Abstract

Large-scale linear diffraction gratings with gradually varying pitch were photo-inscribed onto the surface of azobenzene thin films using a 532 nm laser and a modified Lloyd mirror set-up. By placing a cylindrical lens in front of the direct half of the inscribing beam, gratings with a chirping rate as high as 12.9 nm/mm were produced. Subsequently, when these chirped-pitch gratings were coated with silver, over three-fold bandwidth increase was observed in the surface plasmon transmission peaks at FWHM, when compared to constant-pitch gratings. This was made possible due to the simultaneous excitation of surface plasmon resonance in a band of light wavelengths.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electrostrictive effect for active control of surface plasmon signals

Lucas Karperien and Ribal Georges Sabat
Opt. Express 24(12) 13264-13275 (2016)

Period-chirped gratings fabricated by laser interference lithography with a concave Lloyd’s mirror

Hanbit Kim, Hyunho Jung, Dong-Hyun Lee, Kyu Back Lee, and Heonsu Jeon
Appl. Opt. 55(2) 354-359 (2016)

Self-processing solgel material for one-step fabrication of micrometer-period sinusoidal phase gratings using the Lloyd’s mirror scheme

Miao He, Jing Bu, Xiaocong Yuan, Hanben Niu, and Xiang Peng
Opt. Lett. 30(20) 2772-2774 (2005)

References

  • View by:
  • |
  • |
  • |

  1. J. P. Monteiro, J. Ferreira, R. G. Sabat, P. Rochon, M. J. L. Santos, and E. M. Girotto, “SPR based biosensor using surface relief grating in transmission mode,” Sens. Actuators B Chem. 174, 270–273 (2012).
    [Crossref]
  2. Y. G. Bi, J. Feng, Y. S. Liu, Y. F. Li, Y. Chen, X. L. Zhang, X. C. Han, and H. B. Sun, “Surface plasmon-polariton mediated red emission from organic light-emitting devices based on metallic electrodes integrated with dual-periodic corrugation,” Sci. Rep. 4, 7108 (2014).
    [Crossref] [PubMed]
  3. Y. Tsur and A. Arie, “On-chip plasmonic spectrometer,” Opt. Lett. 41(15), 3523–3526 (2016).
    [Crossref] [PubMed]
  4. J. Jefferies and R. G. Sabat, “Surface-relief diffraction gratings’ optimization for plasmonic enhancements in thin-film solar cells,” Prog. Photovolt. Res. Appl. 22(6), 648–655 (2014).
    [Crossref]
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  6. E. Kretschmann and H. Raether, “Notizen: radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
    [Crossref]
  7. G. Li, F. Xiao, L. Cai, K. Alameh, and A. Xu, “Theory of the scattering of light and surface plasmon polaritons by finite-size subwavelength metallic defects via field decomposition,” New J. Phys. 13(7), 073045 (2011).
    [Crossref]
  8. R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-Plasmon Resonance Effect in Grating Diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
    [Crossref]
  9. M. R. Atalla, “Multiple excitations of surface-plasmon-polariton waves in an amorphous silicon pin solar cell using Fourier harmonics and compound gratings,” J. Opt. Soc. Am. B 31(8), 1906–1914 (2014).
    [Crossref]
  10. M. R. Atalla, “Plasmonic absorption enhancement in a dye-sensitized solar cell using a Fourier harmonics grating,” Plasmonics 10(1), 151–156 (2015).
    [Crossref]
  11. Y. Bi, J. Feng, Y. Chen, Y. Liu, X. Zhang, Y. Li, M. Xu, Y. Liu, X. Han, and H. Sun, “Dual-periodic-corrugation-induced broadband light absorption enhancement in organic solar cells,” Org. Electron. 27, 167–172 (2015).
    [Crossref]
  12. I. Khan, H. Keshmiri, F. Kolb, T. Dimopoulos, E. J. List-Kratochvil, and J. Dostalek, “Multidiffractive broadband plasmonic absorber,” Adv. Opt. Mater. 4(3), 435–443 (2016).
    [Crossref]
  13. W. H. Yeh, J. Kleingartner, and A. C. Hillier, “Wavelength tunable surface plasmon resonance-enhanced optical transmission through a chirped diffraction grating,” Anal. Chem. 82(12), 4988–4993 (2010).
    [Crossref] [PubMed]
  14. Q. Gan and F. J. Bartoli, “Surface dispersion engineering of planar plasmonic chirped grating for complete visible rainbow trapping,” Appl. Phys. Lett. 98(25), 251103 (2011).
    [Crossref]
  15. S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett. 92(1), 013103 (2008).
    [Crossref]
  16. L. M. Sanchez-Brea, F. J. Torcal-Milla, and T. Morlanes, “Near-field diffraction of chirped gratings,” Opt. Lett. 41(17), 4091–4094 (2016).
    [Crossref] [PubMed]
  17. R. G. Sabat, “Superimposed surface-relief diffraction grating holographic lenses on azo-polymer films,” Opt. Express 21(7), 8711–8723 (2013).
    [Crossref] [PubMed]
  18. P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
    [Crossref]
  19. A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nano-patterning for photonic applications,” J. Polym. Sci., B, Polym. Phys. 52(3), 163–182 (2014).
    [Crossref]
  20. R. Kirby, R. G. Sabat, J. Nunzi, and O. Lebel, “Disperse and disordered: a mexylaminotriazine-substituted azobenzene derivative with superior glass and surface relief grating formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(5), 841–847 (2014).
    [Crossref]
  21. L. M. Sanchez-Brea, F. J. Torcal-Milla, and T. Morlanes, “Near-field diffraction of chirped gratings,” Opt. Lett. 41(17), 4091–4094 (2016).
    [Crossref] [PubMed]
  22. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
    [Crossref] [PubMed]

2016 (4)

2015 (2)

M. R. Atalla, “Plasmonic absorption enhancement in a dye-sensitized solar cell using a Fourier harmonics grating,” Plasmonics 10(1), 151–156 (2015).
[Crossref]

Y. Bi, J. Feng, Y. Chen, Y. Liu, X. Zhang, Y. Li, M. Xu, Y. Liu, X. Han, and H. Sun, “Dual-periodic-corrugation-induced broadband light absorption enhancement in organic solar cells,” Org. Electron. 27, 167–172 (2015).
[Crossref]

2014 (5)

J. Jefferies and R. G. Sabat, “Surface-relief diffraction gratings’ optimization for plasmonic enhancements in thin-film solar cells,” Prog. Photovolt. Res. Appl. 22(6), 648–655 (2014).
[Crossref]

Y. G. Bi, J. Feng, Y. S. Liu, Y. F. Li, Y. Chen, X. L. Zhang, X. C. Han, and H. B. Sun, “Surface plasmon-polariton mediated red emission from organic light-emitting devices based on metallic electrodes integrated with dual-periodic corrugation,” Sci. Rep. 4, 7108 (2014).
[Crossref] [PubMed]

A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nano-patterning for photonic applications,” J. Polym. Sci., B, Polym. Phys. 52(3), 163–182 (2014).
[Crossref]

R. Kirby, R. G. Sabat, J. Nunzi, and O. Lebel, “Disperse and disordered: a mexylaminotriazine-substituted azobenzene derivative with superior glass and surface relief grating formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(5), 841–847 (2014).
[Crossref]

M. R. Atalla, “Multiple excitations of surface-plasmon-polariton waves in an amorphous silicon pin solar cell using Fourier harmonics and compound gratings,” J. Opt. Soc. Am. B 31(8), 1906–1914 (2014).
[Crossref]

2013 (1)

2012 (1)

J. P. Monteiro, J. Ferreira, R. G. Sabat, P. Rochon, M. J. L. Santos, and E. M. Girotto, “SPR based biosensor using surface relief grating in transmission mode,” Sens. Actuators B Chem. 174, 270–273 (2012).
[Crossref]

2011 (2)

G. Li, F. Xiao, L. Cai, K. Alameh, and A. Xu, “Theory of the scattering of light and surface plasmon polaritons by finite-size subwavelength metallic defects via field decomposition,” New J. Phys. 13(7), 073045 (2011).
[Crossref]

Q. Gan and F. J. Bartoli, “Surface dispersion engineering of planar plasmonic chirped grating for complete visible rainbow trapping,” Appl. Phys. Lett. 98(25), 251103 (2011).
[Crossref]

2010 (1)

W. H. Yeh, J. Kleingartner, and A. C. Hillier, “Wavelength tunable surface plasmon resonance-enhanced optical transmission through a chirped diffraction grating,” Anal. Chem. 82(12), 4988–4993 (2010).
[Crossref] [PubMed]

2008 (1)

S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett. 92(1), 013103 (2008).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

1996 (1)

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[Crossref] [PubMed]

1995 (1)

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

1968 (2)

E. Kretschmann and H. Raether, “Notizen: radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
[Crossref]

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-Plasmon Resonance Effect in Grating Diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
[Crossref]

Alameh, K.

G. Li, F. Xiao, L. Cai, K. Alameh, and A. Xu, “Theory of the scattering of light and surface plasmon polaritons by finite-size subwavelength metallic defects via field decomposition,” New J. Phys. 13(7), 073045 (2011).
[Crossref]

Arakawa, E. T.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-Plasmon Resonance Effect in Grating Diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
[Crossref]

Arie, A.

Atalla, M. R.

M. R. Atalla, “Plasmonic absorption enhancement in a dye-sensitized solar cell using a Fourier harmonics grating,” Plasmonics 10(1), 151–156 (2015).
[Crossref]

M. R. Atalla, “Multiple excitations of surface-plasmon-polariton waves in an amorphous silicon pin solar cell using Fourier harmonics and compound gratings,” J. Opt. Soc. Am. B 31(8), 1906–1914 (2014).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[Crossref] [PubMed]

Bartoli, F. J.

Q. Gan and F. J. Bartoli, “Surface dispersion engineering of planar plasmonic chirped grating for complete visible rainbow trapping,” Appl. Phys. Lett. 98(25), 251103 (2011).
[Crossref]

Batalla, E.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

Bi, Y.

Y. Bi, J. Feng, Y. Chen, Y. Liu, X. Zhang, Y. Li, M. Xu, Y. Liu, X. Han, and H. Sun, “Dual-periodic-corrugation-induced broadband light absorption enhancement in organic solar cells,” Org. Electron. 27, 167–172 (2015).
[Crossref]

Bi, Y. G.

Y. G. Bi, J. Feng, Y. S. Liu, Y. F. Li, Y. Chen, X. L. Zhang, X. C. Han, and H. B. Sun, “Surface plasmon-polariton mediated red emission from organic light-emitting devices based on metallic electrodes integrated with dual-periodic corrugation,” Sci. Rep. 4, 7108 (2014).
[Crossref] [PubMed]

Cai, L.

G. Li, F. Xiao, L. Cai, K. Alameh, and A. Xu, “Theory of the scattering of light and surface plasmon polaritons by finite-size subwavelength metallic defects via field decomposition,” New J. Phys. 13(7), 073045 (2011).
[Crossref]

Chen, Y.

Y. Bi, J. Feng, Y. Chen, Y. Liu, X. Zhang, Y. Li, M. Xu, Y. Liu, X. Han, and H. Sun, “Dual-periodic-corrugation-induced broadband light absorption enhancement in organic solar cells,” Org. Electron. 27, 167–172 (2015).
[Crossref]

Y. G. Bi, J. Feng, Y. S. Liu, Y. F. Li, Y. Chen, X. L. Zhang, X. C. Han, and H. B. Sun, “Surface plasmon-polariton mediated red emission from organic light-emitting devices based on metallic electrodes integrated with dual-periodic corrugation,” Sci. Rep. 4, 7108 (2014).
[Crossref] [PubMed]

Cowan, J. J.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-Plasmon Resonance Effect in Grating Diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Dimopoulos, T.

I. Khan, H. Keshmiri, F. Kolb, T. Dimopoulos, E. J. List-Kratochvil, and J. Dostalek, “Multidiffractive broadband plasmonic absorber,” Adv. Opt. Mater. 4(3), 435–443 (2016).
[Crossref]

Dostalek, J.

I. Khan, H. Keshmiri, F. Kolb, T. Dimopoulos, E. J. List-Kratochvil, and J. Dostalek, “Multidiffractive broadband plasmonic absorber,” Adv. Opt. Mater. 4(3), 435–443 (2016).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Feng, J.

Y. Bi, J. Feng, Y. Chen, Y. Liu, X. Zhang, Y. Li, M. Xu, Y. Liu, X. Han, and H. Sun, “Dual-periodic-corrugation-induced broadband light absorption enhancement in organic solar cells,” Org. Electron. 27, 167–172 (2015).
[Crossref]

Y. G. Bi, J. Feng, Y. S. Liu, Y. F. Li, Y. Chen, X. L. Zhang, X. C. Han, and H. B. Sun, “Surface plasmon-polariton mediated red emission from organic light-emitting devices based on metallic electrodes integrated with dual-periodic corrugation,” Sci. Rep. 4, 7108 (2014).
[Crossref] [PubMed]

Ferreira, J.

J. P. Monteiro, J. Ferreira, R. G. Sabat, P. Rochon, M. J. L. Santos, and E. M. Girotto, “SPR based biosensor using surface relief grating in transmission mode,” Sens. Actuators B Chem. 174, 270–273 (2012).
[Crossref]

Gan, Q.

Q. Gan and F. J. Bartoli, “Surface dispersion engineering of planar plasmonic chirped grating for complete visible rainbow trapping,” Appl. Phys. Lett. 98(25), 251103 (2011).
[Crossref]

Girotto, E. M.

J. P. Monteiro, J. Ferreira, R. G. Sabat, P. Rochon, M. J. L. Santos, and E. M. Girotto, “SPR based biosensor using surface relief grating in transmission mode,” Sens. Actuators B Chem. 174, 270–273 (2012).
[Crossref]

Hamm, R. N.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-Plasmon Resonance Effect in Grating Diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
[Crossref]

Han, X.

Y. Bi, J. Feng, Y. Chen, Y. Liu, X. Zhang, Y. Li, M. Xu, Y. Liu, X. Han, and H. Sun, “Dual-periodic-corrugation-induced broadband light absorption enhancement in organic solar cells,” Org. Electron. 27, 167–172 (2015).
[Crossref]

Han, X. C.

Y. G. Bi, J. Feng, Y. S. Liu, Y. F. Li, Y. Chen, X. L. Zhang, X. C. Han, and H. B. Sun, “Surface plasmon-polariton mediated red emission from organic light-emitting devices based on metallic electrodes integrated with dual-periodic corrugation,” Sci. Rep. 4, 7108 (2014).
[Crossref] [PubMed]

Hillier, A. C.

W. H. Yeh, J. Kleingartner, and A. C. Hillier, “Wavelength tunable surface plasmon resonance-enhanced optical transmission through a chirped diffraction grating,” Anal. Chem. 82(12), 4988–4993 (2010).
[Crossref] [PubMed]

Jefferies, J.

J. Jefferies and R. G. Sabat, “Surface-relief diffraction gratings’ optimization for plasmonic enhancements in thin-film solar cells,” Prog. Photovolt. Res. Appl. 22(6), 648–655 (2014).
[Crossref]

Keshmiri, H.

I. Khan, H. Keshmiri, F. Kolb, T. Dimopoulos, E. J. List-Kratochvil, and J. Dostalek, “Multidiffractive broadband plasmonic absorber,” Adv. Opt. Mater. 4(3), 435–443 (2016).
[Crossref]

Khan, I.

I. Khan, H. Keshmiri, F. Kolb, T. Dimopoulos, E. J. List-Kratochvil, and J. Dostalek, “Multidiffractive broadband plasmonic absorber,” Adv. Opt. Mater. 4(3), 435–443 (2016).
[Crossref]

Kim, H.

S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett. 92(1), 013103 (2008).
[Crossref]

Kim, S.

S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett. 92(1), 013103 (2008).
[Crossref]

Kirby, R.

R. Kirby, R. G. Sabat, J. Nunzi, and O. Lebel, “Disperse and disordered: a mexylaminotriazine-substituted azobenzene derivative with superior glass and surface relief grating formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(5), 841–847 (2014).
[Crossref]

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[Crossref] [PubMed]

Kleingartner, J.

W. H. Yeh, J. Kleingartner, and A. C. Hillier, “Wavelength tunable surface plasmon resonance-enhanced optical transmission through a chirped diffraction grating,” Anal. Chem. 82(12), 4988–4993 (2010).
[Crossref] [PubMed]

Kolb, F.

I. Khan, H. Keshmiri, F. Kolb, T. Dimopoulos, E. J. List-Kratochvil, and J. Dostalek, “Multidiffractive broadband plasmonic absorber,” Adv. Opt. Mater. 4(3), 435–443 (2016).
[Crossref]

Kretschmann, E.

E. Kretschmann and H. Raether, “Notizen: radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
[Crossref]

Lebel, O.

R. Kirby, R. G. Sabat, J. Nunzi, and O. Lebel, “Disperse and disordered: a mexylaminotriazine-substituted azobenzene derivative with superior glass and surface relief grating formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(5), 841–847 (2014).
[Crossref]

Lee, B.

S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett. 92(1), 013103 (2008).
[Crossref]

Li, G.

G. Li, F. Xiao, L. Cai, K. Alameh, and A. Xu, “Theory of the scattering of light and surface plasmon polaritons by finite-size subwavelength metallic defects via field decomposition,” New J. Phys. 13(7), 073045 (2011).
[Crossref]

Li, Y.

Y. Bi, J. Feng, Y. Chen, Y. Liu, X. Zhang, Y. Li, M. Xu, Y. Liu, X. Han, and H. Sun, “Dual-periodic-corrugation-induced broadband light absorption enhancement in organic solar cells,” Org. Electron. 27, 167–172 (2015).
[Crossref]

Li, Y. F.

Y. G. Bi, J. Feng, Y. S. Liu, Y. F. Li, Y. Chen, X. L. Zhang, X. C. Han, and H. B. Sun, “Surface plasmon-polariton mediated red emission from organic light-emitting devices based on metallic electrodes integrated with dual-periodic corrugation,” Sci. Rep. 4, 7108 (2014).
[Crossref] [PubMed]

Lim, Y.

S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett. 92(1), 013103 (2008).
[Crossref]

List-Kratochvil, E. J.

I. Khan, H. Keshmiri, F. Kolb, T. Dimopoulos, E. J. List-Kratochvil, and J. Dostalek, “Multidiffractive broadband plasmonic absorber,” Adv. Opt. Mater. 4(3), 435–443 (2016).
[Crossref]

Liu, Y.

Y. Bi, J. Feng, Y. Chen, Y. Liu, X. Zhang, Y. Li, M. Xu, Y. Liu, X. Han, and H. Sun, “Dual-periodic-corrugation-induced broadband light absorption enhancement in organic solar cells,” Org. Electron. 27, 167–172 (2015).
[Crossref]

Y. Bi, J. Feng, Y. Chen, Y. Liu, X. Zhang, Y. Li, M. Xu, Y. Liu, X. Han, and H. Sun, “Dual-periodic-corrugation-induced broadband light absorption enhancement in organic solar cells,” Org. Electron. 27, 167–172 (2015).
[Crossref]

Liu, Y. S.

Y. G. Bi, J. Feng, Y. S. Liu, Y. F. Li, Y. Chen, X. L. Zhang, X. C. Han, and H. B. Sun, “Surface plasmon-polariton mediated red emission from organic light-emitting devices based on metallic electrodes integrated with dual-periodic corrugation,” Sci. Rep. 4, 7108 (2014).
[Crossref] [PubMed]

Monteiro, J. P.

J. P. Monteiro, J. Ferreira, R. G. Sabat, P. Rochon, M. J. L. Santos, and E. M. Girotto, “SPR based biosensor using surface relief grating in transmission mode,” Sens. Actuators B Chem. 174, 270–273 (2012).
[Crossref]

Morlanes, T.

Natansohn, A.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

Nunzi, J.

R. Kirby, R. G. Sabat, J. Nunzi, and O. Lebel, “Disperse and disordered: a mexylaminotriazine-substituted azobenzene derivative with superior glass and surface relief grating formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(5), 841–847 (2014).
[Crossref]

Park, J.

S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett. 92(1), 013103 (2008).
[Crossref]

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[Crossref] [PubMed]

Priimagi, A.

A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nano-patterning for photonic applications,” J. Polym. Sci., B, Polym. Phys. 52(3), 163–182 (2014).
[Crossref]

Raether, H.

E. Kretschmann and H. Raether, “Notizen: radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
[Crossref]

Ritchie, R. H.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-Plasmon Resonance Effect in Grating Diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
[Crossref]

Rochon, P.

J. P. Monteiro, J. Ferreira, R. G. Sabat, P. Rochon, M. J. L. Santos, and E. M. Girotto, “SPR based biosensor using surface relief grating in transmission mode,” Sens. Actuators B Chem. 174, 270–273 (2012).
[Crossref]

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

Sabat, R. G.

R. Kirby, R. G. Sabat, J. Nunzi, and O. Lebel, “Disperse and disordered: a mexylaminotriazine-substituted azobenzene derivative with superior glass and surface relief grating formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(5), 841–847 (2014).
[Crossref]

J. Jefferies and R. G. Sabat, “Surface-relief diffraction gratings’ optimization for plasmonic enhancements in thin-film solar cells,” Prog. Photovolt. Res. Appl. 22(6), 648–655 (2014).
[Crossref]

R. G. Sabat, “Superimposed surface-relief diffraction grating holographic lenses on azo-polymer films,” Opt. Express 21(7), 8711–8723 (2013).
[Crossref] [PubMed]

J. P. Monteiro, J. Ferreira, R. G. Sabat, P. Rochon, M. J. L. Santos, and E. M. Girotto, “SPR based biosensor using surface relief grating in transmission mode,” Sens. Actuators B Chem. 174, 270–273 (2012).
[Crossref]

Sambles, J. R.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[Crossref] [PubMed]

Sanchez-Brea, L. M.

Santos, M. J. L.

J. P. Monteiro, J. Ferreira, R. G. Sabat, P. Rochon, M. J. L. Santos, and E. M. Girotto, “SPR based biosensor using surface relief grating in transmission mode,” Sens. Actuators B Chem. 174, 270–273 (2012).
[Crossref]

Shevchenko, A.

A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nano-patterning for photonic applications,” J. Polym. Sci., B, Polym. Phys. 52(3), 163–182 (2014).
[Crossref]

Sun, H.

Y. Bi, J. Feng, Y. Chen, Y. Liu, X. Zhang, Y. Li, M. Xu, Y. Liu, X. Han, and H. Sun, “Dual-periodic-corrugation-induced broadband light absorption enhancement in organic solar cells,” Org. Electron. 27, 167–172 (2015).
[Crossref]

Sun, H. B.

Y. G. Bi, J. Feng, Y. S. Liu, Y. F. Li, Y. Chen, X. L. Zhang, X. C. Han, and H. B. Sun, “Surface plasmon-polariton mediated red emission from organic light-emitting devices based on metallic electrodes integrated with dual-periodic corrugation,” Sci. Rep. 4, 7108 (2014).
[Crossref] [PubMed]

Torcal-Milla, F. J.

Tsur, Y.

Xiao, F.

G. Li, F. Xiao, L. Cai, K. Alameh, and A. Xu, “Theory of the scattering of light and surface plasmon polaritons by finite-size subwavelength metallic defects via field decomposition,” New J. Phys. 13(7), 073045 (2011).
[Crossref]

Xu, A.

G. Li, F. Xiao, L. Cai, K. Alameh, and A. Xu, “Theory of the scattering of light and surface plasmon polaritons by finite-size subwavelength metallic defects via field decomposition,” New J. Phys. 13(7), 073045 (2011).
[Crossref]

Xu, M.

Y. Bi, J. Feng, Y. Chen, Y. Liu, X. Zhang, Y. Li, M. Xu, Y. Liu, X. Han, and H. Sun, “Dual-periodic-corrugation-induced broadband light absorption enhancement in organic solar cells,” Org. Electron. 27, 167–172 (2015).
[Crossref]

Yeh, W. H.

W. H. Yeh, J. Kleingartner, and A. C. Hillier, “Wavelength tunable surface plasmon resonance-enhanced optical transmission through a chirped diffraction grating,” Anal. Chem. 82(12), 4988–4993 (2010).
[Crossref] [PubMed]

Zhang, X.

Y. Bi, J. Feng, Y. Chen, Y. Liu, X. Zhang, Y. Li, M. Xu, Y. Liu, X. Han, and H. Sun, “Dual-periodic-corrugation-induced broadband light absorption enhancement in organic solar cells,” Org. Electron. 27, 167–172 (2015).
[Crossref]

Zhang, X. L.

Y. G. Bi, J. Feng, Y. S. Liu, Y. F. Li, Y. Chen, X. L. Zhang, X. C. Han, and H. B. Sun, “Surface plasmon-polariton mediated red emission from organic light-emitting devices based on metallic electrodes integrated with dual-periodic corrugation,” Sci. Rep. 4, 7108 (2014).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

I. Khan, H. Keshmiri, F. Kolb, T. Dimopoulos, E. J. List-Kratochvil, and J. Dostalek, “Multidiffractive broadband plasmonic absorber,” Adv. Opt. Mater. 4(3), 435–443 (2016).
[Crossref]

Anal. Chem. (1)

W. H. Yeh, J. Kleingartner, and A. C. Hillier, “Wavelength tunable surface plasmon resonance-enhanced optical transmission through a chirped diffraction grating,” Anal. Chem. 82(12), 4988–4993 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

Q. Gan and F. J. Bartoli, “Surface dispersion engineering of planar plasmonic chirped grating for complete visible rainbow trapping,” Appl. Phys. Lett. 98(25), 251103 (2011).
[Crossref]

S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett. 92(1), 013103 (2008).
[Crossref]

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

R. Kirby, R. G. Sabat, J. Nunzi, and O. Lebel, “Disperse and disordered: a mexylaminotriazine-substituted azobenzene derivative with superior glass and surface relief grating formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(5), 841–847 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Polym. Sci., B, Polym. Phys. (1)

A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nano-patterning for photonic applications,” J. Polym. Sci., B, Polym. Phys. 52(3), 163–182 (2014).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

New J. Phys. (1)

G. Li, F. Xiao, L. Cai, K. Alameh, and A. Xu, “Theory of the scattering of light and surface plasmon polaritons by finite-size subwavelength metallic defects via field decomposition,” New J. Phys. 13(7), 073045 (2011).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Org. Electron. (1)

Y. Bi, J. Feng, Y. Chen, Y. Liu, X. Zhang, Y. Li, M. Xu, Y. Liu, X. Han, and H. Sun, “Dual-periodic-corrugation-induced broadband light absorption enhancement in organic solar cells,” Org. Electron. 27, 167–172 (2015).
[Crossref]

Phys. Rev. B Condens. Matter (1)

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-Plasmon Resonance Effect in Grating Diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
[Crossref]

Plasmonics (1)

M. R. Atalla, “Plasmonic absorption enhancement in a dye-sensitized solar cell using a Fourier harmonics grating,” Plasmonics 10(1), 151–156 (2015).
[Crossref]

Prog. Photovolt. Res. Appl. (1)

J. Jefferies and R. G. Sabat, “Surface-relief diffraction gratings’ optimization for plasmonic enhancements in thin-film solar cells,” Prog. Photovolt. Res. Appl. 22(6), 648–655 (2014).
[Crossref]

Sci. Rep. (1)

Y. G. Bi, J. Feng, Y. S. Liu, Y. F. Li, Y. Chen, X. L. Zhang, X. C. Han, and H. B. Sun, “Surface plasmon-polariton mediated red emission from organic light-emitting devices based on metallic electrodes integrated with dual-periodic corrugation,” Sci. Rep. 4, 7108 (2014).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

J. P. Monteiro, J. Ferreira, R. G. Sabat, P. Rochon, M. J. L. Santos, and E. M. Girotto, “SPR based biosensor using surface relief grating in transmission mode,” Sens. Actuators B Chem. 174, 270–273 (2012).
[Crossref]

Z. Naturforsch. A (1)

E. Kretschmann and H. Raether, “Notizen: radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Modified Lloyd mirror set-up, (b) top-view illustration of the inscribed chirped-pitch gratings, and (c) an actual picture of six chirped-pitch gratings.

Fig. 2
Fig. 2

Spectroscopic measurements (a) with focalizing lens and (b) with rectangular aperture.

Fig. 3
Fig. 3

(a) Measured and theoretical grating pitch versus surface plasmon wavelength, and (b) the normalized transmission through various constant-pitch gratings versus light wavelength.

Fig. 4
Fig. 4

Theoretical and measured edge-to-edge pitch range for chirped-pitch gratings versus theoretical pitch with cylindrical lens removed (to produce constant-pitch gratings).

Fig. 5
Fig. 5

TM/TE normalized transmission versus wavelength for (a) chirped-pitch at 600-nm center, (b) chirped-pitch at 650-nm center, (c) chirped-pitch at 700-nm center and (d) chirped-pitch at 750-nm center.

Fig. 6
Fig. 6

TM/TE normalized transmission versus wavelength for (a) chirped-pitch at 600-nm center, (b) chirped-pitch at 650-nm center, (c) chirped-pitch at 700-nm center and (d) chirped-pitch at 750-nm center.

Tables (2)

Tables Icon

Table 1 Average SP peaks FWHM (in nm) for various constant-pitch and chirped-pitch gratings.

Tables Icon

Table 2 Average grating depth over a 5-microns square area at various locations on a chirped-pitch grating.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ SP = n d ( ε r,m ' n d 2 + ε r,m ' ±sin θ i )Λ

Metrics