Abstract

Passive mode-locking of a thulium doped Lu3Al5O12 ceramic laser is demonstrated at 2022 nm. By applying different near surface GaSb-based saturable absorber mirrors, stable self-starting mode-locked operation with pulse durations between 2 and 4 picoseconds was achieved at a repetition rate of 92 MHz. The SESAM mode-locked Tm:LuAG ceramic laser exhibits an excellent stability with a fundamental beat note extinction ratio of 80 dB above the noise level. Furthermore, spectroscopic properties of Tm:LuAG ceramics at room temperature are presented.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadly tunable mode-locked Ho:YAG ceramic laser around 2.1 µm

Yicheng Wang, Ruijun Lan, Xavier Mateos, Jiang Li, Chen Hu, Chaoyu Li, Soile Suomalainen, Antti Härkönen, Mircea Guina, Valentin Petrov, and Uwe Griebner
Opt. Express 24(16) 18003-18012 (2016)

GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm

Alexander Gluth, Yicheng Wang, Valentin Petrov, Jonna Paajaste, Soile Suomalainen, Antti Härkönen, Mircea Guina, Günter Steinmeyer, Xavier Mateos, Stefano Veronesi, Mauro Tonelli, Jiang Li, Yubai Pan, Jingkun Guo, and Uwe Griebner
Opt. Express 23(2) 1361-1369 (2015)

1.21 W passively mode-locked Tm:LuAG laser

T. Feng, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, T. Dekorsy, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, and J. Xu
Opt. Express 23(9) 11819-11825 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 µm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, Bishnu Pal, ed. (InTech, 2010), pp. 471–500.
  2. V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
    [Crossref]
  3. A. Dergachev, “High-energy, kHz, picosecond, 2-μm laser pump source for mid-IR nonlinear optical devices,” Proc. SPIE 8599, 85990B (2013).
    [Crossref]
  4. R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. A. Robinson, “Coherent lidar airborne wind sensor II: flight-test results at 2 and 10 νm,” Appl. Opt. 35(36), 7117–7127 (1996).
    [Crossref] [PubMed]
  5. T. M. Taczak and D. K. Killinger, “Development of a tunable, narrow-linewidth, cw 2.066-μm Ho:YLF laser for remote sensing of atmospheric CO2 and H2O,” Appl. Opt. 37(36), 8460–8476 (1998).
    [Crossref] [PubMed]
  6. U. N. Singh, B. M. Walsh, J. Yu, M. Petros, M. J. Kavaya, T. F. Refaat, and N. P. Barnes, “Twenty years of Tm:Ho:YLF and LuLiF laser development for global wind and carbon dioxide active remote sensing,” Opt. Mater. Express 5(4), 827–837 (2015).
    [Crossref]
  7. Q. Wang, J. Geng, T. Luo, and S. Jiang, “Mode-locked 2 mum laser with highly thulium-doped silicate fiber,” Opt. Lett. 34(23), 3616–3618 (2009).
    [Crossref] [PubMed]
  8. M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20(22), 25077–25084 (2012).
    [Crossref] [PubMed]
  9. A. Schmidt, S. Y. Choi, D. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
    [Crossref]
  10. A. Ikesue, K. Kamata, and K. Yoshida, “Synthesis of Nd3+, Cr3+-codoped YAG ceramics for high-efficiency solid-state lasers,” J. Am. Ceram. Soc. 78(9), 2545–2547 (1995).
    [Crossref]
  11. A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
    [Crossref]
  12. A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
    [Crossref]
  13. J. Li, Y. Pan, Y. Zeng, W. Liu, B. Jiang, and J. Guo, “The history, development, and future prospects for laser ceramics: a review,” Int. J. Refract. Met. Hard Mater. 39, 44–52 (2013).
    [Crossref]
  14. W. Zhang, Y. Pan, J. Zhou, W. Liu, J. Li, B. Jiang, X. Cheng, and J. Xu, “Diode-pumped Tm:YAG ceramic laser,” J. Am. Ceram. Soc. 92(10), 2434–2437 (2009).
    [Crossref]
  15. Q. Ma, Y. Bo, N. Zong, Y. Pan, Q. Peng, D. Cui, and Z.-Y. Xu, “Light scattering and 2-μm laser performance of Tm:YAG ceramic,” Opt. Commun. 284(6), 1645–1647 (2011).
    [Crossref]
  16. W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian, “Highly efficient 2 μm Tm:YAG ceramic laser,” Opt. Lett. 37(6), 1076–1078 (2012).
    [Crossref] [PubMed]
  17. S. Zhang, X. Wang, W. Kong, Q. Yang, J. Xu, B. Jiang, and Y. Pan, “Efficient Q-switched Tm:YAG ceramic slab laser pumped by a 792 nm fiber laser,” Opt. Commun. 286, 288–290 (2013).
    [Crossref]
  18. Y. Zou, Z. Wei, Q. Wang, M. Zhan, D. Li, Z. Zhang, J. Zhang, and D. Tang, “High-efficiency diode-pumped Tm:YAG ceramic laser,” Opt. Mater. 35(4), 804–806 (2013).
    [Crossref]
  19. E. D. Filer, N. P. Barnes, and C. A. Morrison, “Theoretical temperature dependent branching ratios and laser thresholds of the 3F4 to 3H6 levels of Tm in ten garnets,” in Advanced Solid State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (OSA, Washington, D.C., 1993), pp. 189–200.
  20. N. P. Barnes, M. G. Jani, and R. L. Hutcheson, “Diode-pumped, room-temperature Tm:LuAG laser,” Appl. Opt. 34(21), 4290–4294 (1995).
    [Crossref] [PubMed]
  21. K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1(6), 285–290 (2004).
    [Crossref]
  22. C. Wu, Y. Ju, Y. Li, Z. Wang, and Y. Wang, “Diode-pumped Tm:LuAG laser at room temperature,” Chin. Opt. Lett. 6(6), 415–416 (2008).
    [Crossref]
  23. T. Feng, K. Yang, S. Zhao, J. Zhao, W. Qiao, T. Li, L. Zheng, J. Xu, Q. Wang, X. Xu, L. Su, and Y. Wang, “Efficient CW dual-wavelength and passively Q-switched Tm:LuAG lasers,” IEEE Photonics Technol. Lett. 27, 7–10 (2015).
    [Crossref]
  24. T. Feng, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, T. Dekorsy, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, and J. Xu, “1.21 W passively mode-locked Tm:LuAG laser,” Opt. Express 23(9), 11819–11825 (2015).
    [Crossref] [PubMed]
  25. A. Gluth, Y. Wang, V. Petrov, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, G. Steinmeyer, X. Mateos, S. Veronesi, M. Tonelli, J. Li, Y. Pan, J. Guo, and U. Griebner, “GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm,” Opt. Express 23(2), 1361–1369 (2015).
    [Crossref] [PubMed]
  26. Y. Wang, R. Lan, X. Mateos, J. Li, C. Hu, C. Li, S. Suomalainen, A. Härkönen, M. Guina, V. Petrov, and U. Griebner, “Broadly tunable mode-locked Ho:YAG ceramic laser around 2.1 µm,” Opt. Express 24(16), 18003–18012 (2016).
    [Crossref] [PubMed]
  27. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
    [Crossref]
  28. J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 µm GaSb-based SESAMs,” J. Phys. D Appl. Phys. 47(6), 065102 (2014).
    [Crossref]
  29. J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 µm semiconductor disk lasers,” Phys. Status Solidi 9(2), 294–297 (2012).
    [Crossref]
  30. Y. Fu, J. Li, C. Wang, T. Xie, W. Li, L. Wu, and Y. Pan, “Fabrication and properties of highly transparent Yb:LuAG ceramics,” J. Alloys Compd. 664, 595–601 (2016).
    [Crossref]
  31. Y. Wang, G. Xie, X. Xu, J. Di, Z. Qin, S. Suomalainen, M. Guina, A. Härkönen, A. Agnesi, U. Griebner, X. Mateos, P. Loiko, and V. Petrov, “SESAM mode-locked Tm:CALGO laser at 2 µm,” Opt. Mater. Express 6(1), 131–136 (2016).
    [Crossref]

2016 (3)

2015 (5)

2014 (1)

J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 µm GaSb-based SESAMs,” J. Phys. D Appl. Phys. 47(6), 065102 (2014).
[Crossref]

2013 (4)

J. Li, Y. Pan, Y. Zeng, W. Liu, B. Jiang, and J. Guo, “The history, development, and future prospects for laser ceramics: a review,” Int. J. Refract. Met. Hard Mater. 39, 44–52 (2013).
[Crossref]

A. Dergachev, “High-energy, kHz, picosecond, 2-μm laser pump source for mid-IR nonlinear optical devices,” Proc. SPIE 8599, 85990B (2013).
[Crossref]

S. Zhang, X. Wang, W. Kong, Q. Yang, J. Xu, B. Jiang, and Y. Pan, “Efficient Q-switched Tm:YAG ceramic slab laser pumped by a 792 nm fiber laser,” Opt. Commun. 286, 288–290 (2013).
[Crossref]

Y. Zou, Z. Wei, Q. Wang, M. Zhan, D. Li, Z. Zhang, J. Zhang, and D. Tang, “High-efficiency diode-pumped Tm:YAG ceramic laser,” Opt. Mater. 35(4), 804–806 (2013).
[Crossref]

2012 (4)

A. Schmidt, S. Y. Choi, D. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 µm semiconductor disk lasers,” Phys. Status Solidi 9(2), 294–297 (2012).
[Crossref]

W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian, “Highly efficient 2 μm Tm:YAG ceramic laser,” Opt. Lett. 37(6), 1076–1078 (2012).
[Crossref] [PubMed]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20(22), 25077–25084 (2012).
[Crossref] [PubMed]

2011 (1)

Q. Ma, Y. Bo, N. Zong, Y. Pan, Q. Peng, D. Cui, and Z.-Y. Xu, “Light scattering and 2-μm laser performance of Tm:YAG ceramic,” Opt. Commun. 284(6), 1645–1647 (2011).
[Crossref]

2009 (2)

Q. Wang, J. Geng, T. Luo, and S. Jiang, “Mode-locked 2 mum laser with highly thulium-doped silicate fiber,” Opt. Lett. 34(23), 3616–3618 (2009).
[Crossref] [PubMed]

W. Zhang, Y. Pan, J. Zhou, W. Liu, J. Li, B. Jiang, X. Cheng, and J. Xu, “Diode-pumped Tm:YAG ceramic laser,” J. Am. Ceram. Soc. 92(10), 2434–2437 (2009).
[Crossref]

2008 (2)

2006 (1)

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[Crossref]

2004 (1)

K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1(6), 285–290 (2004).
[Crossref]

1998 (1)

1996 (2)

R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. A. Robinson, “Coherent lidar airborne wind sensor II: flight-test results at 2 and 10 νm,” Appl. Opt. 35(36), 7117–7127 (1996).
[Crossref] [PubMed]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

1995 (2)

N. P. Barnes, M. G. Jani, and R. L. Hutcheson, “Diode-pumped, room-temperature Tm:LuAG laser,” Appl. Opt. 34(21), 4290–4294 (1995).
[Crossref] [PubMed]

A. Ikesue, K. Kamata, and K. Yoshida, “Synthesis of Nd3+, Cr3+-codoped YAG ceramics for high-efficiency solid-state lasers,” J. Am. Ceram. Soc. 78(9), 2545–2547 (1995).
[Crossref]

Agnesi, A.

Ames, L. L.

Aung, Y. L.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[Crossref]

Aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Barnes, N. P.

Bo, Y.

Q. Ma, Y. Bo, N. Zong, Y. Pan, Q. Peng, D. Cui, and Z.-Y. Xu, “Light scattering and 2-μm laser performance of Tm:YAG ceramic,” Opt. Commun. 284(6), 1645–1647 (2011).
[Crossref]

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Brockman, P.

Calloway, R. S.

Cheng, X.

W. Zhang, Y. Pan, J. Zhou, W. Liu, J. Li, B. Jiang, X. Cheng, and J. Xu, “Diode-pumped Tm:YAG ceramic laser,” J. Am. Ceram. Soc. 92(10), 2434–2437 (2009).
[Crossref]

Choi, S. Y.

A. Schmidt, S. Y. Choi, D. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

Cui, D.

Q. Ma, Y. Bo, N. Zong, Y. Pan, Q. Peng, D. Cui, and Z.-Y. Xu, “Light scattering and 2-μm laser performance of Tm:YAG ceramic,” Opt. Commun. 284(6), 1645–1647 (2011).
[Crossref]

Dekorsy, T.

Dergachev, A.

A. Dergachev, “High-energy, kHz, picosecond, 2-μm laser pump source for mid-IR nonlinear optical devices,” Proc. SPIE 8599, 85990B (2013).
[Crossref]

Di, J.

Díaz, F.

A. Schmidt, S. Y. Choi, D. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

Feng, T.

T. Feng, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, T. Dekorsy, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, and J. Xu, “1.21 W passively mode-locked Tm:LuAG laser,” Opt. Express 23(9), 11819–11825 (2015).
[Crossref] [PubMed]

T. Feng, K. Yang, S. Zhao, J. Zhao, W. Qiao, T. Li, L. Zheng, J. Xu, Q. Wang, X. Xu, L. Su, and Y. Wang, “Efficient CW dual-wavelength and passively Q-switched Tm:LuAG lasers,” IEEE Photonics Technol. Lett. 27, 7–10 (2015).
[Crossref]

Ferrari, A. C.

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Forney, P.

Fu, Y.

Y. Fu, J. Li, C. Wang, T. Xie, W. Li, L. Wu, and Y. Pan, “Fabrication and properties of highly transparent Yb:LuAG ceramics,” J. Alloys Compd. 664, 595–601 (2016).
[Crossref]

Gao, W. L.

Geng, J.

Gluth, A.

Griebner, U.

Guina, M.

Guo, J.

Härkönen, A.

Hasan, T.

Hawley, J. G.

He, J.

Heumann, E.

K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1(6), 285–290 (2004).
[Crossref]

Hönninger, C.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Hu, C.

Huber, G.

K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1(6), 285–290 (2004).
[Crossref]

Hutcheson, R. L.

Ikesue, A.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[Crossref]

A. Ikesue, K. Kamata, and K. Yoshida, “Synthesis of Nd3+, Cr3+-codoped YAG ceramics for high-efficiency solid-state lasers,” J. Am. Ceram. Soc. 78(9), 2545–2547 (1995).
[Crossref]

Jani, M. G.

Jiang, B.

S. Zhang, X. Wang, W. Kong, Q. Yang, J. Xu, B. Jiang, and Y. Pan, “Efficient Q-switched Tm:YAG ceramic slab laser pumped by a 792 nm fiber laser,” Opt. Commun. 286, 288–290 (2013).
[Crossref]

J. Li, Y. Pan, Y. Zeng, W. Liu, B. Jiang, and J. Guo, “The history, development, and future prospects for laser ceramics: a review,” Int. J. Refract. Met. Hard Mater. 39, 44–52 (2013).
[Crossref]

W. Zhang, Y. Pan, J. Zhou, W. Liu, J. Li, B. Jiang, X. Cheng, and J. Xu, “Diode-pumped Tm:YAG ceramic laser,” J. Am. Ceram. Soc. 92(10), 2434–2437 (2009).
[Crossref]

Jiang, S.

Ju, Y.

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kamata, K.

A. Ikesue, K. Kamata, and K. Yoshida, “Synthesis of Nd3+, Cr3+-codoped YAG ceramics for high-efficiency solid-state lasers,” J. Am. Ceram. Soc. 78(9), 2545–2547 (1995).
[Crossref]

Kamimura, T.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[Crossref]

Kärtner, F. X.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kavaya, M. J.

Kelleher, E. J. R.

Keller, U.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Killinger, D. K.

Klein, S. H.

Kong, W.

S. Zhang, X. Wang, W. Kong, Q. Yang, J. Xu, B. Jiang, and Y. Pan, “Efficient Q-switched Tm:YAG ceramic slab laser pumped by a 792 nm fiber laser,” Opt. Commun. 286, 288–290 (2013).
[Crossref]

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Koskinen, R.

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 µm semiconductor disk lasers,” Phys. Status Solidi 9(2), 294–297 (2012).
[Crossref]

Lan, R.

Li, C.

Li, D.

Y. Zou, Z. Wei, Q. Wang, M. Zhan, D. Li, Z. Zhang, J. Zhang, and D. Tang, “High-efficiency diode-pumped Tm:YAG ceramic laser,” Opt. Mater. 35(4), 804–806 (2013).
[Crossref]

Li, J.

Y. Wang, R. Lan, X. Mateos, J. Li, C. Hu, C. Li, S. Suomalainen, A. Härkönen, M. Guina, V. Petrov, and U. Griebner, “Broadly tunable mode-locked Ho:YAG ceramic laser around 2.1 µm,” Opt. Express 24(16), 18003–18012 (2016).
[Crossref] [PubMed]

Y. Fu, J. Li, C. Wang, T. Xie, W. Li, L. Wu, and Y. Pan, “Fabrication and properties of highly transparent Yb:LuAG ceramics,” J. Alloys Compd. 664, 595–601 (2016).
[Crossref]

A. Gluth, Y. Wang, V. Petrov, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, G. Steinmeyer, X. Mateos, S. Veronesi, M. Tonelli, J. Li, Y. Pan, J. Guo, and U. Griebner, “GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm,” Opt. Express 23(2), 1361–1369 (2015).
[Crossref] [PubMed]

J. Li, Y. Pan, Y. Zeng, W. Liu, B. Jiang, and J. Guo, “The history, development, and future prospects for laser ceramics: a review,” Int. J. Refract. Met. Hard Mater. 39, 44–52 (2013).
[Crossref]

W. Zhang, Y. Pan, J. Zhou, W. Liu, J. Li, B. Jiang, X. Cheng, and J. Xu, “Diode-pumped Tm:YAG ceramic laser,” J. Am. Ceram. Soc. 92(10), 2434–2437 (2009).
[Crossref]

Li, T.

T. Feng, K. Yang, S. Zhao, J. Zhao, W. Qiao, T. Li, L. Zheng, J. Xu, Q. Wang, X. Xu, L. Su, and Y. Wang, “Efficient CW dual-wavelength and passively Q-switched Tm:LuAG lasers,” IEEE Photonics Technol. Lett. 27, 7–10 (2015).
[Crossref]

T. Feng, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, T. Dekorsy, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, and J. Xu, “1.21 W passively mode-locked Tm:LuAG laser,” Opt. Express 23(9), 11819–11825 (2015).
[Crossref] [PubMed]

Li, W.

Y. Fu, J. Li, C. Wang, T. Xie, W. Li, L. Wu, and Y. Pan, “Fabrication and properties of highly transparent Yb:LuAG ceramics,” J. Alloys Compd. 664, 595–601 (2016).
[Crossref]

Li, Y.

Liu, W.

J. Li, Y. Pan, Y. Zeng, W. Liu, B. Jiang, and J. Guo, “The history, development, and future prospects for laser ceramics: a review,” Int. J. Refract. Met. Hard Mater. 39, 44–52 (2013).
[Crossref]

W. Zhang, Y. Pan, J. Zhou, W. Liu, J. Li, B. Jiang, X. Cheng, and J. Xu, “Diode-pumped Tm:YAG ceramic laser,” J. Am. Ceram. Soc. 92(10), 2434–2437 (2009).
[Crossref]

Loiko, P.

Luo, D. W.

Luo, T.

Ma, J.

Ma, Q.

Q. Ma, Y. Bo, N. Zong, Y. Pan, Q. Peng, D. Cui, and Z.-Y. Xu, “Light scattering and 2-μm laser performance of Tm:YAG ceramic,” Opt. Commun. 284(6), 1645–1647 (2011).
[Crossref]

Mateos, X.

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Messing, G. L.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[Crossref]

Otto, R. G.

Paajaste, J.

A. Gluth, Y. Wang, V. Petrov, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, G. Steinmeyer, X. Mateos, S. Veronesi, M. Tonelli, J. Li, Y. Pan, J. Guo, and U. Griebner, “GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm,” Opt. Express 23(2), 1361–1369 (2015).
[Crossref] [PubMed]

J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 µm GaSb-based SESAMs,” J. Phys. D Appl. Phys. 47(6), 065102 (2014).
[Crossref]

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 µm semiconductor disk lasers,” Phys. Status Solidi 9(2), 294–297 (2012).
[Crossref]

Pan, Y.

Y. Fu, J. Li, C. Wang, T. Xie, W. Li, L. Wu, and Y. Pan, “Fabrication and properties of highly transparent Yb:LuAG ceramics,” J. Alloys Compd. 664, 595–601 (2016).
[Crossref]

A. Gluth, Y. Wang, V. Petrov, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, G. Steinmeyer, X. Mateos, S. Veronesi, M. Tonelli, J. Li, Y. Pan, J. Guo, and U. Griebner, “GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm,” Opt. Express 23(2), 1361–1369 (2015).
[Crossref] [PubMed]

J. Li, Y. Pan, Y. Zeng, W. Liu, B. Jiang, and J. Guo, “The history, development, and future prospects for laser ceramics: a review,” Int. J. Refract. Met. Hard Mater. 39, 44–52 (2013).
[Crossref]

S. Zhang, X. Wang, W. Kong, Q. Yang, J. Xu, B. Jiang, and Y. Pan, “Efficient Q-switched Tm:YAG ceramic slab laser pumped by a 792 nm fiber laser,” Opt. Commun. 286, 288–290 (2013).
[Crossref]

Q. Ma, Y. Bo, N. Zong, Y. Pan, Q. Peng, D. Cui, and Z.-Y. Xu, “Light scattering and 2-μm laser performance of Tm:YAG ceramic,” Opt. Commun. 284(6), 1645–1647 (2011).
[Crossref]

W. Zhang, Y. Pan, J. Zhou, W. Liu, J. Li, B. Jiang, X. Cheng, and J. Xu, “Diode-pumped Tm:YAG ceramic laser,” J. Am. Ceram. Soc. 92(10), 2434–2437 (2009).
[Crossref]

Peng, Q.

Q. Ma, Y. Bo, N. Zong, Y. Pan, Q. Peng, D. Cui, and Z.-Y. Xu, “Light scattering and 2-μm laser performance of Tm:YAG ceramic,” Opt. Commun. 284(6), 1645–1647 (2011).
[Crossref]

Petros, M.

Petrov, V.

Popa, D.

Popov, S. V.

Qian, L. J.

Qiao, W.

T. Feng, K. Yang, S. Zhao, J. Zhao, W. Qiao, T. Li, L. Zheng, J. Xu, Q. Wang, X. Xu, L. Su, and Y. Wang, “Efficient CW dual-wavelength and passively Q-switched Tm:LuAG lasers,” IEEE Photonics Technol. Lett. 27, 7–10 (2015).
[Crossref]

T. Feng, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, T. Dekorsy, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, and J. Xu, “1.21 W passively mode-locked Tm:LuAG laser,” Opt. Express 23(9), 11819–11825 (2015).
[Crossref] [PubMed]

Qin, Z.

Refaat, T. F.

Robinson, P. A.

Rotermund, F.

A. Schmidt, S. Y. Choi, D. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

Schmidt, A.

A. Schmidt, S. Y. Choi, D. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

Scholle, K.

K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1(6), 285–290 (2004).
[Crossref]

Segura, M.

A. Schmidt, S. Y. Choi, D. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

Singh, U. N.

Steakley, B. C.

Steinmeyer, G.

A. Gluth, Y. Wang, V. Petrov, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, G. Steinmeyer, X. Mateos, S. Veronesi, M. Tonelli, J. Li, Y. Pan, J. Guo, and U. Griebner, “GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm,” Opt. Express 23(2), 1361–1369 (2015).
[Crossref] [PubMed]

J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 µm GaSb-based SESAMs,” J. Phys. D Appl. Phys. 47(6), 065102 (2014).
[Crossref]

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 µm semiconductor disk lasers,” Phys. Status Solidi 9(2), 294–297 (2012).
[Crossref]

Stone, R.

Su, L.

T. Feng, K. Yang, S. Zhao, J. Zhao, W. Qiao, T. Li, L. Zheng, J. Xu, Q. Wang, X. Xu, L. Su, and Y. Wang, “Efficient CW dual-wavelength and passively Q-switched Tm:LuAG lasers,” IEEE Photonics Technol. Lett. 27, 7–10 (2015).
[Crossref]

T. Feng, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, T. Dekorsy, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, and J. Xu, “1.21 W passively mode-locked Tm:LuAG laser,” Opt. Express 23(9), 11819–11825 (2015).
[Crossref] [PubMed]

Sun, Z.

Suomalainen, S.

Swanson, D.

Taczak, T. M.

Taira, T.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[Crossref]

Tang, D.

Y. Zou, Z. Wei, Q. Wang, M. Zhan, D. Li, Z. Zhang, J. Zhang, and D. Tang, “High-efficiency diode-pumped Tm:YAG ceramic laser,” Opt. Mater. 35(4), 804–806 (2013).
[Crossref]

Tang, D. Y.

Targ, R.

Taylor, J. R.

Tonelli, M.

Torrisi, F.

Veronesi, S.

Walsh, B. M.

Wang, C.

Y. Fu, J. Li, C. Wang, T. Xie, W. Li, L. Wu, and Y. Pan, “Fabrication and properties of highly transparent Yb:LuAG ceramics,” J. Alloys Compd. 664, 595–601 (2016).
[Crossref]

Wang, F.

Wang, Q.

T. Feng, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, T. Dekorsy, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, and J. Xu, “1.21 W passively mode-locked Tm:LuAG laser,” Opt. Express 23(9), 11819–11825 (2015).
[Crossref] [PubMed]

T. Feng, K. Yang, S. Zhao, J. Zhao, W. Qiao, T. Li, L. Zheng, J. Xu, Q. Wang, X. Xu, L. Su, and Y. Wang, “Efficient CW dual-wavelength and passively Q-switched Tm:LuAG lasers,” IEEE Photonics Technol. Lett. 27, 7–10 (2015).
[Crossref]

Y. Zou, Z. Wei, Q. Wang, M. Zhan, D. Li, Z. Zhang, J. Zhang, and D. Tang, “High-efficiency diode-pumped Tm:YAG ceramic laser,” Opt. Mater. 35(4), 804–806 (2013).
[Crossref]

Q. Wang, J. Geng, T. Luo, and S. Jiang, “Mode-locked 2 mum laser with highly thulium-doped silicate fiber,” Opt. Lett. 34(23), 3616–3618 (2009).
[Crossref] [PubMed]

Wang, X.

S. Zhang, X. Wang, W. Kong, Q. Yang, J. Xu, B. Jiang, and Y. Pan, “Efficient Q-switched Tm:YAG ceramic slab laser pumped by a 792 nm fiber laser,” Opt. Commun. 286, 288–290 (2013).
[Crossref]

Wang, Y.

Wang, Z.

Wei, Z.

Y. Zou, Z. Wei, Q. Wang, M. Zhan, D. Li, Z. Zhang, J. Zhang, and D. Tang, “High-efficiency diode-pumped Tm:YAG ceramic laser,” Opt. Mater. 35(4), 804–806 (2013).
[Crossref]

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Wu, C.

Wu, L.

Y. Fu, J. Li, C. Wang, T. Xie, W. Li, L. Wu, and Y. Pan, “Fabrication and properties of highly transparent Yb:LuAG ceramics,” J. Alloys Compd. 664, 595–601 (2016).
[Crossref]

Xie, G.

Xie, G. Q.

Xie, T.

Y. Fu, J. Li, C. Wang, T. Xie, W. Li, L. Wu, and Y. Pan, “Fabrication and properties of highly transparent Yb:LuAG ceramics,” J. Alloys Compd. 664, 595–601 (2016).
[Crossref]

Xu, J.

T. Feng, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, T. Dekorsy, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, and J. Xu, “1.21 W passively mode-locked Tm:LuAG laser,” Opt. Express 23(9), 11819–11825 (2015).
[Crossref] [PubMed]

T. Feng, K. Yang, S. Zhao, J. Zhao, W. Qiao, T. Li, L. Zheng, J. Xu, Q. Wang, X. Xu, L. Su, and Y. Wang, “Efficient CW dual-wavelength and passively Q-switched Tm:LuAG lasers,” IEEE Photonics Technol. Lett. 27, 7–10 (2015).
[Crossref]

S. Zhang, X. Wang, W. Kong, Q. Yang, J. Xu, B. Jiang, and Y. Pan, “Efficient Q-switched Tm:YAG ceramic slab laser pumped by a 792 nm fiber laser,” Opt. Commun. 286, 288–290 (2013).
[Crossref]

W. Zhang, Y. Pan, J. Zhou, W. Liu, J. Li, B. Jiang, X. Cheng, and J. Xu, “Diode-pumped Tm:YAG ceramic laser,” J. Am. Ceram. Soc. 92(10), 2434–2437 (2009).
[Crossref]

Xu, X.

Xu, Z.-Y.

Q. Ma, Y. Bo, N. Zong, Y. Pan, Q. Peng, D. Cui, and Z.-Y. Xu, “Light scattering and 2-μm laser performance of Tm:YAG ceramic,” Opt. Commun. 284(6), 1645–1647 (2011).
[Crossref]

Yang, H.

Yang, K.

T. Feng, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, T. Dekorsy, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, and J. Xu, “1.21 W passively mode-locked Tm:LuAG laser,” Opt. Express 23(9), 11819–11825 (2015).
[Crossref] [PubMed]

T. Feng, K. Yang, S. Zhao, J. Zhao, W. Qiao, T. Li, L. Zheng, J. Xu, Q. Wang, X. Xu, L. Su, and Y. Wang, “Efficient CW dual-wavelength and passively Q-switched Tm:LuAG lasers,” IEEE Photonics Technol. Lett. 27, 7–10 (2015).
[Crossref]

Yang, Q.

S. Zhang, X. Wang, W. Kong, Q. Yang, J. Xu, B. Jiang, and Y. Pan, “Efficient Q-switched Tm:YAG ceramic slab laser pumped by a 792 nm fiber laser,” Opt. Commun. 286, 288–290 (2013).
[Crossref]

Yeom, D.

A. Schmidt, S. Y. Choi, D. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

Yoshida, K.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[Crossref]

A. Ikesue, K. Kamata, and K. Yoshida, “Synthesis of Nd3+, Cr3+-codoped YAG ceramics for high-efficiency solid-state lasers,” J. Am. Ceram. Soc. 78(9), 2545–2547 (1995).
[Crossref]

Yu, J.

Yuan, P.

Zarifis, V.

Zeng, Y.

J. Li, Y. Pan, Y. Zeng, W. Liu, B. Jiang, and J. Guo, “The history, development, and future prospects for laser ceramics: a review,” Int. J. Refract. Met. Hard Mater. 39, 44–52 (2013).
[Crossref]

Zhan, M.

Y. Zou, Z. Wei, Q. Wang, M. Zhan, D. Li, Z. Zhang, J. Zhang, and D. Tang, “High-efficiency diode-pumped Tm:YAG ceramic laser,” Opt. Mater. 35(4), 804–806 (2013).
[Crossref]

Zhang, J.

Y. Zou, Z. Wei, Q. Wang, M. Zhan, D. Li, Z. Zhang, J. Zhang, and D. Tang, “High-efficiency diode-pumped Tm:YAG ceramic laser,” Opt. Mater. 35(4), 804–806 (2013).
[Crossref]

W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian, “Highly efficient 2 μm Tm:YAG ceramic laser,” Opt. Lett. 37(6), 1076–1078 (2012).
[Crossref] [PubMed]

Zhang, M.

Zhang, S.

S. Zhang, X. Wang, W. Kong, Q. Yang, J. Xu, B. Jiang, and Y. Pan, “Efficient Q-switched Tm:YAG ceramic slab laser pumped by a 792 nm fiber laser,” Opt. Commun. 286, 288–290 (2013).
[Crossref]

Zhang, W.

W. Zhang, Y. Pan, J. Zhou, W. Liu, J. Li, B. Jiang, X. Cheng, and J. Xu, “Diode-pumped Tm:YAG ceramic laser,” J. Am. Ceram. Soc. 92(10), 2434–2437 (2009).
[Crossref]

Zhang, Z.

Y. Zou, Z. Wei, Q. Wang, M. Zhan, D. Li, Z. Zhang, J. Zhang, and D. Tang, “High-efficiency diode-pumped Tm:YAG ceramic laser,” Opt. Mater. 35(4), 804–806 (2013).
[Crossref]

Zhao, J.

T. Feng, K. Yang, S. Zhao, J. Zhao, W. Qiao, T. Li, L. Zheng, J. Xu, Q. Wang, X. Xu, L. Su, and Y. Wang, “Efficient CW dual-wavelength and passively Q-switched Tm:LuAG lasers,” IEEE Photonics Technol. Lett. 27, 7–10 (2015).
[Crossref]

T. Feng, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, T. Dekorsy, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, and J. Xu, “1.21 W passively mode-locked Tm:LuAG laser,” Opt. Express 23(9), 11819–11825 (2015).
[Crossref] [PubMed]

Zhao, S.

T. Feng, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, T. Dekorsy, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, and J. Xu, “1.21 W passively mode-locked Tm:LuAG laser,” Opt. Express 23(9), 11819–11825 (2015).
[Crossref] [PubMed]

T. Feng, K. Yang, S. Zhao, J. Zhao, W. Qiao, T. Li, L. Zheng, J. Xu, Q. Wang, X. Xu, L. Su, and Y. Wang, “Efficient CW dual-wavelength and passively Q-switched Tm:LuAG lasers,” IEEE Photonics Technol. Lett. 27, 7–10 (2015).
[Crossref]

Zheng, L.

T. Feng, K. Yang, S. Zhao, J. Zhao, W. Qiao, T. Li, L. Zheng, J. Xu, Q. Wang, X. Xu, L. Su, and Y. Wang, “Efficient CW dual-wavelength and passively Q-switched Tm:LuAG lasers,” IEEE Photonics Technol. Lett. 27, 7–10 (2015).
[Crossref]

T. Feng, K. Yang, J. Zhao, S. Zhao, W. Qiao, T. Li, T. Dekorsy, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, and J. Xu, “1.21 W passively mode-locked Tm:LuAG laser,” Opt. Express 23(9), 11819–11825 (2015).
[Crossref] [PubMed]

Zhou, J.

W. Zhang, Y. Pan, J. Zhou, W. Liu, J. Li, B. Jiang, X. Cheng, and J. Xu, “Diode-pumped Tm:YAG ceramic laser,” J. Am. Ceram. Soc. 92(10), 2434–2437 (2009).
[Crossref]

Zong, N.

Q. Ma, Y. Bo, N. Zong, Y. Pan, Q. Peng, D. Cui, and Z.-Y. Xu, “Light scattering and 2-μm laser performance of Tm:YAG ceramic,” Opt. Commun. 284(6), 1645–1647 (2011).
[Crossref]

Zou, Y.

Y. Zou, Z. Wei, Q. Wang, M. Zhan, D. Li, Z. Zhang, J. Zhang, and D. Tang, “High-efficiency diode-pumped Tm:YAG ceramic laser,” Opt. Mater. 35(4), 804–806 (2013).
[Crossref]

Annu. Rev. Mater. Res. (1)

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Express (1)

A. Schmidt, S. Y. Choi, D. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

IEEE Photonics Technol. Lett. (1)

T. Feng, K. Yang, S. Zhao, J. Zhao, W. Qiao, T. Li, L. Zheng, J. Xu, Q. Wang, X. Xu, L. Su, and Y. Wang, “Efficient CW dual-wavelength and passively Q-switched Tm:LuAG lasers,” IEEE Photonics Technol. Lett. 27, 7–10 (2015).
[Crossref]

Int. J. Refract. Met. Hard Mater. (1)

J. Li, Y. Pan, Y. Zeng, W. Liu, B. Jiang, and J. Guo, “The history, development, and future prospects for laser ceramics: a review,” Int. J. Refract. Met. Hard Mater. 39, 44–52 (2013).
[Crossref]

J. Alloys Compd. (1)

Y. Fu, J. Li, C. Wang, T. Xie, W. Li, L. Wu, and Y. Pan, “Fabrication and properties of highly transparent Yb:LuAG ceramics,” J. Alloys Compd. 664, 595–601 (2016).
[Crossref]

J. Am. Ceram. Soc. (2)

W. Zhang, Y. Pan, J. Zhou, W. Liu, J. Li, B. Jiang, X. Cheng, and J. Xu, “Diode-pumped Tm:YAG ceramic laser,” J. Am. Ceram. Soc. 92(10), 2434–2437 (2009).
[Crossref]

A. Ikesue, K. Kamata, and K. Yoshida, “Synthesis of Nd3+, Cr3+-codoped YAG ceramics for high-efficiency solid-state lasers,” J. Am. Ceram. Soc. 78(9), 2545–2547 (1995).
[Crossref]

J. Phys. D Appl. Phys. (1)

J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 µm GaSb-based SESAMs,” J. Phys. D Appl. Phys. 47(6), 065102 (2014).
[Crossref]

Laser Phys. Lett. (1)

K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications,” Laser Phys. Lett. 1(6), 285–290 (2004).
[Crossref]

Nat. Photonics (1)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

Opt. Commun. (2)

S. Zhang, X. Wang, W. Kong, Q. Yang, J. Xu, B. Jiang, and Y. Pan, “Efficient Q-switched Tm:YAG ceramic slab laser pumped by a 792 nm fiber laser,” Opt. Commun. 286, 288–290 (2013).
[Crossref]

Q. Ma, Y. Bo, N. Zong, Y. Pan, Q. Peng, D. Cui, and Z.-Y. Xu, “Light scattering and 2-μm laser performance of Tm:YAG ceramic,” Opt. Commun. 284(6), 1645–1647 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. (1)

Y. Zou, Z. Wei, Q. Wang, M. Zhan, D. Li, Z. Zhang, J. Zhang, and D. Tang, “High-efficiency diode-pumped Tm:YAG ceramic laser,” Opt. Mater. 35(4), 804–806 (2013).
[Crossref]

Opt. Mater. Express (2)

Phys. Status Solidi (1)

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 µm semiconductor disk lasers,” Phys. Status Solidi 9(2), 294–297 (2012).
[Crossref]

Proc. SPIE (1)

A. Dergachev, “High-energy, kHz, picosecond, 2-μm laser pump source for mid-IR nonlinear optical devices,” Proc. SPIE 8599, 85990B (2013).
[Crossref]

Prog. Quantum Electron. (1)

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

Other (2)

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 µm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, Bishnu Pal, ed. (InTech, 2010), pp. 471–500.

E. D. Filer, N. P. Barnes, and C. A. Morrison, “Theoretical temperature dependent branching ratios and laser thresholds of the 3F4 to 3H6 levels of Tm in ten garnets,” in Advanced Solid State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (OSA, Washington, D.C., 1993), pp. 189–200.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Spectroscopic properties of Tm-doped LuAG ceramics in the 2-µm region. (a) Absorption σa and emission σe cross section of the 3F43H6 transition. (b) Gain cross section σgain for different inversion rates β.
Fig. 2
Fig. 2 Scheme of the Tm:LuAG ceramic laser (L: lens; M1-M4: mirrors (total reflectors); P1-P2: MgF2 prisms; OC: output coupler).
Fig. 3
Fig. 3 Performance of the CW Tm:LuAG ceramic laser: (a) Output power versus absorbed pump power for different OCs. (b) Wavelength tuning at maximum pump power.
Fig. 4
Fig. 4 Mode-locked Tm:LuAG ceramic laser. (a) Output power versus absorbed pump power for the different GaSb-based SESAMs (3% OC). (b)-(c) Autocorrelation functions and optical spectra (insets) of the shortest generated pulse at maximum average output power for the three different SESAMs.
Fig. 5
Fig. 5 Radio frequency spectra of the mode-locked Tm:LuAG ceramic laser using SESAM no. 3: (a) 1.0 GHz wide-span, (b) fundamental beat note (RBW: resolution bandwidth).

Tables (1)

Tables Icon

Table 1 SESAM parameters and CW mode-locking results of the Tm:LuAG ceramic laser (3.0% OC).

Metrics