Abstract

A compact amplifier based on chalcogenide Pr3+-doped micro-disk coupled to two ridge waveguides is designed and refined by means of a home-made computer code. The gain G ≈ 7.9 dB is simulated for a Pr3+ concentration of 10 000 ppm, input signal power of −30 dBm at the wavelength 4.7 µm and input pump power of 50 mW at the wavelength 1.55 µm. In the laser behavior, i.e. without input signal, the maximum slope efficiency S = 8.1 × 10−4 is obtained for an input pump power of 2 mW. This value is about six times higher than that simulated for an optimized erbium-doped micro-disk.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simulation of an erbium-doped chalcogenide micro-disk mid-infrared laser source

Faleh Al Tal, Clara Dimas, Juejun Hu, Anu Agarwal, and Lionel C. Kimerling
Opt. Express 19(13) 11951-11962 (2011)

Optical characterization at 7.7 µm of an integrated platform based on chalcogenide waveguides for sensing applications in the mid-infrared

Aldo Gutierrez-Arroyo, Emeline Baudet, Loïc Bodiou, Jonathan Lemaitre, Isabelle Hardy, François Faijan, Bruno Bureau, Virginie Nazabal, and Joël Charrier
Opt. Express 24(20) 23109-23117 (2016)

Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass

Zhuoqi Tang, David Furniss, Michael Fay, Hesham Sakr, Lukasz Sójka, Nigel Neate, Nicola Weston, Slawomir Sujecki, Trevor M. Benson, and Angela B. Seddon
Opt. Mater. Express 5(4) 870-886 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Y. Dumeige and P. Féron, “Coupled optical microresonators for microwave all-optical generation and processing,” Opt. Lett. 40(14), 3237–3240 (2015).
    [Crossref] [PubMed]
  2. T. Kishi, T. Kumagai, S. Shibuya, F. Prudenzano, T. Yano, and S. Shibata, “Quasi-single mode laser output from a terrace structure added on a Nd3+-doped tellurite-glass microsphere prepared using localized laser heating,” Opt. Express 23(16), 20629–20635 (2015).
    [Crossref] [PubMed]
  3. P. Girault, N. Lorrain, J. Lemaitre, L. Poffo, M. Guendouz, I. Hardy, M. Gadonna, A. Gutierrez, L. Bodiou, and J. Charrier, “Racetrack micro-resonators based on ridge waveguides made of porous silica,” Opt. Mater. 50, Part B, 167–174 (2015).
    [Crossref]
  4. Z. Tian, C. Chen, and D. V. Plant, “Single- and dual-wavelength fiber ring laser using fiber microdisk resonator,” IEEE Photon. Technol. Lett. 22(22), 1644–1646 (2010).
  5. Z. Tian, P. Bianucci, and D. V. Plant, “Fiber ring laser using optical fiber microdisk as reflection mirror,” IEEE Photon. Technol. Lett. 24(16), 1396–1398 (2012).
    [Crossref]
  6. S. Calvez, G. Lafleur, A. Larrue, P. F. Calmon, A. Arnoult, G. Almuneau, and O. Gauthier-Lafaye, “Vertically coupled microdisk resonators using AlGaAs/AlOx technology,” IEEE Photon. Technol. Lett. 27(9), 982–985 (2015).
    [Crossref]
  7. A. D’Orazio, M. De Sario, C. Giasi, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of planar optic sensors for hydrocarbon detection,” Opt. Quantum Electron. 36(6), 507–526 (2004).
    [Crossref]
  8. M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
    [Crossref] [PubMed]
  9. J.-L. Adam, L. Calvez, J. Trolès, and V. Nazabal, “Chalcogenide glasses for infrared photonics,” Int. J. Appl. Glass Sci. 6(3), 287–294 (2015).
    [Crossref]
  10. A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
    [Crossref] [PubMed]
  11. R. Chahal, F. Starecki, C. Boussard-Plédel, J.-L. Doualan, K. Michel, L. Brilland, A. Braud, P. Camy, B. Bureau, and V. Nazabal, “Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers,” Sens. Actuat. B-Chem. 229, 209–216 (2016).
    [Crossref]
  12. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15(5), 2307–2314 (2007).
    [Crossref] [PubMed]
  13. J. Hu, J. D. Musgraves, N. Carlie, B. Zdyrko, I. Luzinov, A. Agarwal, K. Richardson, and L. Kimerling, “Development of chipscale chalcogenide glass based infrared chemical sensors,” Proc. SPIE7945, 79452C–79452C-10 (2011).
    [Crossref]
  14. C. Grillet, S. N. Bian, E. C. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92(17), 171109 (2008).
    [Crossref]
  15. A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
    [Crossref]
  16. K. Sasagawa, Z. Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett. 85(19), 4325–4327 (2004).
    [Crossref]
  17. J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 m lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005).
    [Crossref]
  18. F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Trolès, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuat. B-Chem. 207, Part A(5), 518–525 (2015).
    [Crossref]
  19. A. L. Pelé, A. Braud, J. L. Doualan, F. Starecki, V. Nazabal, R. Chahal, C. Boussard-Plédel, B. Bureau, R. Moncorgé, and P. Camy, “Dy3+ doped GeGaSbS fluorescent fiber at 4.4 m for optical gas sensing: comparison of simulation and experiment,” Opt. Mater. 61, 37–44 (2016).
    [Crossref]
  20. M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Trolès, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for mid-IR Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photon. Technol. Lett. 28(18), 1984–1987 (2016).
    [Crossref]
  21. M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Trolès, J.-L. Adam, S. Taccheo, M. Ferrari, and F. Prudenzano, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR emission,” J. Lightwave Technol. 35(2), 265–273 (2017).
    [Crossref]
  22. V. Nazabal, F. Starecki, J.-L. Doualan, P. Němec, P. Camy, H. Lhermite, L. Bodiou, M. L. Anne, J. Charrier, and J.-L. Adam, “Luminescence at 2.8 m: Er3+-doped chalcogenide micro-waveguide,” Opt. Mater. 58, 390–397 (2016).
    [Crossref]
  23. Z. Tang, D. Furniss, M. Fay, H. Sakr, L. Sójka, N. Neate, N. Weston, S. Sujecki, T. M. Benson, and A. B. Seddon, “Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass,” Opt. Mater. Express 5(4), 870–886 (2015).
    [Crossref]
  24. H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
    [Crossref] [PubMed]
  25. L. Mescia, P. Bia, O. Losito, and F. Prudenzano, “Design of mid-IR Er3+-doped microsphere laser,” IEEE Photon. J. 5(4), 1501308 (2013).
    [Crossref]
  26. F. Prudenzano, L. Mescia, L. Allegretti, V. Moizan, V. Nazabal, and F. Smektala, “Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers,” Opt. Mater. 33(2), 241–245 (2010).
    [Crossref]
  27. G. Palma, C. Falconi, V. Nazabal, T. Yano, T. Kishi, T. Kumagai, M. Ferrari, and F. Prudenzano, “Modeling of whispering gallery modes for rare earth spectroscopic characterization,” IEEE Photon. Technol. Lett. 27(17), 1861–1863 (2015).
    [Crossref]
  28. G. Palma, M. C. Falconi, F. Starecki, V. Nazabal, T. Yano, T. Kishi, T. Kumagai, and F. Prudenzano, “Novel double step approach for optical sensing via microsphere WGM resonance,” Opt. Express 24(23), 26956–26971 (2016).
    [Crossref] [PubMed]
  29. S. Sergent and F. Semond, “(Al,Ga)N Microdisk Cavities,” in “Handbook of Optical Microcavities,” A. H. W. Choi, ed. (Pan Stanford Publishing Pte. Ltd., 2014), Chap. 4.
  30. R. R. A. Syms and J. R. Cozens, Optical Guided Waves and Devices (McGraw-Hill, 1992).
  31. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
    [Crossref]
  32. B. E. Little, J. P. Laine, and H. A. Haus, “Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators,” J. Lightwave Technol. 17(4), 704–715 (1999).
    [Crossref]
  33. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005).
    [Crossref] [PubMed]
  34. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989), 1st ed.
  35. F. Al Tal, C. Dimas, J. Hu, A. Agarwal, and L. C. Kimerling, “Simulation of an erbium-doped chalcogenide micro-disk mid-infrared laser source,” Opt. Express 19(13), 11951–11962 (2011).
    [Crossref] [PubMed]
  36. P. Němec, M. Olivier, E. Baudet, A. Kalendová, P. Benda, and V. Nazabal, “Optical properties of (GeSe2)100-x(Sb2Se3)x glasses in near- and middle-infrared spectral regions,” Mater. Res. Bull. 51, 176–179 (2014).
    [Crossref]

2017 (1)

2016 (5)

G. Palma, M. C. Falconi, F. Starecki, V. Nazabal, T. Yano, T. Kishi, T. Kumagai, and F. Prudenzano, “Novel double step approach for optical sensing via microsphere WGM resonance,” Opt. Express 24(23), 26956–26971 (2016).
[Crossref] [PubMed]

V. Nazabal, F. Starecki, J.-L. Doualan, P. Němec, P. Camy, H. Lhermite, L. Bodiou, M. L. Anne, J. Charrier, and J.-L. Adam, “Luminescence at 2.8 m: Er3+-doped chalcogenide micro-waveguide,” Opt. Mater. 58, 390–397 (2016).
[Crossref]

A. L. Pelé, A. Braud, J. L. Doualan, F. Starecki, V. Nazabal, R. Chahal, C. Boussard-Plédel, B. Bureau, R. Moncorgé, and P. Camy, “Dy3+ doped GeGaSbS fluorescent fiber at 4.4 m for optical gas sensing: comparison of simulation and experiment,” Opt. Mater. 61, 37–44 (2016).
[Crossref]

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Trolès, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for mid-IR Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photon. Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

R. Chahal, F. Starecki, C. Boussard-Plédel, J.-L. Doualan, K. Michel, L. Brilland, A. Braud, P. Camy, B. Bureau, and V. Nazabal, “Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers,” Sens. Actuat. B-Chem. 229, 209–216 (2016).
[Crossref]

2015 (8)

G. Palma, C. Falconi, V. Nazabal, T. Yano, T. Kishi, T. Kumagai, M. Ferrari, and F. Prudenzano, “Modeling of whispering gallery modes for rare earth spectroscopic characterization,” IEEE Photon. Technol. Lett. 27(17), 1861–1863 (2015).
[Crossref]

P. Girault, N. Lorrain, J. Lemaitre, L. Poffo, M. Guendouz, I. Hardy, M. Gadonna, A. Gutierrez, L. Bodiou, and J. Charrier, “Racetrack micro-resonators based on ridge waveguides made of porous silica,” Opt. Mater. 50, Part B, 167–174 (2015).
[Crossref]

S. Calvez, G. Lafleur, A. Larrue, P. F. Calmon, A. Arnoult, G. Almuneau, and O. Gauthier-Lafaye, “Vertically coupled microdisk resonators using AlGaAs/AlOx technology,” IEEE Photon. Technol. Lett. 27(9), 982–985 (2015).
[Crossref]

J.-L. Adam, L. Calvez, J. Trolès, and V. Nazabal, “Chalcogenide glasses for infrared photonics,” Int. J. Appl. Glass Sci. 6(3), 287–294 (2015).
[Crossref]

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Trolès, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuat. B-Chem. 207, Part A(5), 518–525 (2015).
[Crossref]

Z. Tang, D. Furniss, M. Fay, H. Sakr, L. Sójka, N. Neate, N. Weston, S. Sujecki, T. M. Benson, and A. B. Seddon, “Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass,” Opt. Mater. Express 5(4), 870–886 (2015).
[Crossref]

Y. Dumeige and P. Féron, “Coupled optical microresonators for microwave all-optical generation and processing,” Opt. Lett. 40(14), 3237–3240 (2015).
[Crossref] [PubMed]

T. Kishi, T. Kumagai, S. Shibuya, F. Prudenzano, T. Yano, and S. Shibata, “Quasi-single mode laser output from a terrace structure added on a Nd3+-doped tellurite-glass microsphere prepared using localized laser heating,” Opt. Express 23(16), 20629–20635 (2015).
[Crossref] [PubMed]

2014 (1)

P. Němec, M. Olivier, E. Baudet, A. Kalendová, P. Benda, and V. Nazabal, “Optical properties of (GeSe2)100-x(Sb2Se3)x glasses in near- and middle-infrared spectral regions,” Mater. Res. Bull. 51, 176–179 (2014).
[Crossref]

2013 (2)

2012 (1)

Z. Tian, P. Bianucci, and D. V. Plant, “Fiber ring laser using optical fiber microdisk as reflection mirror,” IEEE Photon. Technol. Lett. 24(16), 1396–1398 (2012).
[Crossref]

2011 (1)

2010 (3)

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[Crossref] [PubMed]

Z. Tian, C. Chen, and D. V. Plant, “Single- and dual-wavelength fiber ring laser using fiber microdisk resonator,” IEEE Photon. Technol. Lett. 22(22), 1644–1646 (2010).

F. Prudenzano, L. Mescia, L. Allegretti, V. Moizan, V. Nazabal, and F. Smektala, “Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers,” Opt. Mater. 33(2), 241–245 (2010).
[Crossref]

2009 (1)

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

2008 (1)

C. Grillet, S. N. Bian, E. C. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92(17), 171109 (2008).
[Crossref]

2007 (1)

2005 (2)

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005).
[Crossref] [PubMed]

J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 m lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005).
[Crossref]

2004 (2)

K. Sasagawa, Z. Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett. 85(19), 4325–4327 (2004).
[Crossref]

A. D’Orazio, M. De Sario, C. Giasi, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of planar optic sensors for hydrocarbon detection,” Opt. Quantum Electron. 36(6), 507–526 (2004).
[Crossref]

2002 (1)

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

1999 (1)

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Adam, J.-L.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Trolès, J.-L. Adam, S. Taccheo, M. Ferrari, and F. Prudenzano, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR emission,” J. Lightwave Technol. 35(2), 265–273 (2017).
[Crossref]

V. Nazabal, F. Starecki, J.-L. Doualan, P. Němec, P. Camy, H. Lhermite, L. Bodiou, M. L. Anne, J. Charrier, and J.-L. Adam, “Luminescence at 2.8 m: Er3+-doped chalcogenide micro-waveguide,” Opt. Mater. 58, 390–397 (2016).
[Crossref]

J.-L. Adam, L. Calvez, J. Trolès, and V. Nazabal, “Chalcogenide glasses for infrared photonics,” Int. J. Appl. Glass Sci. 6(3), 287–294 (2015).
[Crossref]

Agarwal, A.

Al Tal, F.

Allegretti, L.

F. Prudenzano, L. Mescia, L. Allegretti, V. Moizan, V. Nazabal, and F. Smektala, “Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers,” Opt. Mater. 33(2), 241–245 (2010).
[Crossref]

Almuneau, G.

S. Calvez, G. Lafleur, A. Larrue, P. F. Calmon, A. Arnoult, G. Almuneau, and O. Gauthier-Lafaye, “Vertically coupled microdisk resonators using AlGaAs/AlOx technology,” IEEE Photon. Technol. Lett. 27(9), 982–985 (2015).
[Crossref]

Anne, M. L.

V. Nazabal, F. Starecki, J.-L. Doualan, P. Němec, P. Camy, H. Lhermite, L. Bodiou, M. L. Anne, J. Charrier, and J.-L. Adam, “Luminescence at 2.8 m: Er3+-doped chalcogenide micro-waveguide,” Opt. Mater. 58, 390–397 (2016).
[Crossref]

Anne, M.-L.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Arnoult, A.

S. Calvez, G. Lafleur, A. Larrue, P. F. Calmon, A. Arnoult, G. Almuneau, and O. Gauthier-Lafaye, “Vertically coupled microdisk resonators using AlGaAs/AlOx technology,” IEEE Photon. Technol. Lett. 27(9), 982–985 (2015).
[Crossref]

Balanis, C. A.

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989), 1st ed.

Baudet, E.

P. Němec, M. Olivier, E. Baudet, A. Kalendová, P. Benda, and V. Nazabal, “Optical properties of (GeSe2)100-x(Sb2Se3)x glasses in near- and middle-infrared spectral regions,” Mater. Res. Bull. 51, 176–179 (2014).
[Crossref]

Benda, P.

P. Němec, M. Olivier, E. Baudet, A. Kalendová, P. Benda, and V. Nazabal, “Optical properties of (GeSe2)100-x(Sb2Se3)x glasses in near- and middle-infrared spectral regions,” Mater. Res. Bull. 51, 176–179 (2014).
[Crossref]

Benson, T. M.

Bia, P.

L. Mescia, P. Bia, O. Losito, and F. Prudenzano, “Design of mid-IR Er3+-doped microsphere laser,” IEEE Photon. J. 5(4), 1501308 (2013).
[Crossref]

Bian, S. N.

C. Grillet, S. N. Bian, E. C. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92(17), 171109 (2008).
[Crossref]

Bianucci, P.

Z. Tian, P. Bianucci, and D. V. Plant, “Fiber ring laser using optical fiber microdisk as reflection mirror,” IEEE Photon. Technol. Lett. 24(16), 1396–1398 (2012).
[Crossref]

Bodiou, L.

V. Nazabal, F. Starecki, J.-L. Doualan, P. Němec, P. Camy, H. Lhermite, L. Bodiou, M. L. Anne, J. Charrier, and J.-L. Adam, “Luminescence at 2.8 m: Er3+-doped chalcogenide micro-waveguide,” Opt. Mater. 58, 390–397 (2016).
[Crossref]

P. Girault, N. Lorrain, J. Lemaitre, L. Poffo, M. Guendouz, I. Hardy, M. Gadonna, A. Gutierrez, L. Bodiou, and J. Charrier, “Racetrack micro-resonators based on ridge waveguides made of porous silica,” Opt. Mater. 50, Part B, 167–174 (2015).
[Crossref]

Borselli, M.

Boussard-Pledel, C.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Boussard-Plédel, C.

R. Chahal, F. Starecki, C. Boussard-Plédel, J.-L. Doualan, K. Michel, L. Brilland, A. Braud, P. Camy, B. Bureau, and V. Nazabal, “Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers,” Sens. Actuat. B-Chem. 229, 209–216 (2016).
[Crossref]

A. L. Pelé, A. Braud, J. L. Doualan, F. Starecki, V. Nazabal, R. Chahal, C. Boussard-Plédel, B. Bureau, R. Moncorgé, and P. Camy, “Dy3+ doped GeGaSbS fluorescent fiber at 4.4 m for optical gas sensing: comparison of simulation and experiment,” Opt. Mater. 61, 37–44 (2016).
[Crossref]

Braud, A.

A. L. Pelé, A. Braud, J. L. Doualan, F. Starecki, V. Nazabal, R. Chahal, C. Boussard-Plédel, B. Bureau, R. Moncorgé, and P. Camy, “Dy3+ doped GeGaSbS fluorescent fiber at 4.4 m for optical gas sensing: comparison of simulation and experiment,” Opt. Mater. 61, 37–44 (2016).
[Crossref]

R. Chahal, F. Starecki, C. Boussard-Plédel, J.-L. Doualan, K. Michel, L. Brilland, A. Braud, P. Camy, B. Bureau, and V. Nazabal, “Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers,” Sens. Actuat. B-Chem. 229, 209–216 (2016).
[Crossref]

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Trolès, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuat. B-Chem. 207, Part A(5), 518–525 (2015).
[Crossref]

Brilland, L.

R. Chahal, F. Starecki, C. Boussard-Plédel, J.-L. Doualan, K. Michel, L. Brilland, A. Braud, P. Camy, B. Bureau, and V. Nazabal, “Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers,” Sens. Actuat. B-Chem. 229, 209–216 (2016).
[Crossref]

Bureau, B.

R. Chahal, F. Starecki, C. Boussard-Plédel, J.-L. Doualan, K. Michel, L. Brilland, A. Braud, P. Camy, B. Bureau, and V. Nazabal, “Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers,” Sens. Actuat. B-Chem. 229, 209–216 (2016).
[Crossref]

A. L. Pelé, A. Braud, J. L. Doualan, F. Starecki, V. Nazabal, R. Chahal, C. Boussard-Plédel, B. Bureau, R. Moncorgé, and P. Camy, “Dy3+ doped GeGaSbS fluorescent fiber at 4.4 m for optical gas sensing: comparison of simulation and experiment,” Opt. Mater. 61, 37–44 (2016).
[Crossref]

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Trolès, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuat. B-Chem. 207, Part A(5), 518–525 (2015).
[Crossref]

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Calmon, P. F.

S. Calvez, G. Lafleur, A. Larrue, P. F. Calmon, A. Arnoult, G. Almuneau, and O. Gauthier-Lafaye, “Vertically coupled microdisk resonators using AlGaAs/AlOx technology,” IEEE Photon. Technol. Lett. 27(9), 982–985 (2015).
[Crossref]

Calvez, L.

J.-L. Adam, L. Calvez, J. Trolès, and V. Nazabal, “Chalcogenide glasses for infrared photonics,” Int. J. Appl. Glass Sci. 6(3), 287–294 (2015).
[Crossref]

Calvez, S.

S. Calvez, G. Lafleur, A. Larrue, P. F. Calmon, A. Arnoult, G. Almuneau, and O. Gauthier-Lafaye, “Vertically coupled microdisk resonators using AlGaAs/AlOx technology,” IEEE Photon. Technol. Lett. 27(9), 982–985 (2015).
[Crossref]

Camy, P.

R. Chahal, F. Starecki, C. Boussard-Plédel, J.-L. Doualan, K. Michel, L. Brilland, A. Braud, P. Camy, B. Bureau, and V. Nazabal, “Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers,” Sens. Actuat. B-Chem. 229, 209–216 (2016).
[Crossref]

V. Nazabal, F. Starecki, J.-L. Doualan, P. Němec, P. Camy, H. Lhermite, L. Bodiou, M. L. Anne, J. Charrier, and J.-L. Adam, “Luminescence at 2.8 m: Er3+-doped chalcogenide micro-waveguide,” Opt. Mater. 58, 390–397 (2016).
[Crossref]

A. L. Pelé, A. Braud, J. L. Doualan, F. Starecki, V. Nazabal, R. Chahal, C. Boussard-Plédel, B. Bureau, R. Moncorgé, and P. Camy, “Dy3+ doped GeGaSbS fluorescent fiber at 4.4 m for optical gas sensing: comparison of simulation and experiment,” Opt. Mater. 61, 37–44 (2016).
[Crossref]

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Trolès, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuat. B-Chem. 207, Part A(5), 518–525 (2015).
[Crossref]

Carlie, N.

J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15(5), 2307–2314 (2007).
[Crossref] [PubMed]

J. Hu, J. D. Musgraves, N. Carlie, B. Zdyrko, I. Luzinov, A. Agarwal, K. Richardson, and L. Kimerling, “Development of chipscale chalcogenide glass based infrared chemical sensors,” Proc. SPIE7945, 79452C–79452C-10 (2011).
[Crossref]

Chahal, R.

A. L. Pelé, A. Braud, J. L. Doualan, F. Starecki, V. Nazabal, R. Chahal, C. Boussard-Plédel, B. Bureau, R. Moncorgé, and P. Camy, “Dy3+ doped GeGaSbS fluorescent fiber at 4.4 m for optical gas sensing: comparison of simulation and experiment,” Opt. Mater. 61, 37–44 (2016).
[Crossref]

R. Chahal, F. Starecki, C. Boussard-Plédel, J.-L. Doualan, K. Michel, L. Brilland, A. Braud, P. Camy, B. Bureau, and V. Nazabal, “Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers,” Sens. Actuat. B-Chem. 229, 209–216 (2016).
[Crossref]

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Trolès, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuat. B-Chem. 207, Part A(5), 518–525 (2015).
[Crossref]

Chardon, A. M.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

Charpentier, F.

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Trolès, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuat. B-Chem. 207, Part A(5), 518–525 (2015).
[Crossref]

Charrier, J.

V. Nazabal, F. Starecki, J.-L. Doualan, P. Němec, P. Camy, H. Lhermite, L. Bodiou, M. L. Anne, J. Charrier, and J.-L. Adam, “Luminescence at 2.8 m: Er3+-doped chalcogenide micro-waveguide,” Opt. Mater. 58, 390–397 (2016).
[Crossref]

P. Girault, N. Lorrain, J. Lemaitre, L. Poffo, M. Guendouz, I. Hardy, M. Gadonna, A. Gutierrez, L. Bodiou, and J. Charrier, “Racetrack micro-resonators based on ridge waveguides made of porous silica,” Opt. Mater. 50, Part B, 167–174 (2015).
[Crossref]

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Chen, C.

Z. Tian, C. Chen, and D. V. Plant, “Single- and dual-wavelength fiber ring laser using fiber microdisk resonator,” IEEE Photon. Technol. Lett. 22(22), 1644–1646 (2010).

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Colas, F.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Compère, C.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Cozens, J. R.

R. R. A. Syms and J. R. Cozens, Optical Guided Waves and Devices (McGraw-Hill, 1992).

D’Orazio, A.

A. D’Orazio, M. De Sario, C. Giasi, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of planar optic sensors for hydrocarbon detection,” Opt. Quantum Electron. 36(6), 507–526 (2004).
[Crossref]

Danto, S.

De Sario, M.

A. D’Orazio, M. De Sario, C. Giasi, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of planar optic sensors for hydrocarbon detection,” Opt. Quantum Electron. 36(6), 507–526 (2004).
[Crossref]

Dimas, C.

Doualan, J. L.

A. L. Pelé, A. Braud, J. L. Doualan, F. Starecki, V. Nazabal, R. Chahal, C. Boussard-Plédel, B. Bureau, R. Moncorgé, and P. Camy, “Dy3+ doped GeGaSbS fluorescent fiber at 4.4 m for optical gas sensing: comparison of simulation and experiment,” Opt. Mater. 61, 37–44 (2016).
[Crossref]

Doualan, J.-L.

R. Chahal, F. Starecki, C. Boussard-Plédel, J.-L. Doualan, K. Michel, L. Brilland, A. Braud, P. Camy, B. Bureau, and V. Nazabal, “Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers,” Sens. Actuat. B-Chem. 229, 209–216 (2016).
[Crossref]

V. Nazabal, F. Starecki, J.-L. Doualan, P. Němec, P. Camy, H. Lhermite, L. Bodiou, M. L. Anne, J. Charrier, and J.-L. Adam, “Luminescence at 2.8 m: Er3+-doped chalcogenide micro-waveguide,” Opt. Mater. 58, 390–397 (2016).
[Crossref]

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Trolès, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuat. B-Chem. 207, Part A(5), 518–525 (2015).
[Crossref]

Dumeige, Y.

Eggleton, B. J.

C. Grillet, S. N. Bian, E. C. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92(17), 171109 (2008).
[Crossref]

Falconi, C.

G. Palma, C. Falconi, V. Nazabal, T. Yano, T. Kishi, T. Kumagai, M. Ferrari, and F. Prudenzano, “Modeling of whispering gallery modes for rare earth spectroscopic characterization,” IEEE Photon. Technol. Lett. 27(17), 1861–1863 (2015).
[Crossref]

Falconi, M. C.

Fay, M.

Féron, P.

Ferrari, M.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Trolès, J.-L. Adam, S. Taccheo, M. Ferrari, and F. Prudenzano, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR emission,” J. Lightwave Technol. 35(2), 265–273 (2017).
[Crossref]

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Trolès, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for mid-IR Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photon. Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

G. Palma, C. Falconi, V. Nazabal, T. Yano, T. Kishi, T. Kumagai, M. Ferrari, and F. Prudenzano, “Modeling of whispering gallery modes for rare earth spectroscopic characterization,” IEEE Photon. Technol. Lett. 27(17), 1861–1863 (2015).
[Crossref]

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Furniss, D.

Gadonna, M.

P. Girault, N. Lorrain, J. Lemaitre, L. Poffo, M. Guendouz, I. Hardy, M. Gadonna, A. Gutierrez, L. Bodiou, and J. Charrier, “Racetrack micro-resonators based on ridge waveguides made of porous silica,” Opt. Mater. 50, Part B, 167–174 (2015).
[Crossref]

Gauthier-Lafaye, O.

S. Calvez, G. Lafleur, A. Larrue, P. F. Calmon, A. Arnoult, G. Almuneau, and O. Gauthier-Lafaye, “Vertically coupled microdisk resonators using AlGaAs/AlOx technology,” IEEE Photon. Technol. Lett. 27(9), 982–985 (2015).
[Crossref]

Giasi, C.

A. D’Orazio, M. De Sario, C. Giasi, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of planar optic sensors for hydrocarbon detection,” Opt. Quantum Electron. 36(6), 507–526 (2004).
[Crossref]

Girault, P.

P. Girault, N. Lorrain, J. Lemaitre, L. Poffo, M. Guendouz, I. Hardy, M. Gadonna, A. Gutierrez, L. Bodiou, and J. Charrier, “Racetrack micro-resonators based on ridge waveguides made of porous silica,” Opt. Mater. 50, Part B, 167–174 (2015).
[Crossref]

Grillet, C.

C. Grillet, S. N. Bian, E. C. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92(17), 171109 (2008).
[Crossref]

Guendouz, M.

P. Girault, N. Lorrain, J. Lemaitre, L. Poffo, M. Guendouz, I. Hardy, M. Gadonna, A. Gutierrez, L. Bodiou, and J. Charrier, “Racetrack micro-resonators based on ridge waveguides made of porous silica,” Opt. Mater. 50, Part B, 167–174 (2015).
[Crossref]

Gutierrez, A.

P. Girault, N. Lorrain, J. Lemaitre, L. Poffo, M. Guendouz, I. Hardy, M. Gadonna, A. Gutierrez, L. Bodiou, and J. Charrier, “Racetrack micro-resonators based on ridge waveguides made of porous silica,” Opt. Mater. 50, Part B, 167–174 (2015).
[Crossref]

Hardy, I.

P. Girault, N. Lorrain, J. Lemaitre, L. Poffo, M. Guendouz, I. Hardy, M. Gadonna, A. Gutierrez, L. Bodiou, and J. Charrier, “Racetrack micro-resonators based on ridge waveguides made of porous silica,” Opt. Mater. 50, Part B, 167–174 (2015).
[Crossref]

Haus, H. A.

B. E. Little, J. P. Laine, and H. A. Haus, “Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators,” J. Lightwave Technol. 17(4), 704–715 (1999).
[Crossref]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Hewak, D. W.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

Hu, J.

Hyodo, K.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Inoue, S.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Iwai, R.

K. Sasagawa, Z. Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett. 85(19), 4325–4327 (2004).
[Crossref]

Jiang, S.

J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 m lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005).
[Crossref]

Johnson, T. J.

Kalendová, A.

P. Němec, M. Olivier, E. Baudet, A. Kalendová, P. Benda, and V. Nazabal, “Optical properties of (GeSe2)100-x(Sb2Se3)x glasses in near- and middle-infrared spectral regions,” Mater. Res. Bull. 51, 176–179 (2014).
[Crossref]

Keirsse, J.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Kimerling, L.

J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15(5), 2307–2314 (2007).
[Crossref] [PubMed]

J. Hu, J. D. Musgraves, N. Carlie, B. Zdyrko, I. Luzinov, A. Agarwal, K. Richardson, and L. Kimerling, “Development of chipscale chalcogenide glass based infrared chemical sensors,” Proc. SPIE7945, 79452C–79452C-10 (2011).
[Crossref]

Kimerling, L. C.

Kishi, T.

Kozacik, S.

Kumagai, T.

Kuwata-Gonokami, M.

J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 m lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005).
[Crossref]

Lafleur, G.

S. Calvez, G. Lafleur, A. Larrue, P. F. Calmon, A. Arnoult, G. Almuneau, and O. Gauthier-Lafaye, “Vertically coupled microdisk resonators using AlGaAs/AlOx technology,” IEEE Photon. Technol. Lett. 27(9), 982–985 (2015).
[Crossref]

Laine, J. P.

B. E. Little, J. P. Laine, and H. A. Haus, “Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators,” J. Lightwave Technol. 17(4), 704–715 (1999).
[Crossref]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Larrue, A.

S. Calvez, G. Lafleur, A. Larrue, P. F. Calmon, A. Arnoult, G. Almuneau, and O. Gauthier-Lafaye, “Vertically coupled microdisk resonators using AlGaAs/AlOx technology,” IEEE Photon. Technol. Lett. 27(9), 982–985 (2015).
[Crossref]

Le Person, J.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Lemaitre, J.

P. Girault, N. Lorrain, J. Lemaitre, L. Poffo, M. Guendouz, I. Hardy, M. Gadonna, A. Gutierrez, L. Bodiou, and J. Charrier, “Racetrack micro-resonators based on ridge waveguides made of porous silica,” Opt. Mater. 50, Part B, 167–174 (2015).
[Crossref]

Lhermite, H.

V. Nazabal, F. Starecki, J.-L. Doualan, P. Němec, P. Camy, H. Lhermite, L. Bodiou, M. L. Anne, J. Charrier, and J.-L. Adam, “Luminescence at 2.8 m: Er3+-doped chalcogenide micro-waveguide,” Opt. Mater. 58, 390–397 (2016).
[Crossref]

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Li, L.

Lin, H.

Lin, P. T.

Little, B. E.

B. E. Little, J. P. Laine, and H. A. Haus, “Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators,” J. Lightwave Technol. 17(4), 704–715 (1999).
[Crossref]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Loreal, O.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Lorrain, N.

P. Girault, N. Lorrain, J. Lemaitre, L. Poffo, M. Guendouz, I. Hardy, M. Gadonna, A. Gutierrez, L. Bodiou, and J. Charrier, “Racetrack micro-resonators based on ridge waveguides made of porous silica,” Opt. Mater. 50, Part B, 167–174 (2015).
[Crossref]

Losito, O.

L. Mescia, P. Bia, O. Losito, and F. Prudenzano, “Design of mid-IR Er3+-doped microsphere laser,” IEEE Photon. J. 5(4), 1501308 (2013).
[Crossref]

Luzinov, I.

J. Hu, J. D. Musgraves, N. Carlie, B. Zdyrko, I. Luzinov, A. Agarwal, K. Richardson, and L. Kimerling, “Development of chipscale chalcogenide glass based infrared chemical sensors,” Proc. SPIE7945, 79452C–79452C-10 (2011).
[Crossref]

Magi, E. C.

C. Grillet, S. N. Bian, E. C. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92(17), 171109 (2008).
[Crossref]

Mairaj, A. K.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

Mescia, L.

L. Mescia, P. Bia, O. Losito, and F. Prudenzano, “Design of mid-IR Er3+-doped microsphere laser,” IEEE Photon. J. 5(4), 1501308 (2013).
[Crossref]

F. Prudenzano, L. Mescia, L. Allegretti, V. Moizan, V. Nazabal, and F. Smektala, “Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers,” Opt. Mater. 33(2), 241–245 (2010).
[Crossref]

A. D’Orazio, M. De Sario, C. Giasi, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of planar optic sensors for hydrocarbon detection,” Opt. Quantum Electron. 36(6), 507–526 (2004).
[Crossref]

Michel, K.

R. Chahal, F. Starecki, C. Boussard-Plédel, J.-L. Doualan, K. Michel, L. Brilland, A. Braud, P. Camy, B. Bureau, and V. Nazabal, “Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers,” Sens. Actuat. B-Chem. 229, 209–216 (2016).
[Crossref]

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Trolès, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuat. B-Chem. 207, Part A(5), 518–525 (2015).
[Crossref]

Moizan, V.

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Trolès, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuat. B-Chem. 207, Part A(5), 518–525 (2015).
[Crossref]

F. Prudenzano, L. Mescia, L. Allegretti, V. Moizan, V. Nazabal, and F. Smektala, “Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers,” Opt. Mater. 33(2), 241–245 (2010).
[Crossref]

Moncorgé, R.

A. L. Pelé, A. Braud, J. L. Doualan, F. Starecki, V. Nazabal, R. Chahal, C. Boussard-Plédel, B. Bureau, R. Moncorgé, and P. Camy, “Dy3+ doped GeGaSbS fluorescent fiber at 4.4 m for optical gas sensing: comparison of simulation and experiment,” Opt. Mater. 61, 37–44 (2016).
[Crossref]

Murakowski, M.

Musgraves, J. D.

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
[Crossref] [PubMed]

J. Hu, J. D. Musgraves, N. Carlie, B. Zdyrko, I. Luzinov, A. Agarwal, K. Richardson, and L. Kimerling, “Development of chipscale chalcogenide glass based infrared chemical sensors,” Proc. SPIE7945, 79452C–79452C-10 (2011).
[Crossref]

Nazabal, V.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Trolès, J.-L. Adam, S. Taccheo, M. Ferrari, and F. Prudenzano, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR emission,” J. Lightwave Technol. 35(2), 265–273 (2017).
[Crossref]

G. Palma, M. C. Falconi, F. Starecki, V. Nazabal, T. Yano, T. Kishi, T. Kumagai, and F. Prudenzano, “Novel double step approach for optical sensing via microsphere WGM resonance,” Opt. Express 24(23), 26956–26971 (2016).
[Crossref] [PubMed]

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Trolès, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for mid-IR Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photon. Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

A. L. Pelé, A. Braud, J. L. Doualan, F. Starecki, V. Nazabal, R. Chahal, C. Boussard-Plédel, B. Bureau, R. Moncorgé, and P. Camy, “Dy3+ doped GeGaSbS fluorescent fiber at 4.4 m for optical gas sensing: comparison of simulation and experiment,” Opt. Mater. 61, 37–44 (2016).
[Crossref]

R. Chahal, F. Starecki, C. Boussard-Plédel, J.-L. Doualan, K. Michel, L. Brilland, A. Braud, P. Camy, B. Bureau, and V. Nazabal, “Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers,” Sens. Actuat. B-Chem. 229, 209–216 (2016).
[Crossref]

V. Nazabal, F. Starecki, J.-L. Doualan, P. Němec, P. Camy, H. Lhermite, L. Bodiou, M. L. Anne, J. Charrier, and J.-L. Adam, “Luminescence at 2.8 m: Er3+-doped chalcogenide micro-waveguide,” Opt. Mater. 58, 390–397 (2016).
[Crossref]

G. Palma, C. Falconi, V. Nazabal, T. Yano, T. Kishi, T. Kumagai, M. Ferrari, and F. Prudenzano, “Modeling of whispering gallery modes for rare earth spectroscopic characterization,” IEEE Photon. Technol. Lett. 27(17), 1861–1863 (2015).
[Crossref]

J.-L. Adam, L. Calvez, J. Trolès, and V. Nazabal, “Chalcogenide glasses for infrared photonics,” Int. J. Appl. Glass Sci. 6(3), 287–294 (2015).
[Crossref]

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Trolès, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuat. B-Chem. 207, Part A(5), 518–525 (2015).
[Crossref]

P. Němec, M. Olivier, E. Baudet, A. Kalendová, P. Benda, and V. Nazabal, “Optical properties of (GeSe2)100-x(Sb2Se3)x glasses in near- and middle-infrared spectral regions,” Mater. Res. Bull. 51, 176–179 (2014).
[Crossref]

F. Prudenzano, L. Mescia, L. Allegretti, V. Moizan, V. Nazabal, and F. Smektala, “Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers,” Opt. Mater. 33(2), 241–245 (2010).
[Crossref]

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Neate, N.

Nemec, P.

V. Nazabal, F. Starecki, J.-L. Doualan, P. Němec, P. Camy, H. Lhermite, L. Bodiou, M. L. Anne, J. Charrier, and J.-L. Adam, “Luminescence at 2.8 m: Er3+-doped chalcogenide micro-waveguide,” Opt. Mater. 58, 390–397 (2016).
[Crossref]

P. Němec, M. Olivier, E. Baudet, A. Kalendová, P. Benda, and V. Nazabal, “Optical properties of (GeSe2)100-x(Sb2Se3)x glasses in near- and middle-infrared spectral regions,” Mater. Res. Bull. 51, 176–179 (2014).
[Crossref]

Nunoshita, M.

K. Sasagawa, Z. Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett. 85(19), 4325–4327 (2004).
[Crossref]

Ohta, J.

K. Sasagawa, Z. Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett. 85(19), 4325–4327 (2004).
[Crossref]

Olivier, M.

P. Němec, M. Olivier, E. Baudet, A. Kalendová, P. Benda, and V. Nazabal, “Optical properties of (GeSe2)100-x(Sb2Se3)x glasses in near- and middle-infrared spectral regions,” Mater. Res. Bull. 51, 176–179 (2014).
[Crossref]

Painter, O.

Palma, G.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Trolès, J.-L. Adam, S. Taccheo, M. Ferrari, and F. Prudenzano, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR emission,” J. Lightwave Technol. 35(2), 265–273 (2017).
[Crossref]

G. Palma, M. C. Falconi, F. Starecki, V. Nazabal, T. Yano, T. Kishi, T. Kumagai, and F. Prudenzano, “Novel double step approach for optical sensing via microsphere WGM resonance,” Opt. Express 24(23), 26956–26971 (2016).
[Crossref] [PubMed]

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Trolès, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for mid-IR Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photon. Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

G. Palma, C. Falconi, V. Nazabal, T. Yano, T. Kishi, T. Kumagai, M. Ferrari, and F. Prudenzano, “Modeling of whispering gallery modes for rare earth spectroscopic characterization,” IEEE Photon. Technol. Lett. 27(17), 1861–1863 (2015).
[Crossref]

Pelé, A. L.

A. L. Pelé, A. Braud, J. L. Doualan, F. Starecki, V. Nazabal, R. Chahal, C. Boussard-Plédel, B. Bureau, R. Moncorgé, and P. Camy, “Dy3+ doped GeGaSbS fluorescent fiber at 4.4 m for optical gas sensing: comparison of simulation and experiment,” Opt. Mater. 61, 37–44 (2016).
[Crossref]

Petit, L.

Petruzzelli, V.

A. D’Orazio, M. De Sario, C. Giasi, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of planar optic sensors for hydrocarbon detection,” Opt. Quantum Electron. 36(6), 507–526 (2004).
[Crossref]

Peyghambarian, N.

J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 m lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005).
[Crossref]

Plant, D. V.

Z. Tian, P. Bianucci, and D. V. Plant, “Fiber ring laser using optical fiber microdisk as reflection mirror,” IEEE Photon. Technol. Lett. 24(16), 1396–1398 (2012).
[Crossref]

Z. Tian, C. Chen, and D. V. Plant, “Single- and dual-wavelength fiber ring laser using fiber microdisk resonator,” IEEE Photon. Technol. Lett. 22(22), 1644–1646 (2010).

Poffo, L.

P. Girault, N. Lorrain, J. Lemaitre, L. Poffo, M. Guendouz, I. Hardy, M. Gadonna, A. Gutierrez, L. Bodiou, and J. Charrier, “Racetrack micro-resonators based on ridge waveguides made of porous silica,” Opt. Mater. 50, Part B, 167–174 (2015).
[Crossref]

Prather, D.

Prudenzano, F.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Trolès, J.-L. Adam, S. Taccheo, M. Ferrari, and F. Prudenzano, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR emission,” J. Lightwave Technol. 35(2), 265–273 (2017).
[Crossref]

G. Palma, M. C. Falconi, F. Starecki, V. Nazabal, T. Yano, T. Kishi, T. Kumagai, and F. Prudenzano, “Novel double step approach for optical sensing via microsphere WGM resonance,” Opt. Express 24(23), 26956–26971 (2016).
[Crossref] [PubMed]

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Trolès, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for mid-IR Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photon. Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

G. Palma, C. Falconi, V. Nazabal, T. Yano, T. Kishi, T. Kumagai, M. Ferrari, and F. Prudenzano, “Modeling of whispering gallery modes for rare earth spectroscopic characterization,” IEEE Photon. Technol. Lett. 27(17), 1861–1863 (2015).
[Crossref]

T. Kishi, T. Kumagai, S. Shibuya, F. Prudenzano, T. Yano, and S. Shibata, “Quasi-single mode laser output from a terrace structure added on a Nd3+-doped tellurite-glass microsphere prepared using localized laser heating,” Opt. Express 23(16), 20629–20635 (2015).
[Crossref] [PubMed]

L. Mescia, P. Bia, O. Losito, and F. Prudenzano, “Design of mid-IR Er3+-doped microsphere laser,” IEEE Photon. J. 5(4), 1501308 (2013).
[Crossref]

F. Prudenzano, L. Mescia, L. Allegretti, V. Moizan, V. Nazabal, and F. Smektala, “Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers,” Opt. Mater. 33(2), 241–245 (2010).
[Crossref]

A. D’Orazio, M. De Sario, C. Giasi, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of planar optic sensors for hydrocarbon detection,” Opt. Quantum Electron. 36(6), 507–526 (2004).
[Crossref]

Qua, T.

J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 m lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005).
[Crossref]

Quetel, L.

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Trolès, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuat. B-Chem. 207, Part A(5), 518–525 (2015).
[Crossref]

Richardson, K.

Riziotis, C.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

Sakr, H.

Sasagawa, K.

K. Sasagawa, Z. Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett. 85(19), 4325–4327 (2004).
[Crossref]

Seddon, A. B.

Semond, F.

S. Sergent and F. Semond, “(Al,Ga)N Microdisk Cavities,” in “Handbook of Optical Microcavities,” A. H. W. Choi, ed. (Pan Stanford Publishing Pte. Ltd., 2014), Chap. 4.

Sergent, S.

S. Sergent and F. Semond, “(Al,Ga)N Microdisk Cavities,” in “Handbook of Optical Microcavities,” A. H. W. Choi, ed. (Pan Stanford Publishing Pte. Ltd., 2014), Chap. 4.

Shepherd, D. P.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

Shibata, S.

Shibuya, S.

Singh, V.

Smektala, F.

F. Prudenzano, L. Mescia, L. Allegretti, V. Moizan, V. Nazabal, and F. Smektala, “Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers,” Opt. Mater. 33(2), 241–245 (2010).
[Crossref]

Smith, P. G. R.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

Sójka, L.

Starecki, F.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Trolès, J.-L. Adam, S. Taccheo, M. Ferrari, and F. Prudenzano, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR emission,” J. Lightwave Technol. 35(2), 265–273 (2017).
[Crossref]

G. Palma, M. C. Falconi, F. Starecki, V. Nazabal, T. Yano, T. Kishi, T. Kumagai, and F. Prudenzano, “Novel double step approach for optical sensing via microsphere WGM resonance,” Opt. Express 24(23), 26956–26971 (2016).
[Crossref] [PubMed]

A. L. Pelé, A. Braud, J. L. Doualan, F. Starecki, V. Nazabal, R. Chahal, C. Boussard-Plédel, B. Bureau, R. Moncorgé, and P. Camy, “Dy3+ doped GeGaSbS fluorescent fiber at 4.4 m for optical gas sensing: comparison of simulation and experiment,” Opt. Mater. 61, 37–44 (2016).
[Crossref]

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Trolès, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for mid-IR Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photon. Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

V. Nazabal, F. Starecki, J.-L. Doualan, P. Němec, P. Camy, H. Lhermite, L. Bodiou, M. L. Anne, J. Charrier, and J.-L. Adam, “Luminescence at 2.8 m: Er3+-doped chalcogenide micro-waveguide,” Opt. Mater. 58, 390–397 (2016).
[Crossref]

R. Chahal, F. Starecki, C. Boussard-Plédel, J.-L. Doualan, K. Michel, L. Brilland, A. Braud, P. Camy, B. Bureau, and V. Nazabal, “Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers,” Sens. Actuat. B-Chem. 229, 209–216 (2016).
[Crossref]

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Trolès, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuat. B-Chem. 207, Part A(5), 518–525 (2015).
[Crossref]

Sujecki, S.

Syms, R. R. A.

R. R. A. Syms and J. R. Cozens, Optical Guided Waves and Devices (McGraw-Hill, 1992).

Taccheo, S.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Trolès, J.-L. Adam, S. Taccheo, M. Ferrari, and F. Prudenzano, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR emission,” J. Lightwave Technol. 35(2), 265–273 (2017).
[Crossref]

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Trolès, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for mid-IR Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photon. Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

Tang, Z.

Tarasov, V.

Tian, Z.

Z. Tian, P. Bianucci, and D. V. Plant, “Fiber ring laser using optical fiber microdisk as reflection mirror,” IEEE Photon. Technol. Lett. 24(16), 1396–1398 (2012).
[Crossref]

Z. Tian, C. Chen, and D. V. Plant, “Single- and dual-wavelength fiber ring laser using fiber microdisk resonator,” IEEE Photon. Technol. Lett. 22(22), 1644–1646 (2010).

Trolès, J.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Trolès, J.-L. Adam, S. Taccheo, M. Ferrari, and F. Prudenzano, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR emission,” J. Lightwave Technol. 35(2), 265–273 (2017).
[Crossref]

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Trolès, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for mid-IR Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photon. Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Trolès, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuat. B-Chem. 207, Part A(5), 518–525 (2015).
[Crossref]

J.-L. Adam, L. Calvez, J. Trolès, and V. Nazabal, “Chalcogenide glasses for infrared photonics,” Int. J. Appl. Glass Sci. 6(3), 287–294 (2015).
[Crossref]

Weston, N.

Wu, J.

J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 m lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005).
[Crossref]

Yanakata, K.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Yano, T.

Yonezawa, Z.

K. Sasagawa, Z. Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett. 85(19), 4325–4327 (2004).
[Crossref]

Zdyrko, B.

J. Hu, J. D. Musgraves, N. Carlie, B. Zdyrko, I. Luzinov, A. Agarwal, K. Richardson, and L. Kimerling, “Development of chipscale chalcogenide glass based infrared chemical sensors,” Proc. SPIE7945, 79452C–79452C-10 (2011).
[Crossref]

Zou, Y.

Appl. Phys. Lett. (4)

C. Grillet, S. N. Bian, E. C. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92(17), 171109 (2008).
[Crossref]

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

K. Sasagawa, Z. Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett. 85(19), 4325–4327 (2004).
[Crossref]

J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 m lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005).
[Crossref]

IEEE Photon. J. (1)

L. Mescia, P. Bia, O. Losito, and F. Prudenzano, “Design of mid-IR Er3+-doped microsphere laser,” IEEE Photon. J. 5(4), 1501308 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (5)

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Trolès, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for mid-IR Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photon. Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

Z. Tian, C. Chen, and D. V. Plant, “Single- and dual-wavelength fiber ring laser using fiber microdisk resonator,” IEEE Photon. Technol. Lett. 22(22), 1644–1646 (2010).

Z. Tian, P. Bianucci, and D. V. Plant, “Fiber ring laser using optical fiber microdisk as reflection mirror,” IEEE Photon. Technol. Lett. 24(16), 1396–1398 (2012).
[Crossref]

S. Calvez, G. Lafleur, A. Larrue, P. F. Calmon, A. Arnoult, G. Almuneau, and O. Gauthier-Lafaye, “Vertically coupled microdisk resonators using AlGaAs/AlOx technology,” IEEE Photon. Technol. Lett. 27(9), 982–985 (2015).
[Crossref]

G. Palma, C. Falconi, V. Nazabal, T. Yano, T. Kishi, T. Kumagai, M. Ferrari, and F. Prudenzano, “Modeling of whispering gallery modes for rare earth spectroscopic characterization,” IEEE Photon. Technol. Lett. 27(17), 1861–1863 (2015).
[Crossref]

Int. J. Appl. Glass Sci. (1)

J.-L. Adam, L. Calvez, J. Trolès, and V. Nazabal, “Chalcogenide glasses for infrared photonics,” Int. J. Appl. Glass Sci. 6(3), 287–294 (2015).
[Crossref]

J. Lightwave Technol. (3)

Mater. Res. Bull. (1)

P. Němec, M. Olivier, E. Baudet, A. Kalendová, P. Benda, and V. Nazabal, “Optical properties of (GeSe2)100-x(Sb2Se3)x glasses in near- and middle-infrared spectral regions,” Mater. Res. Bull. 51, 176–179 (2014).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Opt. Mater. (4)

V. Nazabal, F. Starecki, J.-L. Doualan, P. Němec, P. Camy, H. Lhermite, L. Bodiou, M. L. Anne, J. Charrier, and J.-L. Adam, “Luminescence at 2.8 m: Er3+-doped chalcogenide micro-waveguide,” Opt. Mater. 58, 390–397 (2016).
[Crossref]

P. Girault, N. Lorrain, J. Lemaitre, L. Poffo, M. Guendouz, I. Hardy, M. Gadonna, A. Gutierrez, L. Bodiou, and J. Charrier, “Racetrack micro-resonators based on ridge waveguides made of porous silica,” Opt. Mater. 50, Part B, 167–174 (2015).
[Crossref]

A. L. Pelé, A. Braud, J. L. Doualan, F. Starecki, V. Nazabal, R. Chahal, C. Boussard-Plédel, B. Bureau, R. Moncorgé, and P. Camy, “Dy3+ doped GeGaSbS fluorescent fiber at 4.4 m for optical gas sensing: comparison of simulation and experiment,” Opt. Mater. 61, 37–44 (2016).
[Crossref]

F. Prudenzano, L. Mescia, L. Allegretti, V. Moizan, V. Nazabal, and F. Smektala, “Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers,” Opt. Mater. 33(2), 241–245 (2010).
[Crossref]

Opt. Mater. Express (1)

Opt. Quantum Electron. (1)

A. D’Orazio, M. De Sario, C. Giasi, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of planar optic sensors for hydrocarbon detection,” Opt. Quantum Electron. 36(6), 507–526 (2004).
[Crossref]

Sens. Actuat. B-Chem. (2)

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Trolès, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuat. B-Chem. 207, Part A(5), 518–525 (2015).
[Crossref]

R. Chahal, F. Starecki, C. Boussard-Plédel, J.-L. Doualan, K. Michel, L. Brilland, A. Braud, P. Camy, B. Bureau, and V. Nazabal, “Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers,” Sens. Actuat. B-Chem. 229, 209–216 (2016).
[Crossref]

Sensors (1)

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Other (4)

J. Hu, J. D. Musgraves, N. Carlie, B. Zdyrko, I. Luzinov, A. Agarwal, K. Richardson, and L. Kimerling, “Development of chipscale chalcogenide glass based infrared chemical sensors,” Proc. SPIE7945, 79452C–79452C-10 (2011).
[Crossref]

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989), 1st ed.

S. Sergent and F. Semond, “(Al,Ga)N Microdisk Cavities,” in “Handbook of Optical Microcavities,” A. H. W. Choi, ed. (Pan Stanford Publishing Pte. Ltd., 2014), Chap. 4.

R. R. A. Syms and J. R. Cozens, Optical Guided Waves and Devices (McGraw-Hill, 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 Micro-disk coupled to two ridge waveguides, one for the pump P and the other for the signal S. Ain, Aout and A are the amplitudes of electromagnetic field at the input and output waveguide sections and inside the micro-disk, respectively. τext and τ0 are the coupling and intrinsic lifetimes, respectively.
Fig. 2
Fig. 2 Four-level model of praseodymium. The most important phenomena are represented: absorption and stimulated emission (full lines), pure-radiative spontaneous decay (dashed lines) and non-radiative spontaneous decay (dash-dotted lines).
Fig. 3
Fig. 3 The praseodymium doped Pr3+:Ga5Ge20Sb10Se65 micro-disk coupled to the two waveguides made of the same glass. A buffer layer of Ga5Ge20Sb10S65 separates the micro-disk from the Si substrate.
Fig. 4
Fig. 4 Measured refractive index as a function of wavelength for Pr3+:Ga5Ge20Sb10Se65, nµdisk, and Ga5Ge20Sb10S65, nbuffer. The measurement is made by NIR and Mid-IR VASE ellipsometry.
Fig. 5
Fig. 5 Absorption coefficient α measured on Ga5Ge20Sb10Se65 un-doped fiber as a function of wavelength.
Fig. 6
Fig. 6 Calculated emission and absorption cross-sections for the Pr3+:Ga5Ge20Sb10Se65 glass.
Fig. 7
Fig. 7 Confinement factor Ω as a function of width and height for single-mode signal waveguide.
Fig. 8
Fig. 8 Distribution of the electric field norm for the fundamental mode in signal waveguide having hw = 1 µm and a) ws = 3.5 µm, b) ws = 6.5 µm.
Fig. 9
Fig. 9 Micro-disk effective refractive index neff as a function of disk thickness for λs = 4700 nm. The subscript p in TEp is the longitudinal parameter of the considered WGMm,n,p.
Fig. 10
Fig. 10 Micro-disk radius Rµdisk as a function of the resonant wavelength obtained by solving Eq. (5).
Fig. 11
Fig. 11 Distribution of the electric field norm for the fundamental signal mode WGM194,1,1 and the fundamental waveguide mode with gs = 4.3 µm.
Fig. 12
Fig. 12 Maximum output signal power P out , MAX signal as a function of input pump power P in pump and praseodymium concentration CPr. The input pump power P in pump varies in the range 0.01 mW–50 mW and the praseodymium concentration CPr in the range 100 ppm–10 000 ppm. The input signal power is P in signal = 30 dBm.
Fig. 13
Fig. 13 Optical gain G as a function of distance gs between micro-disk and signal waveguide for different praseodymium concentrations. The input pump power is P in pump = 0.01 mW and the input signal power is P in signal = 30 dBm.
Fig. 14
Fig. 14 Optical gain G as a function of distance gs between micro-disk and signal waveguide for different praseodymium concentrations. The input pump power is P in pump = 50 mW and the input signal power is P in signal = 30 dBm.
Fig. 15
Fig. 15 Ions populations as a function of the time in the case of the highest gain: P in pump = 50 mW, P in signal = 30 dBm, CPr = 10 000 ppm, gs = 4.1 µm. In t = 0 s the pump signal is applied.
Fig. 16
Fig. 16 Output signal power P out signal as a function of the input pump power P in pump with CPr = 10 000 ppm and gs = 4.3 µm.

Tables (4)

Tables Icon

Table 1 Refractive indices at signal and pump wavelengths measured by NIR and Mid-IR VASE ellipsometry (±0.001).

Tables Icon

Table 2 Spectroscopic parameters of the Pr3+:Ga5Ge20Sb10Se65.

Tables Icon

Table 3 Geometry of the optimized amplifier.

Tables Icon

Table 4 WGM characteristics at signal and pump wavelengths.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

2 E y , i ( x ) x 2 = ( k i 2 γ 2 ) E y , i ( x )
tan ( ν h μ disk ) = ν ( η + χ ) ν 2 η χ
ν = n μ disk 2 k 2 γ 2 , η = γ 2 n buffer 2 k 2 , χ = γ 2 n air 2 k 2
E r ( r , φ ) = N J m ( 2 π λ r n eff r ) exp [ 2 π λ r n eff 2 n air 2 ( r a ) ] exp ( j m φ )
E r ( r , φ ) = 0 J m ( 2 π λ r n eff R μ disk ) = 0
dA P / S d t = ( 1 τ 0 P / S 2 τ ext P / S + g P / S + j Δ ω ) A P / S j 2 τ ext P / S T rtt A in P / S
κ = k 2 n μ disk 2 n air 2 2 γ w 3 E w E μ disk * d V
1 Q P / S = 1 Q abs P / S + 1 Q ss P / S + 1 Q rad P / S
Q abs P / S = 2 π n eff ζ λ r
Q ss P / S = 3 λ r 3 8 π 7 / 2 n air ( n μ disk 2 n air 2 ) ϑ V μ disk V ss
ϑ = n eff 2 ( n μ disk 2 n air 2 ) n μ disk 2 ( n eff 2 n air 2 ) , V ss = R μ disk L c h μ disk σ r
Q rad P / S = ω μ disk 2 W e P d = ω μ disk 2 W m P d
N 1 + N 2 + N 3 + N 4 = N d N 4 d t = σ P F P N 1 N 4 ( 1 T 4 + β 43 τ 4 + β 42 τ 4 + β 41 τ 4 ) = 0 d N 3 d t = N 4 ( 1 T 4 + β 43 τ 4 ) N 3 ( 1 T 3 + β 32 τ 3 + β 31 τ 3 ) = 0 d N 2 d t = σ 12 F 12 N 1 + N 4 β 42 τ 4 + N 3 ( 1 T 3 + β 32 τ 3 ) N 2 ( 1 T 2 + 1 τ 2 + σ 21 F 21 ) = 0 d N 1 d t = ( σ P F P + σ 12 F 12 ) N 1 + N 4 β 41 τ 4 + N 3 β 31 τ 3 + N 2 ( 1 T 2 + 1 τ 2 + σ 21 F 21 ) = 0
g P = c n eff N 1 σ P Γ P , g S = c n eff ( N 2 σ 21 Γ S N 1 σ 12 Γ S )
Γ P / S = Ω d | E P / S ( x , y ) | 2 d x d y
A 0 = c N 2 σ 21 Γ S h Δ ν λ r n eff 2 ε 0 A S
G = | A out S A in S | 2
ζ = α Ω μ disk | E P / S | 2 d x d y 2 | E P / S | 2 d x d y
Ω = Ω μ disk | E w | 2 d x d y 2 | E w | 2 d x d y

Metrics