. Express 19(15), 13757–13769 (2011).
[Crossref] [PubMed]

B. Washburn and N. Newbury, “Phase, timing, and amplitude noise on supercontinua generated in microstructure fiber,” Opt. Express 12(10), 2166–2175 (2004).
[Crossref] [PubMed]

S. Kobtsev and S. Smirnov, “Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump,” Opt. Express 13(18), 6912–6918 (2005).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. Lett. (3)

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[Crossref] [PubMed]

D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105(23), 233902 (2010).
[Crossref] [PubMed]

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[Crossref]

Physica D (1)

V. E. Zakharov and L. A. Ostrovsky, “Modulation instability: The beginning,” Physica D 238(5), 540–548 (2009).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Rev. Sci. Instrum. (1)

M. Maus, E. Rousseau, M. Cotlet, C. Schweitzer, J. Hofkens, M. Van der Auweraer, F. C. De Schryver, and A. Krueger, “New Picosecond laser system for easy tenability over the whole ultraviolet/visible/near infrared wavelength range based on flexible harmonic generation and optical parametric oscillation,” Rev. Sci. Instrum. 72(1), 36–40 (2001).
[Crossref]

Sci. Rep. (1)

S. Zhao, H. Yang, N. Chen, and C. Zhao, “Controlled generation of high-intensity optical rogue waves by induced modulation instability,” Sci. Rep. 7, 39926 (2017).
[Crossref] [PubMed]

Science (1)

P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2012)

J. M. Dudley and J. R. Taylor, Supercontinuum Generation In Optical Fibers (Cambridge University, 2010)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) The dispersion profiles and (b) the related group delay curves of PCF1 (blue curve), PCF2 (green curve), and PCF3 (red curve) as a function of the wavelength.

Fig. 2
Fig. 2

The related MI gain spectra of PCF1 (blue curve), PCF2 (green curve), and PCF3 (red curve) as a function of seed frequency offset.

Fig. 3
Fig. 3

In the propagation medium of a 15-m-long single ZDW PCF1 cascaded with a 10-m-long dual ZDW PCF2, we illustrate (a1) the temporal intensity at the propagation distance of 0 m (blue curve), 15 m (green curve), 25 m (red curve), (b1) the output spectrum intensity, as well as the (a2) temporal and (b2) spectral evolution as the function of fiber length, where the red dotted line presents the cascaded position of two PCFs.

Fig. 4
Fig. 4

In the propagation medium of a 15-m-long single ZDW PCF1 cascaded with a 10-m-long dual ZDW PCF3, we illustrate (a1) the temporal intensity at the propagation distance of 0 m (blue curve), 15 m (green curve), 25 m (red curve), (b1) the output spectrum intensity, as well as the (a2) temporal and (b2) spectral evolution as the function of fiber length, where the red dotted line presents the cascaded position of two PCFs.

Fig. 5
Fig. 5

The output spectrograms at the medium of (a) 15-m-long PCF1, (b) 25-m-long PCF1, (c) a 15-m-long PCF1 cascaded with a 10-m-long PCF2, and (d) a 15-m-long PCF1 cascaded with a 10-m-long PCF3, respectively.

Fig. 6
Fig. 6

The evolution of normalized peak intensity as a function of fiber length in (a) 25-m-long PCF1, (b) 15-m-long PCF1 cascaded with 10-m-long PCF2, and (c) 15-m-long PCF1 cascaded with 10-m-long PCF3, respectively. The relatively high peak intensity events correspond to the collisions.

Fig. 7
Fig. 7

The evolution of the shortest wavelength and the longest wavelength of 100 individual simulations (gray) as a function of the second ZDW in the second segmented PCF. The red line with dot presents the average longest wavelength, while the blue line with asterisk presents the average shortest wavelength.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A( z,T ) z = k2 i k+1 β k k! k A T k +iγ( 1+ i ω 0 T )× ( A( z,T )[ + R( T ) | A( z,T T ) | 2 d T +i Γ R ( z,T ) ] ).
A( 0,T )=( P p + a 0 P p e i2π f mod T )exp( T 2 /2 T 0 2 ),
g(Ω)=Im{ Δ k o ± Δ k e +2γ P p R ˜ ( Ω )Δ k e }.
Δ k o = m=1 β ¯ 2m+1 ( 2m+1 )! Ω 2m+1 ,Δ k e = m=1 β ¯ 2m 2m! Ω 2m ,

Metrics