Abstract

A wide range of X-ray imaging applications demand micrometer spatial resolution. In material science and biology especially, there is a great interest in material determination and material separation methods. Here we present a new detector design that allows the recording of a low- and a high-energy radiography image simultaneously with micrometer spatial resolution. The detector system is composed of a layered scintillator stack, two CCDs and an optical system to image the scintillator responses onto the CCDs. We used the detector system with a standard laboratory microfocus X-ray tube to prove the working principle of the system and derive important design characteristics. With the recorded and registered dual-energy data set, the material separation and determination could be shown at an X-ray tube peak energy of up to 160 keV with a spatial resolution of 12 μm. The detector design shows a great potential for further development and a wide range of possible applications.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. C. Cheng, X. Xin, D. P. Clark, and P. La Riviere, “Whole-animal imaging, gene function, and the Zebrafish Phenome Project,” Cur. Opin. Genet. Dev. 21(5), 620–629 (2011).
    [Crossref]
  2. A. Koch, C. Raven, P. Spanne, and A. Snigirev, “X-ray imaging with submicrometer resolution employing transparent luminescent screens,” J. Opt. Soc. Am. 15(7), 1940–1951 (1998).
    [Crossref]
  3. T. Martin, P. A. Douissard, M. Couchaud, A. Cecilia, T. Baumbach, K. Dupre, and A. Rack, “LSO-based single crystal film scintillator for synchrotron-based hard X-ray micro-imaging,” IEEE T. Nucl. Sci. 3(56), 1412–1418 (2009).
    [Crossref]
  4. D. Modgil, D. S. Rigie, Y. Wang, X. Xiao, P. A. Vargas, and P. J. La Rivière, “Material identification in x-ray microscopy and micro CT using multi-layer, multi-color scintillation detectors,” Phys. Med. Biol. 60(20), 8025 (2015).
    [Crossref] [PubMed]
  5. B. J. Heismann, J. Leppert, and K. Stierstorfer, “Density and atomic number measurements with spectral x-ray attenuation method,” Appl. Phys. 94(3), 2073–2079 (2003).
    [Crossref]
  6. T. Martin and A. Koch, “Recent developments in X-ray imaging with micrometer spatial resolution,” J. Synchrotron Radiat. 13(2), 180–194 (2006).
    [Crossref] [PubMed]
  7. T. Schoonjans, A. Brunetti, B. Golosio, M. Sanchez del Rio, V. Armando Solé, C. Ferrero, and L. Vincze, “The xraylib library for X-ray-matter interactions. Recent developments,” Spectrochim. Acta B 66(11–12), 776–784 (2001).
    [Crossref]
  8. B. D. Lucas and T. Kanade, “An Iterative Image Registration Technique with an Application to Stereo Vision,” in Proc. 7th Intl. Joint Con. on Artificial Intelligence, (1981), 674–679.
  9. S. Baker and I. Matthews, “Lucas-Kanade 20 Years On: A Unifying Framework,” Int. J. Comput. Vision 56(3), 221–255 (2004)
    [Crossref]
  10. T. Johnson, C. Fink, S. O. Schönberg, and M. F. Reiser, “Dual Energy CT in Clinical Practice,” in Medical Radiology (SpringerBerlin Heidelberg, 2011).
    [Crossref]
  11. Finger Lakes Instrumentation, “PL1001E” (2016).
  12. V. Gaysinskiy, B. Singh, L. Ovechkina, S. Miller, S. Thacker, and V. Nagarkar, “Luminescence properties and morphology of ZnSe:Te films,” IEEE T. Nucl. Sci. 55(3), 1556–1560 (2008).
    [Crossref]
  13. P. Schotanus, P. Dorenbos, and V. D. Ryzhikov, “Detection of CdS(Te) and ZnSe(Te) scintillation light with silicon photodiodes,” IEEE T. Nucl. Sci. 39(4), 546–550 (1992).
    [Crossref]
  14. Saint-Gobain Crystals, “Physical Properties of Common Inorganic Scintillators” (2016).
  15. CRYTUR, “Scintillation Materials Data” (2016).
  16. A. Malecki, G. Potdevin, and F. Pfeiffer, “Quantitative wave-optical numerical analysis of the dark-field signal in grating-based X-ray interferometry,” Europhys. Lett. 99(4), 48001 (2012).
    [Crossref]
  17. P. T. Pinard, “pyPENELOPE,” (2012).
  18. J. Schock, “Dual Energy Micro CT of a Stone Sample,” figshare (2016) [retrieved 15 December 2016], https://dx.doi.org/10.6084/m9.figshare.4322465.v1 .
  19. X-RAY WorX GmbH, “PRODUCT LINE SE,” http://www.x-ray-worx.com (2016).

2015 (1)

D. Modgil, D. S. Rigie, Y. Wang, X. Xiao, P. A. Vargas, and P. J. La Rivière, “Material identification in x-ray microscopy and micro CT using multi-layer, multi-color scintillation detectors,” Phys. Med. Biol. 60(20), 8025 (2015).
[Crossref] [PubMed]

2012 (1)

A. Malecki, G. Potdevin, and F. Pfeiffer, “Quantitative wave-optical numerical analysis of the dark-field signal in grating-based X-ray interferometry,” Europhys. Lett. 99(4), 48001 (2012).
[Crossref]

2011 (1)

K. C. Cheng, X. Xin, D. P. Clark, and P. La Riviere, “Whole-animal imaging, gene function, and the Zebrafish Phenome Project,” Cur. Opin. Genet. Dev. 21(5), 620–629 (2011).
[Crossref]

2009 (1)

T. Martin, P. A. Douissard, M. Couchaud, A. Cecilia, T. Baumbach, K. Dupre, and A. Rack, “LSO-based single crystal film scintillator for synchrotron-based hard X-ray micro-imaging,” IEEE T. Nucl. Sci. 3(56), 1412–1418 (2009).
[Crossref]

2008 (1)

V. Gaysinskiy, B. Singh, L. Ovechkina, S. Miller, S. Thacker, and V. Nagarkar, “Luminescence properties and morphology of ZnSe:Te films,” IEEE T. Nucl. Sci. 55(3), 1556–1560 (2008).
[Crossref]

2006 (1)

T. Martin and A. Koch, “Recent developments in X-ray imaging with micrometer spatial resolution,” J. Synchrotron Radiat. 13(2), 180–194 (2006).
[Crossref] [PubMed]

2004 (1)

S. Baker and I. Matthews, “Lucas-Kanade 20 Years On: A Unifying Framework,” Int. J. Comput. Vision 56(3), 221–255 (2004)
[Crossref]

2003 (1)

B. J. Heismann, J. Leppert, and K. Stierstorfer, “Density and atomic number measurements with spectral x-ray attenuation method,” Appl. Phys. 94(3), 2073–2079 (2003).
[Crossref]

2001 (1)

T. Schoonjans, A. Brunetti, B. Golosio, M. Sanchez del Rio, V. Armando Solé, C. Ferrero, and L. Vincze, “The xraylib library for X-ray-matter interactions. Recent developments,” Spectrochim. Acta B 66(11–12), 776–784 (2001).
[Crossref]

1998 (1)

A. Koch, C. Raven, P. Spanne, and A. Snigirev, “X-ray imaging with submicrometer resolution employing transparent luminescent screens,” J. Opt. Soc. Am. 15(7), 1940–1951 (1998).
[Crossref]

1992 (1)

P. Schotanus, P. Dorenbos, and V. D. Ryzhikov, “Detection of CdS(Te) and ZnSe(Te) scintillation light with silicon photodiodes,” IEEE T. Nucl. Sci. 39(4), 546–550 (1992).
[Crossref]

Armando Solé, V.

T. Schoonjans, A. Brunetti, B. Golosio, M. Sanchez del Rio, V. Armando Solé, C. Ferrero, and L. Vincze, “The xraylib library for X-ray-matter interactions. Recent developments,” Spectrochim. Acta B 66(11–12), 776–784 (2001).
[Crossref]

Baker, S.

S. Baker and I. Matthews, “Lucas-Kanade 20 Years On: A Unifying Framework,” Int. J. Comput. Vision 56(3), 221–255 (2004)
[Crossref]

Baumbach, T.

T. Martin, P. A. Douissard, M. Couchaud, A. Cecilia, T. Baumbach, K. Dupre, and A. Rack, “LSO-based single crystal film scintillator for synchrotron-based hard X-ray micro-imaging,” IEEE T. Nucl. Sci. 3(56), 1412–1418 (2009).
[Crossref]

Brunetti, A.

T. Schoonjans, A. Brunetti, B. Golosio, M. Sanchez del Rio, V. Armando Solé, C. Ferrero, and L. Vincze, “The xraylib library for X-ray-matter interactions. Recent developments,” Spectrochim. Acta B 66(11–12), 776–784 (2001).
[Crossref]

Cecilia, A.

T. Martin, P. A. Douissard, M. Couchaud, A. Cecilia, T. Baumbach, K. Dupre, and A. Rack, “LSO-based single crystal film scintillator for synchrotron-based hard X-ray micro-imaging,” IEEE T. Nucl. Sci. 3(56), 1412–1418 (2009).
[Crossref]

Cheng, K. C.

K. C. Cheng, X. Xin, D. P. Clark, and P. La Riviere, “Whole-animal imaging, gene function, and the Zebrafish Phenome Project,” Cur. Opin. Genet. Dev. 21(5), 620–629 (2011).
[Crossref]

Clark, D. P.

K. C. Cheng, X. Xin, D. P. Clark, and P. La Riviere, “Whole-animal imaging, gene function, and the Zebrafish Phenome Project,” Cur. Opin. Genet. Dev. 21(5), 620–629 (2011).
[Crossref]

Couchaud, M.

T. Martin, P. A. Douissard, M. Couchaud, A. Cecilia, T. Baumbach, K. Dupre, and A. Rack, “LSO-based single crystal film scintillator for synchrotron-based hard X-ray micro-imaging,” IEEE T. Nucl. Sci. 3(56), 1412–1418 (2009).
[Crossref]

Dorenbos, P.

P. Schotanus, P. Dorenbos, and V. D. Ryzhikov, “Detection of CdS(Te) and ZnSe(Te) scintillation light with silicon photodiodes,” IEEE T. Nucl. Sci. 39(4), 546–550 (1992).
[Crossref]

Douissard, P. A.

T. Martin, P. A. Douissard, M. Couchaud, A. Cecilia, T. Baumbach, K. Dupre, and A. Rack, “LSO-based single crystal film scintillator for synchrotron-based hard X-ray micro-imaging,” IEEE T. Nucl. Sci. 3(56), 1412–1418 (2009).
[Crossref]

Dupre, K.

T. Martin, P. A. Douissard, M. Couchaud, A. Cecilia, T. Baumbach, K. Dupre, and A. Rack, “LSO-based single crystal film scintillator for synchrotron-based hard X-ray micro-imaging,” IEEE T. Nucl. Sci. 3(56), 1412–1418 (2009).
[Crossref]

Ferrero, C.

T. Schoonjans, A. Brunetti, B. Golosio, M. Sanchez del Rio, V. Armando Solé, C. Ferrero, and L. Vincze, “The xraylib library for X-ray-matter interactions. Recent developments,” Spectrochim. Acta B 66(11–12), 776–784 (2001).
[Crossref]

Fink, C.

T. Johnson, C. Fink, S. O. Schönberg, and M. F. Reiser, “Dual Energy CT in Clinical Practice,” in Medical Radiology (SpringerBerlin Heidelberg, 2011).
[Crossref]

Gaysinskiy, V.

V. Gaysinskiy, B. Singh, L. Ovechkina, S. Miller, S. Thacker, and V. Nagarkar, “Luminescence properties and morphology of ZnSe:Te films,” IEEE T. Nucl. Sci. 55(3), 1556–1560 (2008).
[Crossref]

Golosio, B.

T. Schoonjans, A. Brunetti, B. Golosio, M. Sanchez del Rio, V. Armando Solé, C. Ferrero, and L. Vincze, “The xraylib library for X-ray-matter interactions. Recent developments,” Spectrochim. Acta B 66(11–12), 776–784 (2001).
[Crossref]

Heismann, B. J.

B. J. Heismann, J. Leppert, and K. Stierstorfer, “Density and atomic number measurements with spectral x-ray attenuation method,” Appl. Phys. 94(3), 2073–2079 (2003).
[Crossref]

Johnson, T.

T. Johnson, C. Fink, S. O. Schönberg, and M. F. Reiser, “Dual Energy CT in Clinical Practice,” in Medical Radiology (SpringerBerlin Heidelberg, 2011).
[Crossref]

Kanade, T.

B. D. Lucas and T. Kanade, “An Iterative Image Registration Technique with an Application to Stereo Vision,” in Proc. 7th Intl. Joint Con. on Artificial Intelligence, (1981), 674–679.

Koch, A.

T. Martin and A. Koch, “Recent developments in X-ray imaging with micrometer spatial resolution,” J. Synchrotron Radiat. 13(2), 180–194 (2006).
[Crossref] [PubMed]

A. Koch, C. Raven, P. Spanne, and A. Snigirev, “X-ray imaging with submicrometer resolution employing transparent luminescent screens,” J. Opt. Soc. Am. 15(7), 1940–1951 (1998).
[Crossref]

La Riviere, P.

K. C. Cheng, X. Xin, D. P. Clark, and P. La Riviere, “Whole-animal imaging, gene function, and the Zebrafish Phenome Project,” Cur. Opin. Genet. Dev. 21(5), 620–629 (2011).
[Crossref]

La Rivière, P. J.

D. Modgil, D. S. Rigie, Y. Wang, X. Xiao, P. A. Vargas, and P. J. La Rivière, “Material identification in x-ray microscopy and micro CT using multi-layer, multi-color scintillation detectors,” Phys. Med. Biol. 60(20), 8025 (2015).
[Crossref] [PubMed]

Leppert, J.

B. J. Heismann, J. Leppert, and K. Stierstorfer, “Density and atomic number measurements with spectral x-ray attenuation method,” Appl. Phys. 94(3), 2073–2079 (2003).
[Crossref]

Lucas, B. D.

B. D. Lucas and T. Kanade, “An Iterative Image Registration Technique with an Application to Stereo Vision,” in Proc. 7th Intl. Joint Con. on Artificial Intelligence, (1981), 674–679.

Malecki, A.

A. Malecki, G. Potdevin, and F. Pfeiffer, “Quantitative wave-optical numerical analysis of the dark-field signal in grating-based X-ray interferometry,” Europhys. Lett. 99(4), 48001 (2012).
[Crossref]

Martin, T.

T. Martin, P. A. Douissard, M. Couchaud, A. Cecilia, T. Baumbach, K. Dupre, and A. Rack, “LSO-based single crystal film scintillator for synchrotron-based hard X-ray micro-imaging,” IEEE T. Nucl. Sci. 3(56), 1412–1418 (2009).
[Crossref]

T. Martin and A. Koch, “Recent developments in X-ray imaging with micrometer spatial resolution,” J. Synchrotron Radiat. 13(2), 180–194 (2006).
[Crossref] [PubMed]

Matthews, I.

S. Baker and I. Matthews, “Lucas-Kanade 20 Years On: A Unifying Framework,” Int. J. Comput. Vision 56(3), 221–255 (2004)
[Crossref]

Miller, S.

V. Gaysinskiy, B. Singh, L. Ovechkina, S. Miller, S. Thacker, and V. Nagarkar, “Luminescence properties and morphology of ZnSe:Te films,” IEEE T. Nucl. Sci. 55(3), 1556–1560 (2008).
[Crossref]

Modgil, D.

D. Modgil, D. S. Rigie, Y. Wang, X. Xiao, P. A. Vargas, and P. J. La Rivière, “Material identification in x-ray microscopy and micro CT using multi-layer, multi-color scintillation detectors,” Phys. Med. Biol. 60(20), 8025 (2015).
[Crossref] [PubMed]

Nagarkar, V.

V. Gaysinskiy, B. Singh, L. Ovechkina, S. Miller, S. Thacker, and V. Nagarkar, “Luminescence properties and morphology of ZnSe:Te films,” IEEE T. Nucl. Sci. 55(3), 1556–1560 (2008).
[Crossref]

Ovechkina, L.

V. Gaysinskiy, B. Singh, L. Ovechkina, S. Miller, S. Thacker, and V. Nagarkar, “Luminescence properties and morphology of ZnSe:Te films,” IEEE T. Nucl. Sci. 55(3), 1556–1560 (2008).
[Crossref]

Pfeiffer, F.

A. Malecki, G. Potdevin, and F. Pfeiffer, “Quantitative wave-optical numerical analysis of the dark-field signal in grating-based X-ray interferometry,” Europhys. Lett. 99(4), 48001 (2012).
[Crossref]

Pinard, P. T.

P. T. Pinard, “pyPENELOPE,” (2012).

Potdevin, G.

A. Malecki, G. Potdevin, and F. Pfeiffer, “Quantitative wave-optical numerical analysis of the dark-field signal in grating-based X-ray interferometry,” Europhys. Lett. 99(4), 48001 (2012).
[Crossref]

Rack, A.

T. Martin, P. A. Douissard, M. Couchaud, A. Cecilia, T. Baumbach, K. Dupre, and A. Rack, “LSO-based single crystal film scintillator for synchrotron-based hard X-ray micro-imaging,” IEEE T. Nucl. Sci. 3(56), 1412–1418 (2009).
[Crossref]

Raven, C.

A. Koch, C. Raven, P. Spanne, and A. Snigirev, “X-ray imaging with submicrometer resolution employing transparent luminescent screens,” J. Opt. Soc. Am. 15(7), 1940–1951 (1998).
[Crossref]

Reiser, M. F.

T. Johnson, C. Fink, S. O. Schönberg, and M. F. Reiser, “Dual Energy CT in Clinical Practice,” in Medical Radiology (SpringerBerlin Heidelberg, 2011).
[Crossref]

Rigie, D. S.

D. Modgil, D. S. Rigie, Y. Wang, X. Xiao, P. A. Vargas, and P. J. La Rivière, “Material identification in x-ray microscopy and micro CT using multi-layer, multi-color scintillation detectors,” Phys. Med. Biol. 60(20), 8025 (2015).
[Crossref] [PubMed]

Ryzhikov, V. D.

P. Schotanus, P. Dorenbos, and V. D. Ryzhikov, “Detection of CdS(Te) and ZnSe(Te) scintillation light with silicon photodiodes,” IEEE T. Nucl. Sci. 39(4), 546–550 (1992).
[Crossref]

Sanchez del Rio, M.

T. Schoonjans, A. Brunetti, B. Golosio, M. Sanchez del Rio, V. Armando Solé, C. Ferrero, and L. Vincze, “The xraylib library for X-ray-matter interactions. Recent developments,” Spectrochim. Acta B 66(11–12), 776–784 (2001).
[Crossref]

Schönberg, S. O.

T. Johnson, C. Fink, S. O. Schönberg, and M. F. Reiser, “Dual Energy CT in Clinical Practice,” in Medical Radiology (SpringerBerlin Heidelberg, 2011).
[Crossref]

Schoonjans, T.

T. Schoonjans, A. Brunetti, B. Golosio, M. Sanchez del Rio, V. Armando Solé, C. Ferrero, and L. Vincze, “The xraylib library for X-ray-matter interactions. Recent developments,” Spectrochim. Acta B 66(11–12), 776–784 (2001).
[Crossref]

Schotanus, P.

P. Schotanus, P. Dorenbos, and V. D. Ryzhikov, “Detection of CdS(Te) and ZnSe(Te) scintillation light with silicon photodiodes,” IEEE T. Nucl. Sci. 39(4), 546–550 (1992).
[Crossref]

Singh, B.

V. Gaysinskiy, B. Singh, L. Ovechkina, S. Miller, S. Thacker, and V. Nagarkar, “Luminescence properties and morphology of ZnSe:Te films,” IEEE T. Nucl. Sci. 55(3), 1556–1560 (2008).
[Crossref]

Snigirev, A.

A. Koch, C. Raven, P. Spanne, and A. Snigirev, “X-ray imaging with submicrometer resolution employing transparent luminescent screens,” J. Opt. Soc. Am. 15(7), 1940–1951 (1998).
[Crossref]

Spanne, P.

A. Koch, C. Raven, P. Spanne, and A. Snigirev, “X-ray imaging with submicrometer resolution employing transparent luminescent screens,” J. Opt. Soc. Am. 15(7), 1940–1951 (1998).
[Crossref]

Stierstorfer, K.

B. J. Heismann, J. Leppert, and K. Stierstorfer, “Density and atomic number measurements with spectral x-ray attenuation method,” Appl. Phys. 94(3), 2073–2079 (2003).
[Crossref]

Thacker, S.

V. Gaysinskiy, B. Singh, L. Ovechkina, S. Miller, S. Thacker, and V. Nagarkar, “Luminescence properties and morphology of ZnSe:Te films,” IEEE T. Nucl. Sci. 55(3), 1556–1560 (2008).
[Crossref]

Vargas, P. A.

D. Modgil, D. S. Rigie, Y. Wang, X. Xiao, P. A. Vargas, and P. J. La Rivière, “Material identification in x-ray microscopy and micro CT using multi-layer, multi-color scintillation detectors,” Phys. Med. Biol. 60(20), 8025 (2015).
[Crossref] [PubMed]

Vincze, L.

T. Schoonjans, A. Brunetti, B. Golosio, M. Sanchez del Rio, V. Armando Solé, C. Ferrero, and L. Vincze, “The xraylib library for X-ray-matter interactions. Recent developments,” Spectrochim. Acta B 66(11–12), 776–784 (2001).
[Crossref]

Wang, Y.

D. Modgil, D. S. Rigie, Y. Wang, X. Xiao, P. A. Vargas, and P. J. La Rivière, “Material identification in x-ray microscopy and micro CT using multi-layer, multi-color scintillation detectors,” Phys. Med. Biol. 60(20), 8025 (2015).
[Crossref] [PubMed]

Xiao, X.

D. Modgil, D. S. Rigie, Y. Wang, X. Xiao, P. A. Vargas, and P. J. La Rivière, “Material identification in x-ray microscopy and micro CT using multi-layer, multi-color scintillation detectors,” Phys. Med. Biol. 60(20), 8025 (2015).
[Crossref] [PubMed]

Xin, X.

K. C. Cheng, X. Xin, D. P. Clark, and P. La Riviere, “Whole-animal imaging, gene function, and the Zebrafish Phenome Project,” Cur. Opin. Genet. Dev. 21(5), 620–629 (2011).
[Crossref]

Appl. Phys. (1)

B. J. Heismann, J. Leppert, and K. Stierstorfer, “Density and atomic number measurements with spectral x-ray attenuation method,” Appl. Phys. 94(3), 2073–2079 (2003).
[Crossref]

Cur. Opin. Genet. Dev. (1)

K. C. Cheng, X. Xin, D. P. Clark, and P. La Riviere, “Whole-animal imaging, gene function, and the Zebrafish Phenome Project,” Cur. Opin. Genet. Dev. 21(5), 620–629 (2011).
[Crossref]

Europhys. Lett. (1)

A. Malecki, G. Potdevin, and F. Pfeiffer, “Quantitative wave-optical numerical analysis of the dark-field signal in grating-based X-ray interferometry,” Europhys. Lett. 99(4), 48001 (2012).
[Crossref]

IEEE T. Nucl. Sci. (3)

V. Gaysinskiy, B. Singh, L. Ovechkina, S. Miller, S. Thacker, and V. Nagarkar, “Luminescence properties and morphology of ZnSe:Te films,” IEEE T. Nucl. Sci. 55(3), 1556–1560 (2008).
[Crossref]

P. Schotanus, P. Dorenbos, and V. D. Ryzhikov, “Detection of CdS(Te) and ZnSe(Te) scintillation light with silicon photodiodes,” IEEE T. Nucl. Sci. 39(4), 546–550 (1992).
[Crossref]

T. Martin, P. A. Douissard, M. Couchaud, A. Cecilia, T. Baumbach, K. Dupre, and A. Rack, “LSO-based single crystal film scintillator for synchrotron-based hard X-ray micro-imaging,” IEEE T. Nucl. Sci. 3(56), 1412–1418 (2009).
[Crossref]

Int. J. Comput. Vision (1)

S. Baker and I. Matthews, “Lucas-Kanade 20 Years On: A Unifying Framework,” Int. J. Comput. Vision 56(3), 221–255 (2004)
[Crossref]

J. Opt. Soc. Am. (1)

A. Koch, C. Raven, P. Spanne, and A. Snigirev, “X-ray imaging with submicrometer resolution employing transparent luminescent screens,” J. Opt. Soc. Am. 15(7), 1940–1951 (1998).
[Crossref]

J. Synchrotron Radiat. (1)

T. Martin and A. Koch, “Recent developments in X-ray imaging with micrometer spatial resolution,” J. Synchrotron Radiat. 13(2), 180–194 (2006).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

D. Modgil, D. S. Rigie, Y. Wang, X. Xiao, P. A. Vargas, and P. J. La Rivière, “Material identification in x-ray microscopy and micro CT using multi-layer, multi-color scintillation detectors,” Phys. Med. Biol. 60(20), 8025 (2015).
[Crossref] [PubMed]

Spectrochim. Acta B (1)

T. Schoonjans, A. Brunetti, B. Golosio, M. Sanchez del Rio, V. Armando Solé, C. Ferrero, and L. Vincze, “The xraylib library for X-ray-matter interactions. Recent developments,” Spectrochim. Acta B 66(11–12), 776–784 (2001).
[Crossref]

Other (8)

B. D. Lucas and T. Kanade, “An Iterative Image Registration Technique with an Application to Stereo Vision,” in Proc. 7th Intl. Joint Con. on Artificial Intelligence, (1981), 674–679.

Saint-Gobain Crystals, “Physical Properties of Common Inorganic Scintillators” (2016).

CRYTUR, “Scintillation Materials Data” (2016).

P. T. Pinard, “pyPENELOPE,” (2012).

J. Schock, “Dual Energy Micro CT of a Stone Sample,” figshare (2016) [retrieved 15 December 2016], https://dx.doi.org/10.6084/m9.figshare.4322465.v1 .

X-RAY WorX GmbH, “PRODUCT LINE SE,” http://www.x-ray-worx.com (2016).

T. Johnson, C. Fink, S. O. Schönberg, and M. F. Reiser, “Dual Energy CT in Clinical Practice,” in Medical Radiology (SpringerBerlin Heidelberg, 2011).
[Crossref]

Finger Lakes Instrumentation, “PL1001E” (2016).

Supplementary Material (1)

NameDescription
» Dataset 1       Dual Energy Micro CT of Stone Sample

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Interaction probabilities of the predominant interactions of X-rays with the scintillator materials. The solid grey line marks the position of the expected mean energy as shown in Fig. 6. The values are calculated from the cross-sections calculated with xraylib [7].

Fig. 2
Fig. 2

X-ray imaging with transparent luminescent screens (scintillators). Identical visible-light images are created by the X-ray beam in different planes of the scintillator. An image in plane z0 is focused onto the CCD (solid curves). An image in plane z0 + δz is out of focus at the CCD (dashed curves). Image adapted from [2].

Fig. 3
Fig. 3

Spatial resolution as a function of the numerical aperture NA of an optical system for different scintillator thicknesses z (see Eq. (1)). FW50%Int represents the full width, which covers 50% of the integrated line spread function (LSF).

Fig. 4
Fig. 4

Energy map or Attenuation map; a) Materials with different effective Zeff values are represented by different slopes. The position on the linear region is defined by the density ρ or the concentration c of the specific material. The variation in density and the induced noise result in a blurring of the actual position. b) A mixture of two materials lies in a geometrically constructed area of the two materials.

Fig. 5
Fig. 5

Layout of the dual-layer dual-color X-ray imaging setup with separated imaging paths and the idealized source and absorption spectra of the different layers. Where T, D, B, ODD and WD represent Top scintillator layer, Dividing layer, Bottom scintillator layer, Object Detector Distance and Working Distance of the microscope objective.

Fig. 6
Fig. 6

Results of the absorption simulation with a Tungsten X-ray tube with 160 keV, 10 mm water as target, 200 μm ZnSe(Te) top scintillator, 200 μm ZrO dividing layer and 600 μm LYSO(Ce) as bottom scintillator. a) The X-ray spectra at different positions in the beam path; b) The spectrum absorbed by the top scintillator (Red line; 21.2 % of the intensity after sample), the dividing layer (Gray line; 17.6 % of the intensity after sample) and the bottom scintillator (Green line; 46.0 % of the intensity after sample); The corresponding mean energies are: Ēlow = 46.13 keV; Ēdiv = 55.24 keV; Ēhigh = 72.97 keV; c) The calculated DQE for each scintillator; d) The linear attenuation coefficient μ for ZnSe, ZrO and LYSO in the corresponding energy range.

Fig. 7
Fig. 7

Dual energy images with Nikon objective (Flat-field and dark-frame corrected; exposure time = 360 s; sSD = 305 mm; sOD = 15 mm; Upeak = 80 keV; P = 30 μW). a) Low-energy image with an effective pixel size of 5.72 μm. b) High-energy image with an effective pixel size of 5.73 μm. c) Low energy image with Zeiss objective (Flat-field and dark-frame corrected; exposure time = 600 s; sSD = 305 mm; sOD = 15 mm; Upeak = 80 keV; P = 30 W). Low-energy image with an effective pixel size of 1.99 ± 0.02 μm. No dividing layer in both arrangements.

Fig. 8
Fig. 8

Energy map of a sample composed of 1 mm aluminum, 1 mm iron and 1 mm copper. The total field of view is used. Low- (a) and high-energy (b) image of the aluminum-iron-copper sample. (Flat-field and dark-frame corrected; exposure time = 30 s; sSD = 305 mm; sOD = 20 mm; Upeak = 160 keV; P = 120 W). c) Image of sample. A dividing layer of 200 μm Zr0 was used.

Fig. 9
Fig. 9

Energy map of the reconstructed gold ore sample. The total reconstructed volume is used. Blue and Red areas correspond to the manual attenuation value selection which was used for material separation. Lines are drawn in for illustratory purposes and show possible slopes of the selected materials. The CT reconstructions are shown in the Stone-CT Dataset 1 [18].

Fig. 10
Fig. 10

3D rendering of the gold ore sample with a) the Energy map selection shown in Fig. 9 and the stone segmentation yielded by thresholding in the low energy CT [18] b) and high energy CT [18] c).

Tables (1)

Tables Icon

Table 1 The physical properties of a selection of inorganic scintillators.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

r system = [ ( p NA ) 2 + ( q z NA ) 2 ] 1 2
DQE = SNR out 2 SNR in 2 η abs [ 1 + 1 + 1 η ν / e η coll η x / ν E x E ν ] 1
μ = 1 x log I I 0 ,

Metrics