Abstract

Integrated thin-film lithium niobate platform has recently emerged as a promising candidate for next-generation, high-efficiency wavelength conversion systems that allow dense packaging and mass-production. Here we demonstrate efficient, phase-matched second harmonic generation in lithographically-defined thin-film lithium niobate waveguides with sub-micron dimensions. Both modal phase matching in fixed-width waveguides and quasi-phase matching in periodically grooved waveguides are theoretically proposed and experimentally demonstrated. Our low-loss (~3.0 dB/cm) nanowaveguides possess normalized conversion efficiencies as high as 41% W−1cm−2.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon

Ashutosh Rao, Marcin Malinowski, Amirmahdi Honardoost, Javed Rouf Talukder, Payam Rabiei, Peter Delfyett, and Sasan Fathpour
Opt. Express 24(26) 29941-29947 (2016)

Waveguides in single-crystal lithium niobate thin film by proton exchange

Lutong Cai, Shuang Li Huangpu Han, and Hui Hu
Opt. Express 23(2) 1240-1248 (2015)

Femtosecond second-harmonic generation in periodically poled lithium niobate waveguides with simultaneous strong pump depletion and group-velocity walk-off

Zheng Zheng, Andrew M. Weiner, Krishnan R. Parameswaran, Ming-Hsien Chou, and Martin M. Fejer
J. Opt. Soc. Am. B 19(4) 839-848 (2002)

References

  • View by:
  • |
  • |
  • |

  1. W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24(6), 913–919 (1988).
    [Crossref]
  2. K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
    [Crossref]
  3. J. P. Meyn, C. Laue, R. Knappe, R. Wallenstein, and M. M. Fejer, “Fabrication of periodically poled lithium tantalate for UV generation with diode lasers,” Appl. Phys. B 73(2), 111–114 (2001).
    [Crossref]
  4. A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89(24), 240401 (2002).
    [Crossref] [PubMed]
  5. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
    [Crossref] [PubMed]
  6. S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W. M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
    [Crossref] [PubMed]
  7. E. J. Lim, M. M. Fejer, and R. L. Byer, “Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett. 25(3), 174–175 (1989).
    [Crossref]
  8. T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “31%-efficient blue second-harmonic generation in a periodically poled MgO:LiNbO3 waveguide by frequency doubling of an AlGaAs laser diode,” Opt. Lett. 24(22), 1590–1592 (1999).
    [Crossref] [PubMed]
  9. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27(3), 179–181 (2002).
    [Crossref] [PubMed]
  10. R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, “Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths,” Opt. Lett. 29(13), 1518–1520 (2004).
    [Crossref] [PubMed]
  11. L. Ming, C. Gawith, K. Gallo, M. O’Connor, G. Emmerson, and P. Smith, “High conversion efficiency single-pass second harmonic generation in a zinc-diffused periodically poled lithium niobate waveguide,” Opt. Express 13(13), 4862–4868 (2005).
    [Crossref] [PubMed]
  12. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer-Science, 2005).
  13. Y. N. Korkishko, V. A. Fedorov, T. M. Morozova, F. Caccavale, F. Gonella, and F. Segato, “Reverse proton exchange for buried waveguides in LiNbO3,” J. Opt. Soc. Am. A 15(7), 1838–1842 (1998).
    [Crossref]
  14. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
    [Crossref] [PubMed]
  15. A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008).
    [Crossref] [PubMed]
  16. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
    [Crossref]
  17. C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19(11), 10462–10470 (2011).
    [Crossref] [PubMed]
  18. K. Rivoire, S. Buckley, F. Hatami, and J. Vučković, “Second harmonic generation in GaP photonic crystal waveguides,” Appl. Phys. Lett. 98(26), 263113 (2011).
    [Crossref]
  19. W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100(22), 223501 (2012).
    [Crossref]
  20. S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J. H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-harmonic generation in GaAs photonic crystal cavities in (111)B and (001) crystal orientations,” ACS Photonics 1(6), 516–523 (2014).
    [Crossref]
  21. B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
    [Crossref]
  22. S. Yamada, B. S. Song, S. Jeon, J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Second-harmonic generation in a silicon-carbide-based photonic crystal nanocavity,” Opt. Lett. 39(7), 1768–1771 (2014).
    [Crossref] [PubMed]
  23. G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
    [Crossref]
  24. C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
    [Crossref] [PubMed]
  25. J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
    [Crossref] [PubMed]
  26. J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23(18), 23072–23078 (2015).
    [Crossref] [PubMed]
  27. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
    [Crossref]
  28. C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, and M. Loncar, “Integrated lithium niobate nonlinear optical devices,” in CLEO:2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper FW1D.1.
  29. S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
    [Crossref]
  30. R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
    [Crossref] [PubMed]
  31. L. Cai, Y. Wang, and H. Hu, “Low-loss waveguides in a single-crystal lithium niobate thin film,” Opt. Lett. 40(13), 3013–3016 (2015).
    [Crossref] [PubMed]
  32. L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3(5), 531–535 (2016).
    [Crossref]
  33. D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. De Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arès, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express 19(13), 12408–12417 (2011).
    [Crossref] [PubMed]
  34. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  35. S. Somekh and A. Yariv, “Phase-matchable nonlinear optical interactions in periodic thin films,” Appl. Phys. Lett. 21(4), 140–141 (1972).
    [Crossref]
  36. T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26(7), 1265–1276 (1990).
    [Crossref]
  37. S. Saravi, S. Diziain, M. Zilk, F. Setzpfandt, and T. Pertsch, “Phase-matched second-harmonic generation in slow-light photonic crystal waveguides,” Phys. Rev. A 92(6), 063821 (2015).
    [Crossref]
  38. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
    [Crossref]
  39. M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “A fiber-coupled diamond quantum nanophotonic interface,” arXiv: 1612.05285 (2016).

2016 (1)

2015 (5)

2014 (4)

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J. H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-harmonic generation in GaAs photonic crystal cavities in (111)B and (001) crystal orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
[Crossref]

S. Yamada, B. S. Song, S. Jeon, J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Second-harmonic generation in a silicon-carbide-based photonic crystal nanocavity,” Opt. Lett. 39(7), 1768–1771 (2014).
[Crossref] [PubMed]

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
[Crossref] [PubMed]

2013 (1)

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

2012 (3)

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100(22), 223501 (2012).
[Crossref]

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W. M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (1)

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

2008 (1)

2007 (2)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

2006 (1)

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

2005 (2)

2004 (1)

2002 (2)

2001 (1)

J. P. Meyn, C. Laue, R. Knappe, R. Wallenstein, and M. M. Fejer, “Fabrication of periodically poled lithium tantalate for UV generation with diode lasers,” Appl. Phys. B 73(2), 111–114 (2001).
[Crossref]

1999 (1)

1998 (1)

1990 (1)

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26(7), 1265–1276 (1990).
[Crossref]

1989 (1)

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett. 25(3), 174–175 (1989).
[Crossref]

1988 (1)

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24(6), 913–919 (1988).
[Crossref]

1985 (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

1972 (1)

S. Somekh and A. Yariv, “Phase-matchable nonlinear optical interactions in periodic thin films,” Appl. Phys. Lett. 21(4), 140–141 (1972).
[Crossref]

Aimez, V.

Albrecht, R.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W. M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref] [PubMed]

Alibart, O.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref] [PubMed]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Arend, C.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W. M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref] [PubMed]

Arès, R.

Asano, T.

Atikian, H. A.

Baldi, P.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref] [PubMed]

Becher, C.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W. M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref] [PubMed]

Biermann, K.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J. H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-harmonic generation in GaAs photonic crystal cavities in (111)B and (001) crystal orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Bliss, D.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

Bo, F.

Bowers, J. E.

Brongersma, M.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J. H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-harmonic generation in GaAs photonic crystal cavities in (111)B and (001) crystal orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Buckley, S.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J. H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-harmonic generation in GaAs photonic crystal cavities in (111)B and (001) crystal orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

K. Rivoire, S. Buckley, F. Hatami, and J. Vučković, “Second harmonic generation in GaP photonic crystal waveguides,” Appl. Phys. Lett. 98(26), 263113 (2011).
[Crossref]

Bulu, I.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
[Crossref]

Burek, M. J.

Byer, R. L.

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett. 25(3), 174–175 (1989).
[Crossref]

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24(6), 913–919 (1988).
[Crossref]

Caccavale, F.

Cai, L.

Chaker, M.

Chang, L.

Cheng, Y.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Christodoulides, D. N.

De Angelis, C.

Degl’Innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Del’Haye, P.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Delprat, S.

Deotare, P.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
[Crossref]

Diziain, S.

S. Saravi, S. Diziain, M. Zilk, F. Setzpfandt, and T. Pertsch, “Phase-matched second-harmonic generation in slow-light photonic crystal waveguides,” Phys. Rev. A 92(6), 063821 (2015).
[Crossref]

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
[Crossref] [PubMed]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Duchesne, D.

Emmerson, G.

Fang, W.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Fang, Z.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Fedorov, V. A.

Fejer, M. M.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, “Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths,” Opt. Lett. 29(13), 1518–1520 (2004).
[Crossref] [PubMed]

K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27(3), 179–181 (2002).
[Crossref] [PubMed]

J. P. Meyn, C. Laue, R. Knappe, R. Wallenstein, and M. M. Fejer, “Fabrication of periodically poled lithium tantalate for UV generation with diode lasers,” Appl. Phys. B 73(2), 111–114 (2001).
[Crossref]

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett. 25(3), 174–175 (1989).
[Crossref]

Fong, K. Y.

Foster, M. A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008).
[Crossref] [PubMed]

Fujimura, M.

Gaeta, A. L.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008).
[Crossref] [PubMed]

Gallo, K.

Gao, F.

Gawith, C.

Geiss, R.

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
[Crossref] [PubMed]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Gisin, N.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref] [PubMed]

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Gonella, F.

Grange, R.

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Günter, P.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Halder, M.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref] [PubMed]

Harris, J. S.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

Hatami, F.

K. Rivoire, S. Buckley, F. Hatami, and J. Vučković, “Second harmonic generation in GaP photonic crystal waveguides,” Appl. Phys. Lett. 98(26), 263113 (2011).
[Crossref]

Hausmann, B. J. M.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
[Crossref]

Hepp, C.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W. M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref] [PubMed]

Holzwarth, R.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Hu, H.

L. Cai, Y. Wang, and H. Hu, “Low-loss waveguides in a single-crystal lithium niobate thin film,” Opt. Lett. 40(13), 3013–3016 (2015).
[Crossref] [PubMed]

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Huang, I. C.

Hurlbut, W. C.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

Jeon, S.

Jetter, M.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W. M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref] [PubMed]

Kang, J. H.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J. H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-harmonic generation in GaAs photonic crystal cavities in (111)B and (001) crystal orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Keßler, C. A.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W. M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref] [PubMed]

Kettler, J.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W. M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref] [PubMed]

Kippenberg, T. J.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Kitaoka, Y.

Kley, E.-B.

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
[Crossref] [PubMed]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Knappe, R.

J. P. Meyn, C. Laue, R. Knappe, R. Wallenstein, and M. M. Fejer, “Fabrication of periodically poled lithium tantalate for UV generation with diode lasers,” Appl. Phys. B 73(2), 111–114 (2001).
[Crossref]

Korkishko, Y. N.

Kozlov, V. G.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

Kozlovsky, W. J.

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24(6), 913–919 (1988).
[Crossref]

Kurz, J. R.

Lagoudakis, K. G.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J. H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-harmonic generation in GaAs photonic crystal cavities in (111)B and (001) crystal orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Langrock, C.

Laue, C.

J. P. Meyn, C. Laue, R. Knappe, R. Wallenstein, and M. M. Fejer, “Fabrication of periodically poled lithium tantalate for UV generation with diode lasers,” Appl. Phys. B 73(2), 111–114 (2001).
[Crossref]

Lee, Y.-S.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

Légaré, F.

Lenhard, A.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W. M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref] [PubMed]

Levy, J. S.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Li, J.

Li, W.

Li, Y.

Lim, E. J.

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett. 25(3), 174–175 (1989).
[Crossref]

Lin, J.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Lin, Z.

Lipson, M.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008).
[Crossref] [PubMed]

Locatelli, A.

Loncar, M.

Lynch, C.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

Meyn, J. P.

J. P. Meyn, C. Laue, R. Knappe, R. Wallenstein, and M. M. Fejer, “Fabrication of periodically poled lithium tantalate for UV generation with diode lasers,” Appl. Phys. B 73(2), 111–114 (2001).
[Crossref]

Michler, P.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W. M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref] [PubMed]

Ming, L.

Mizuuchi, K.

Modotto, D.

Morandotti, R.

Morozova, T. M.

Nabors, C. D.

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24(6), 913–919 (1988).
[Crossref]

Nishihara, H.

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26(7), 1265–1276 (1990).
[Crossref]

Noda, S.

O’Connor, M.

Palacios, T.

Parameswaran, K. R.

Pernice, W.

Pernice, W. H. P.

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100(22), 223501 (2012).
[Crossref]

Pertsch, T.

S. Saravi, S. Diziain, M. Zilk, F. Setzpfandt, and T. Pertsch, “Phase-matched second-harmonic generation in slow-light photonic crystal waveguides,” Phys. Rev. A 92(6), 063821 (2015).
[Crossref]

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
[Crossref] [PubMed]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Peters, J.

Petykiewicz, J.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J. H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-harmonic generation in GaAs photonic crystal cavities in (111)B and (001) crystal orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Poberaj, G.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Qiao, L.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Radulaski, M.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J. H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-harmonic generation in GaAs photonic crystal cavities in (111)B and (001) crystal orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Regener, R.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Rivoire, K.

K. Rivoire, S. Buckley, F. Hatami, and J. Vučković, “Second harmonic generation in GaP photonic crystal waveguides,” Appl. Phys. Lett. 98(26), 263113 (2011).
[Crossref]

Roussev, R. V.

Route, R. K.

Rutkowska, K. A.

Ryu, K. K.

Salamo, G.

Saravi, S.

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Schrempel, F.

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
[Crossref] [PubMed]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Schuck, C.

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100(22), 223501 (2012).
[Crossref]

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19(11), 10462–10470 (2011).
[Crossref] [PubMed]

Schulz, W. M.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W. M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref] [PubMed]

Segato, F.

Sergeyev, A.

Setzpfandt, F.

Smith, P.

Sohler, W.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Somekh, S.

S. Somekh and A. Yariv, “Phase-matchable nonlinear optical interactions in periodic thin films,” Appl. Phys. Lett. 21(4), 140–141 (1972).
[Crossref]

Song, B. S.

Song, J.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Sorel, M.

Stark, P.

Sugita, T.

Suhara, T.

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26(7), 1265–1276 (1990).
[Crossref]

Tanaka, Y.

Tang, H. X.

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100(22), 223501 (2012).
[Crossref]

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19(11), 10462–10470 (2011).
[Crossref] [PubMed]

Tanzilli, S.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref] [PubMed]

Tittel, W.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref] [PubMed]

Tünnermann, A.

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
[Crossref] [PubMed]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

Turner, A. C.

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Upham, J.

Vaziri, A.

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89(24), 240401 (2002).
[Crossref] [PubMed]

Venkataraman, V.

Vodopyanov, K. L.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

Volatier, M.

Volet, N.

Vuckovic, J.

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J. H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-harmonic generation in GaAs photonic crystal cavities in (111)B and (001) crystal orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

K. Rivoire, S. Buckley, F. Hatami, and J. Vučković, “Second harmonic generation in GaP photonic crystal waveguides,” Appl. Phys. Lett. 98(26), 263113 (2011).
[Crossref]

Wallenstein, R.

J. P. Meyn, C. Laue, R. Knappe, R. Wallenstein, and M. M. Fejer, “Fabrication of periodically poled lithium tantalate for UV generation with diode lasers,” Appl. Phys. B 73(2), 111–114 (2001).
[Crossref]

Wan, S.

Wang, C.

Wang, J.

Wang, L.

Wang, M.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Wang, N.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Wang, Y.

Weihs, G.

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89(24), 240401 (2002).
[Crossref] [PubMed]

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Xiong, C.

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100(22), 223501 (2012).
[Crossref]

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19(11), 10462–10470 (2011).
[Crossref] [PubMed]

Xu, J.

Xu, Y.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Yamada, S.

Yamamoto, K.

Yariv, A.

S. Somekh and A. Yariv, “Phase-matchable nonlinear optical interactions in periodic thin films,” Appl. Phys. Lett. 21(4), 140–141 (1972).
[Crossref]

Yu, X.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

Zaske, S.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W. M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref] [PubMed]

Zbinden, H.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref] [PubMed]

Zeilinger, A.

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89(24), 240401 (2002).
[Crossref] [PubMed]

Zhang, G.

Zilk, M.

S. Saravi, S. Diziain, M. Zilk, F. Setzpfandt, and T. Pertsch, “Phase-matched second-harmonic generation in slow-light photonic crystal waveguides,” Phys. Rev. A 92(6), 063821 (2015).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

ACS Photonics (1)

S. Buckley, M. Radulaski, J. Petykiewicz, K. G. Lagoudakis, J. H. Kang, M. Brongersma, K. Biermann, and J. Vučković, “Second-harmonic generation in GaAs photonic crystal cavities in (111)B and (001) crystal orientations,” ACS Photonics 1(6), 516–523 (2014).
[Crossref]

Appl. Phys. B (2)

J. P. Meyn, C. Laue, R. Knappe, R. Wallenstein, and M. M. Fejer, “Fabrication of periodically poled lithium tantalate for UV generation with diode lasers,” Appl. Phys. B 73(2), 111–114 (2001).
[Crossref]

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Appl. Phys. Lett. (5)

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

K. Rivoire, S. Buckley, F. Hatami, and J. Vučković, “Second harmonic generation in GaP photonic crystal waveguides,” Appl. Phys. Lett. 98(26), 263113 (2011).
[Crossref]

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100(22), 223501 (2012).
[Crossref]

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013).
[Crossref]

S. Somekh and A. Yariv, “Phase-matchable nonlinear optical interactions in periodic thin films,” Appl. Phys. Lett. 21(4), 140–141 (1972).
[Crossref]

Electron. Lett. (1)

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett. 25(3), 174–175 (1989).
[Crossref]

IEEE J. Quantum Electron. (2)

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24(6), 913–919 (1988).
[Crossref]

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26(7), 1265–1276 (1990).
[Crossref]

J. Opt. Soc. Am. A (1)

Laser Photonics Rev. (1)

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Nat. Photonics (3)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Nature (2)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437(7055), 116–120 (2005).
[Crossref] [PubMed]

Opt. Express (6)

L. Ming, C. Gawith, K. Gallo, M. O’Connor, G. Emmerson, and P. Smith, “High conversion efficiency single-pass second harmonic generation in a zinc-diffused periodically poled lithium niobate waveguide,” Opt. Express 13(13), 4862–4868 (2005).
[Crossref] [PubMed]

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008).
[Crossref] [PubMed]

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19(11), 10462–10470 (2011).
[Crossref] [PubMed]

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
[Crossref] [PubMed]

D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. De Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arès, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express 19(13), 12408–12417 (2011).
[Crossref] [PubMed]

J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23(18), 23072–23078 (2015).
[Crossref] [PubMed]

Opt. Lett. (6)

Optica (1)

Phys. Rev. A (1)

S. Saravi, S. Diziain, M. Zilk, F. Setzpfandt, and T. Pertsch, “Phase-matched second-harmonic generation in slow-light photonic crystal waveguides,” Phys. Rev. A 92(6), 063821 (2015).
[Crossref]

Phys. Rev. Lett. (2)

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89(24), 240401 (2002).
[Crossref] [PubMed]

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W. M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109(14), 147404 (2012).
[Crossref] [PubMed]

Sci. Rep. (1)

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Other (4)

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, and M. Loncar, “Integrated lithium niobate nonlinear optical devices,” in CLEO:2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper FW1D.1.

R. W. Boyd, Nonlinear Optics (Academic, 2008).

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer-Science, 2005).

M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “A fiber-coupled diamond quantum nanophotonic interface,” arXiv: 1612.05285 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Cross-section schematic of the x-cut LNOI waveguide, where the coordinates are aligned with the LN crystal directions. (b) Mode effective indices as a function of waveguide top width at both pump and SH wavelengths. (c) Ez components of the corresponding modes at both wavelengths.

Fig. 2
Fig. 2

(a) 3D cartoon of the proposed PGLN structure. (b) Simulated SHG efficiencies versus propagation length for a PGLN waveguide with a groove depth of 80 nm, in comparison with a uniform LN waveguide. (c) Calculated loss due to the leaky Bloch modes in PGLN at both fundamental and second harmonic wavelengths, as a function of groove depth. (d) Calculated normalized conversion efficiency as a function of groove depth. (e) SHG efficiency dependence on groove depth and propagation length. The global maximum conversion of ~0.16% W−1 is achieved with ~22 nm groove depth and ~11mm waveguide length. Inset: Enlarged view for the parameter space in vicinity to our experimental operation point (red circle).The dashed line indicates the optimal groove depth for each propagation length.

Fig. 3
Fig. 3

Representative scanning electron microscope images of the fabricated devices. (a) An array of LN waveguides with slightly different widths. The bending sections in the waveguides are used to prevent the output fiber from collecting light directly from the input fiber. (b) A typical uniform LN waveguide with fixed width. (c) A typical PGLN waveguide with a spatial modulation period of 2.77 µm and a groove depth of 80 nm.

Fig. 4
Fig. 4

(a) Schematic of the measurement setup. Light from the telecom tunable laser source (TLS) is coupled into the device under test (DUT) after passing through a fiber polarization controller (FPC). SHG signal is measured using a silicon avalanche photodetector (Si APD), while linear transmission at telecom wavelength is monitored using an InGaAs photodetector (IGA PD). (b) Transmission spectrum of a typical uniform LN waveguide. Inset: zoom-in view of the wavelength range used for calculating propagation loss. (c-d) Conversion efficiency versus SHG wavelength for (c) uniform LN waveguides and (d) PGLN waveguides with different waveguide widths (measured at the waveguide top). Insets: comparison between experimental (solid) and theoretical (dotted) SHG efficiencies and bandwidths. (e) Measured input-output power relations (dots) and the corresponding quadratic fit (lines) for both schemes, plotted in double log scale. The measured slope efficiencies are 1.99 ± 0.01 (uniform waveguide) and 1.99 ± 0.01 (PGLN). (f-g) CCD camera images of the scattered SHG light at the output facets of a uniform LN waveguide (f) and a PGLN waveguide (g), indicating the corresponding output optical modes.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

γ= g 2 L 2 P 0 ( sin(δL/2) δL/2 ) 2 ,
g= ω 4 ( E 2ω (x,z)) * d 33 (x,z) ( E ω (x,z)) 2 dxdz ,
Δε(x,y,z)= m Δε m (x,z) e jmΔky ,
d 33 (x,y,z)= m d 33 (m) (x,z) e jmΔky .
g'= g NL (1) ( J 0 ( φ L )+ J 2 ( φ L )) g NL (0) J 1 ( φ L ),
g NL (m) = 2ω 4 ( E 2ω (x,z)) * d 33 (m) (x,z) ( E ω (x,z)) 2 dxdz,
g L ω = ω ε 0 4 Δε 1 ω (x,z) | E ω (x,z) | 2 dxdz,
g L 2ω = 2ω ε 0 4 Δε 1 2ω (x,z) | E 2ω (x,z) | 2 dxdz,
φ L =2( g L 2ω 2 g L ω )/Δk.
γ ' = g ' 2 P 0 ( e 2 α ω L e α 2ω L 2 α ω α 2ω ) 2 ,
α= 4.34 L (lnRln R ˜ ),

Metrics