Abstract

VIPA (virtually imaged phase array) spectrometers have enabled rapid Brillouin spectrum measurements and current designs of multi-stage VIPA spectrometers offer enough spectral extinction to probe transparent tissue, cells and biomaterials. However, in highly scattering media or in the presence of strong back-reflections, such as at interfaces between materials of different refractive indices, VIPA-based Brillouin spectral measurements are limited. While several approaches to address this issue have recently been pursued, important challenges remain. Here we have adapted the design of coronagraphs used for exosolar planet imaging to the spectral domain and integrated it in a double-stage VIPA spectrometer. We demonstrate that this yields an increase in extinction up to 20 dB, with nearly no added insertion loss. The power of this improvement is vividly demonstrated by Brillouin imaging close to reflecting interfaces without index matching or sample tilting.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy

Giuliano Scarcelli and Seok Hyun Yun
Opt. Express 19(11) 10913-10922 (2011)

Etalon filters for Brillouin microscopy of highly scattering tissues

Peng Shao, Sebastien Besner, Jitao Zhang, Giuliano Scarcelli, and Seok-Hyun Yun
Opt. Express 24(19) 22232-22238 (2016)

High-finesse sub-GHz-resolution spectrometer employing VIPA etalons of different dispersion

Kim Berghaus, Jitao Zhang, Seok H. Yun, and Giuliano Scarcelli
Opt. Lett. 40(19) 4436-4439 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. D. Hartschuh, A. Kisliuk, V. Novikov, A. P. Sokolov, P. R. Heyliger, C. M. Flannery, W. L. Johnson, C. L. Soles, and W. L. Wu, “Acoustic modes and elastic properties of polymeric nanostructures,” Appl. Phys. Lett. 87(17), 173121 (2005).
    [Crossref]
  2. J. G. Dil, “Brillouin-scattering in condensed matter,” Rep. Prog. Phys. 45(3), 285–334 (1982).
    [Crossref]
  3. A. A. Serga, T. Schneider, B. Hillebrands, S. O. Demokritov, and M. P. Kostylev, “Phase-sensitive brillouin light scattering spectroscopy from spin-wave packets,” Appl. Phys. Lett. 89(6), 063506 (2006).
    [Crossref]
  4. T. Still, R. Sainidou, M. Retsch, U. Jonas, P. Spahn, G. P. Hellmann, and G. Fytas, “The “music” Of core-shell spheres and hollow capsules: influence of the architecture on the mechanical properties at the nanoscale,” Nano Lett. 8(10), 3194–3199 (2008).
    [Crossref] [PubMed]
  5. Y. Minami and K. Sakai, “Ripplon on high viscosity liquid,” Rev. Sci. Instrum. 80(1), 014902 (2009).
    [Crossref] [PubMed]
  6. R. W. Boyd, “Nonlinear Optics,” 3rd Edition (2008).
  7. J. Sandercock, “Brillouin scattering study of sbsi using a double-passed, stabilised scanning interferometer,” Opt. Commun. 2(2), 73–76 (1970).
    [Crossref]
  8. Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: A renaissance of brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300–327 (2016).
    [Crossref]
  9. F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
    [Crossref] [PubMed]
  10. G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
    [Crossref] [PubMed]
  11. G. Scarcelli, P. Kim, and S. H. Yun, “Cross-axis cascading of spectral dispersion,” Opt. Lett. 33(24), 2979–2981 (2008).
    [Crossref] [PubMed]
  12. G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20(8), 9197–9202 (2012).
    [Crossref] [PubMed]
  13. G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
    [Crossref] [PubMed]
  14. A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108(20), 203701 (2016).
    [Crossref] [PubMed]
  15. G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
    [Crossref] [PubMed]
  16. K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
    [Crossref] [PubMed]
  17. G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6, 37217 (2016).
    [Crossref] [PubMed]
  18. G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
    [Crossref] [PubMed]
  19. Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
    [Crossref] [PubMed]
  20. J. Zhang, A. Fiore, S.-H. Yun, H. Kim, and G. Scarcelli, “Line-scanning Brillouin microscopy for rapid non-invasive mechanical imaging,” Sci. Rep. 6, 35398 (2016).
    [Crossref] [PubMed]
  21. S. Besner, G. Scarcelli, R. Pineda, and S.-H. Yun, “In vivo brillouin analysis of the aging crystalline lensin vivo brillouin analysis of the aging human lens,” Invest. Ophthalmol. Vis. Sci. 57(13), 5093–5100 (2016).
    [Crossref] [PubMed]
  22. M. J. Girard, W. J. Dupps, M. Baskaran, G. Scarcelli, S. H. Yun, H. A. Quigley, I. A. Sigal, and N. G. Strouthidis, “Translating ocular biomechanics into clinical practice: current state and future prospects,” Curr. Eye Res. 40(1), 1–18 (2015).
    [Crossref] [PubMed]
  23. G. Scarcelli, S. Besner, R. Pineda, P. Kalout, and S. H. Yun, “In vivo biomechanical mapping of normal and keratoconus corneas,” JAMA Ophthalmol. 133(4), 480–482 (2015).
    [Crossref] [PubMed]
  24. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).
  25. G. Scarcelli and S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19(11), 10913–10922 (2011).
    [Crossref] [PubMed]
  26. P. Shao, S. Besner, J. Zhang, G. Scarcelli, and S.-H. Yun, “Etalon filters for Brillouin microscopy of highly scattering tissues,” Opt. Express 24(19), 22232–22238 (2016).
    [Crossref] [PubMed]
  27. Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Background clean-up in Brillouin microspectroscopy of scattering medium,” Opt. Express 22(5), 5410–5415 (2014).
    [Crossref] [PubMed]
  28. G. Antonacci, G. Lepert, C. Paterson, and P. Torok, “Elastic suppression in brillouin imaging by destructive interference,” Appl. Phys. Lett. 107(6), 061102 (2015).
    [Crossref]
  29. G. Antonacci, S. De Panfilis, G. Di Domenico, E. DelRe, and G. Ruocco, “Breaking the contrast limit in single-pass fabry-pérot spectrometers,” Phys. Rev. Appl. 6(5), 054020 (2016).
    [Crossref]
  30. I. Remer and A. Bilenca, “Background-free Brillouin spectroscopy in scattering media at 780 nm via stimulated Brillouin scattering,” Opt. Lett. 41(5), 926–929 (2016).
    [Crossref] [PubMed]
  31. “Interfero-coronagraphy: A tool for detection of faint companions,” Workshop on Brown Dwarfs and Extrasolar Planets; Mar 17–21 1997; Puerto La Cruz, Spain.
  32. D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633(2), 1191–1200 (2005).
    [Crossref]
  33. F. Roddier and C. Roddier, “Stellar coronagraph with phase mask,” Publ. Astron. Soc. Pac. 109(737), 815–820 (1997).
    [Crossref]
  34. D. Rouan, P. Riaud, A. Boccaletti, Y. Clenet, and A. Labeyrie, “The four-quadrant phase-mask coronagraph. I. Principle,” Publ. Astron. Soc. Pac. 112(777), 1479–1486 (2000).
    [Crossref]
  35. M. Lyot, “A study of the solar corona and prominences without eclipses,” Mon. Not. R. Astron. Soc. 99, 580 (1939).
  36. A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552(1), 397–408 (2001).
    [Crossref]

2016 (9)

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: A renaissance of brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300–327 (2016).
[Crossref]

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108(20), 203701 (2016).
[Crossref] [PubMed]

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6, 37217 (2016).
[Crossref] [PubMed]

J. Zhang, A. Fiore, S.-H. Yun, H. Kim, and G. Scarcelli, “Line-scanning Brillouin microscopy for rapid non-invasive mechanical imaging,” Sci. Rep. 6, 35398 (2016).
[Crossref] [PubMed]

S. Besner, G. Scarcelli, R. Pineda, and S.-H. Yun, “In vivo brillouin analysis of the aging crystalline lensin vivo brillouin analysis of the aging human lens,” Invest. Ophthalmol. Vis. Sci. 57(13), 5093–5100 (2016).
[Crossref] [PubMed]

P. Shao, S. Besner, J. Zhang, G. Scarcelli, and S.-H. Yun, “Etalon filters for Brillouin microscopy of highly scattering tissues,” Opt. Express 24(19), 22232–22238 (2016).
[Crossref] [PubMed]

G. Antonacci, S. De Panfilis, G. Di Domenico, E. DelRe, and G. Ruocco, “Breaking the contrast limit in single-pass fabry-pérot spectrometers,” Phys. Rev. Appl. 6(5), 054020 (2016).
[Crossref]

I. Remer and A. Bilenca, “Background-free Brillouin spectroscopy in scattering media at 780 nm via stimulated Brillouin scattering,” Opt. Lett. 41(5), 926–929 (2016).
[Crossref] [PubMed]

2015 (6)

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

G. Antonacci, G. Lepert, C. Paterson, and P. Torok, “Elastic suppression in brillouin imaging by destructive interference,” Appl. Phys. Lett. 107(6), 061102 (2015).
[Crossref]

M. J. Girard, W. J. Dupps, M. Baskaran, G. Scarcelli, S. H. Yun, H. A. Quigley, I. A. Sigal, and N. G. Strouthidis, “Translating ocular biomechanics into clinical practice: current state and future prospects,” Curr. Eye Res. 40(1), 1–18 (2015).
[Crossref] [PubMed]

G. Scarcelli, S. Besner, R. Pineda, P. Kalout, and S. H. Yun, “In vivo biomechanical mapping of normal and keratoconus corneas,” JAMA Ophthalmol. 133(4), 480–482 (2015).
[Crossref] [PubMed]

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
[Crossref] [PubMed]

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
[Crossref] [PubMed]

2014 (2)

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Background clean-up in Brillouin microspectroscopy of scattering medium,” Opt. Express 22(5), 5410–5415 (2014).
[Crossref] [PubMed]

2012 (2)

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20(8), 9197–9202 (2012).
[Crossref] [PubMed]

2011 (1)

2009 (1)

Y. Minami and K. Sakai, “Ripplon on high viscosity liquid,” Rev. Sci. Instrum. 80(1), 014902 (2009).
[Crossref] [PubMed]

2008 (2)

T. Still, R. Sainidou, M. Retsch, U. Jonas, P. Spahn, G. P. Hellmann, and G. Fytas, “The “music” Of core-shell spheres and hollow capsules: influence of the architecture on the mechanical properties at the nanoscale,” Nano Lett. 8(10), 3194–3199 (2008).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “Cross-axis cascading of spectral dispersion,” Opt. Lett. 33(24), 2979–2981 (2008).
[Crossref] [PubMed]

2007 (1)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
[Crossref] [PubMed]

2006 (1)

A. A. Serga, T. Schneider, B. Hillebrands, S. O. Demokritov, and M. P. Kostylev, “Phase-sensitive brillouin light scattering spectroscopy from spin-wave packets,” Appl. Phys. Lett. 89(6), 063506 (2006).
[Crossref]

2005 (2)

R. D. Hartschuh, A. Kisliuk, V. Novikov, A. P. Sokolov, P. R. Heyliger, C. M. Flannery, W. L. Johnson, C. L. Soles, and W. L. Wu, “Acoustic modes and elastic properties of polymeric nanostructures,” Appl. Phys. Lett. 87(17), 173121 (2005).
[Crossref]

D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633(2), 1191–1200 (2005).
[Crossref]

2001 (1)

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552(1), 397–408 (2001).
[Crossref]

2000 (1)

D. Rouan, P. Riaud, A. Boccaletti, Y. Clenet, and A. Labeyrie, “The four-quadrant phase-mask coronagraph. I. Principle,” Publ. Astron. Soc. Pac. 112(777), 1479–1486 (2000).
[Crossref]

1997 (1)

F. Roddier and C. Roddier, “Stellar coronagraph with phase mask,” Publ. Astron. Soc. Pac. 109(737), 815–820 (1997).
[Crossref]

1982 (1)

J. G. Dil, “Brillouin-scattering in condensed matter,” Rep. Prog. Phys. 45(3), 285–334 (1982).
[Crossref]

1970 (1)

J. Sandercock, “Brillouin scattering study of sbsi using a double-passed, stabilised scanning interferometer,” Opt. Commun. 2(2), 73–76 (1970).
[Crossref]

1939 (1)

M. Lyot, “A study of the solar corona and prominences without eclipses,” Mon. Not. R. Astron. Soc. 99, 580 (1939).

Absil, O.

D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633(2), 1191–1200 (2005).
[Crossref]

Antonacci, G.

G. Antonacci, S. De Panfilis, G. Di Domenico, E. DelRe, and G. Ruocco, “Breaking the contrast limit in single-pass fabry-pérot spectrometers,” Phys. Rev. Appl. 6(5), 054020 (2016).
[Crossref]

G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6, 37217 (2016).
[Crossref] [PubMed]

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
[Crossref] [PubMed]

G. Antonacci, G. Lepert, C. Paterson, and P. Torok, “Elastic suppression in brillouin imaging by destructive interference,” Appl. Phys. Lett. 107(6), 061102 (2015).
[Crossref]

Ballmann, C. W.

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: A renaissance of brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300–327 (2016).
[Crossref]

Baskaran, M.

M. J. Girard, W. J. Dupps, M. Baskaran, G. Scarcelli, S. H. Yun, H. A. Quigley, I. A. Sigal, and N. G. Strouthidis, “Translating ocular biomechanics into clinical practice: current state and future prospects,” Curr. Eye Res. 40(1), 1–18 (2015).
[Crossref] [PubMed]

Belkhadir, Y.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Berkefeld, T.

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552(1), 397–408 (2001).
[Crossref]

Besner, S.

S. Besner, G. Scarcelli, R. Pineda, and S.-H. Yun, “In vivo brillouin analysis of the aging crystalline lensin vivo brillouin analysis of the aging human lens,” Invest. Ophthalmol. Vis. Sci. 57(13), 5093–5100 (2016).
[Crossref] [PubMed]

P. Shao, S. Besner, J. Zhang, G. Scarcelli, and S.-H. Yun, “Etalon filters for Brillouin microscopy of highly scattering tissues,” Opt. Express 24(19), 22232–22238 (2016).
[Crossref] [PubMed]

G. Scarcelli, S. Besner, R. Pineda, P. Kalout, and S. H. Yun, “In vivo biomechanical mapping of normal and keratoconus corneas,” JAMA Ophthalmol. 133(4), 480–482 (2015).
[Crossref] [PubMed]

Bilenca, A.

Boccaletti, A.

D. Rouan, P. Riaud, A. Boccaletti, Y. Clenet, and A. Labeyrie, “The four-quadrant phase-mask coronagraph. I. Principle,” Publ. Astron. Soc. Pac. 112(777), 1479–1486 (2000).
[Crossref]

Braakman, S.

G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6, 37217 (2016).
[Crossref] [PubMed]

Caponi, S.

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

Clenet, Y.

D. Rouan, P. Riaud, A. Boccaletti, Y. Clenet, and A. Labeyrie, “The four-quadrant phase-mask coronagraph. I. Principle,” Publ. Astron. Soc. Pac. 112(777), 1479–1486 (2000).
[Crossref]

De Panfilis, S.

G. Antonacci, S. De Panfilis, G. Di Domenico, E. DelRe, and G. Ruocco, “Breaking the contrast limit in single-pass fabry-pérot spectrometers,” Phys. Rev. Appl. 6(5), 054020 (2016).
[Crossref]

de Silva, R.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
[Crossref] [PubMed]

DelRe, E.

G. Antonacci, S. De Panfilis, G. Di Domenico, E. DelRe, and G. Ruocco, “Breaking the contrast limit in single-pass fabry-pérot spectrometers,” Phys. Rev. Appl. 6(5), 054020 (2016).
[Crossref]

Demokritov, S. O.

A. A. Serga, T. Schneider, B. Hillebrands, S. O. Demokritov, and M. P. Kostylev, “Phase-sensitive brillouin light scattering spectroscopy from spin-wave packets,” Appl. Phys. Lett. 89(6), 063506 (2006).
[Crossref]

Di Domenico, G.

G. Antonacci, S. De Panfilis, G. Di Domenico, E. DelRe, and G. Ruocco, “Breaking the contrast limit in single-pass fabry-pérot spectrometers,” Phys. Rev. Appl. 6(5), 054020 (2016).
[Crossref]

Dil, J. G.

J. G. Dil, “Brillouin-scattering in condensed matter,” Rep. Prog. Phys. 45(3), 285–334 (1982).
[Crossref]

Dupps, W. J.

M. J. Girard, W. J. Dupps, M. Baskaran, G. Scarcelli, S. H. Yun, H. A. Quigley, I. A. Sigal, and N. G. Strouthidis, “Translating ocular biomechanics into clinical practice: current state and future prospects,” Curr. Eye Res. 40(1), 1–18 (2015).
[Crossref] [PubMed]

Edginton, R. S.

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

Elsayad, K.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Fiore, A.

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108(20), 203701 (2016).
[Crossref] [PubMed]

J. Zhang, A. Fiore, S.-H. Yun, H. Kim, and G. Scarcelli, “Line-scanning Brillouin microscopy for rapid non-invasive mechanical imaging,” Sci. Rep. 6, 35398 (2016).
[Crossref] [PubMed]

Fioretto, D.

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

Flannery, C. M.

R. D. Hartschuh, A. Kisliuk, V. Novikov, A. P. Sokolov, P. R. Heyliger, C. M. Flannery, W. L. Johnson, C. L. Soles, and W. L. Wu, “Acoustic modes and elastic properties of polymeric nanostructures,” Appl. Phys. Lett. 87(17), 173121 (2005).
[Crossref]

Fytas, G.

T. Still, R. Sainidou, M. Retsch, U. Jonas, P. Spahn, G. P. Hellmann, and G. Fytas, “The “music” Of core-shell spheres and hollow capsules: influence of the architecture on the mechanical properties at the nanoscale,” Nano Lett. 8(10), 3194–3199 (2008).
[Crossref] [PubMed]

Gallemí, M.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Girard, M. J.

M. J. Girard, W. J. Dupps, M. Baskaran, G. Scarcelli, S. H. Yun, H. A. Quigley, I. A. Sigal, and N. G. Strouthidis, “Translating ocular biomechanics into clinical practice: current state and future prospects,” Curr. Eye Res. 40(1), 1–18 (2015).
[Crossref] [PubMed]

Greb, T.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Green, E.

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

Grodzinsky, A. J.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Hartschuh, R. D.

R. D. Hartschuh, A. Kisliuk, V. Novikov, A. P. Sokolov, P. R. Heyliger, C. M. Flannery, W. L. Johnson, C. L. Soles, and W. L. Wu, “Acoustic modes and elastic properties of polymeric nanostructures,” Appl. Phys. Lett. 87(17), 173121 (2005).
[Crossref]

Hellmann, G. P.

T. Still, R. Sainidou, M. Retsch, U. Jonas, P. Spahn, G. P. Hellmann, and G. Fytas, “The “music” Of core-shell spheres and hollow capsules: influence of the architecture on the mechanical properties at the nanoscale,” Nano Lett. 8(10), 3194–3199 (2008).
[Crossref] [PubMed]

Heyliger, P. R.

R. D. Hartschuh, A. Kisliuk, V. Novikov, A. P. Sokolov, P. R. Heyliger, C. M. Flannery, W. L. Johnson, C. L. Soles, and W. L. Wu, “Acoustic modes and elastic properties of polymeric nanostructures,” Appl. Phys. Lett. 87(17), 173121 (2005).
[Crossref]

Hillebrands, B.

A. A. Serga, T. Schneider, B. Hillebrands, S. O. Demokritov, and M. P. Kostylev, “Phase-sensitive brillouin light scattering spectroscopy from spin-wave packets,” Appl. Phys. Lett. 89(6), 063506 (2006).
[Crossref]

Jaillais, Y.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Johnson, W. L.

R. D. Hartschuh, A. Kisliuk, V. Novikov, A. P. Sokolov, P. R. Heyliger, C. M. Flannery, W. L. Johnson, C. L. Soles, and W. L. Wu, “Acoustic modes and elastic properties of polymeric nanostructures,” Appl. Phys. Lett. 87(17), 173121 (2005).
[Crossref]

Jonas, U.

T. Still, R. Sainidou, M. Retsch, U. Jonas, P. Spahn, G. P. Hellmann, and G. Fytas, “The “music” Of core-shell spheres and hollow capsules: influence of the architecture on the mechanical properties at the nanoscale,” Nano Lett. 8(10), 3194–3199 (2008).
[Crossref] [PubMed]

Kalout, P.

G. Scarcelli, S. Besner, R. Pineda, P. Kalout, and S. H. Yun, “In vivo biomechanical mapping of normal and keratoconus corneas,” JAMA Ophthalmol. 133(4), 480–482 (2015).
[Crossref] [PubMed]

Kamm, R. D.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Kim, H.

J. Zhang, A. Fiore, S.-H. Yun, H. Kim, and G. Scarcelli, “Line-scanning Brillouin microscopy for rapid non-invasive mechanical imaging,” Sci. Rep. 6, 35398 (2016).
[Crossref] [PubMed]

Kim, P.

Kisliuk, A.

R. D. Hartschuh, A. Kisliuk, V. Novikov, A. P. Sokolov, P. R. Heyliger, C. M. Flannery, W. L. Johnson, C. L. Soles, and W. L. Wu, “Acoustic modes and elastic properties of polymeric nanostructures,” Appl. Phys. Lett. 87(17), 173121 (2005).
[Crossref]

Kondiboyina, A.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
[Crossref] [PubMed]

Kong, J.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Koresko, C. D.

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552(1), 397–408 (2001).
[Crossref]

Kostylev, M. P.

A. A. Serga, T. Schneider, B. Hillebrands, S. O. Demokritov, and M. P. Kostylev, “Phase-sensitive brillouin light scattering spectroscopy from spin-wave packets,” Appl. Phys. Lett. 89(6), 063506 (2006).
[Crossref]

Krams, R.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
[Crossref] [PubMed]

Kuchner, M. J.

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552(1), 397–408 (2001).
[Crossref]

Labeyrie, A.

D. Rouan, P. Riaud, A. Boccaletti, Y. Clenet, and A. Labeyrie, “The four-quadrant phase-mask coronagraph. I. Principle,” Publ. Astron. Soc. Pac. 112(777), 1479–1486 (2000).
[Crossref]

Lepert, G.

G. Antonacci, G. Lepert, C. Paterson, and P. Torok, “Elastic suppression in brillouin imaging by destructive interference,” Appl. Phys. Lett. 107(6), 061102 (2015).
[Crossref]

Lyot, M.

M. Lyot, “A study of the solar corona and prominences without eclipses,” Mon. Not. R. Astron. Soc. 99, 580 (1939).

Madami, M.

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

Makidon, R. B.

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552(1), 397–408 (2001).
[Crossref]

Mawet, D.

D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633(2), 1191–1200 (2005).
[Crossref]

Mehta, V. V.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
[Crossref] [PubMed]

Meng, Z.

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: A renaissance of brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300–327 (2016).
[Crossref]

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
[Crossref] [PubMed]

Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Background clean-up in Brillouin microspectroscopy of scattering medium,” Opt. Express 22(5), 5410–5415 (2014).
[Crossref] [PubMed]

Minami, Y.

Y. Minami and K. Sakai, “Ripplon on high viscosity liquid,” Rev. Sci. Instrum. 80(1), 014902 (2009).
[Crossref] [PubMed]

Nia, H. T.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Novikov, V.

R. D. Hartschuh, A. Kisliuk, V. Novikov, A. P. Sokolov, P. R. Heyliger, C. M. Flannery, W. L. Johnson, C. L. Soles, and W. L. Wu, “Acoustic modes and elastic properties of polymeric nanostructures,” Appl. Phys. Lett. 87(17), 173121 (2005).
[Crossref]

Palombo, F.

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

Patel, K.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Paterson, C.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
[Crossref] [PubMed]

G. Antonacci, G. Lepert, C. Paterson, and P. Torok, “Elastic suppression in brillouin imaging by destructive interference,” Appl. Phys. Lett. 107(6), 061102 (2015).
[Crossref]

Pedrigi, R. M.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
[Crossref] [PubMed]

Pineda, R.

S. Besner, G. Scarcelli, R. Pineda, and S.-H. Yun, “In vivo brillouin analysis of the aging crystalline lensin vivo brillouin analysis of the aging human lens,” Invest. Ophthalmol. Vis. Sci. 57(13), 5093–5100 (2016).
[Crossref] [PubMed]

G. Scarcelli, S. Besner, R. Pineda, P. Kalout, and S. H. Yun, “In vivo biomechanical mapping of normal and keratoconus corneas,” JAMA Ophthalmol. 133(4), 480–482 (2015).
[Crossref] [PubMed]

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[Crossref] [PubMed]

Polacheck, W. J.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Quigley, H. A.

M. J. Girard, W. J. Dupps, M. Baskaran, G. Scarcelli, S. H. Yun, H. A. Quigley, I. A. Sigal, and N. G. Strouthidis, “Translating ocular biomechanics into clinical practice: current state and future prospects,” Curr. Eye Res. 40(1), 1–18 (2015).
[Crossref] [PubMed]

Remer, I.

Retsch, M.

T. Still, R. Sainidou, M. Retsch, U. Jonas, P. Spahn, G. P. Hellmann, and G. Fytas, “The “music” Of core-shell spheres and hollow capsules: influence of the architecture on the mechanical properties at the nanoscale,” Nano Lett. 8(10), 3194–3199 (2008).
[Crossref] [PubMed]

Riaud, P.

D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633(2), 1191–1200 (2005).
[Crossref]

D. Rouan, P. Riaud, A. Boccaletti, Y. Clenet, and A. Labeyrie, “The four-quadrant phase-mask coronagraph. I. Principle,” Publ. Astron. Soc. Pac. 112(777), 1479–1486 (2000).
[Crossref]

Roddier, C.

F. Roddier and C. Roddier, “Stellar coronagraph with phase mask,” Publ. Astron. Soc. Pac. 109(737), 815–820 (1997).
[Crossref]

Roddier, F.

F. Roddier and C. Roddier, “Stellar coronagraph with phase mask,” Publ. Astron. Soc. Pac. 109(737), 815–820 (1997).
[Crossref]

Rouan, D.

D. Rouan, P. Riaud, A. Boccaletti, Y. Clenet, and A. Labeyrie, “The four-quadrant phase-mask coronagraph. I. Principle,” Publ. Astron. Soc. Pac. 112(777), 1479–1486 (2000).
[Crossref]

Ruocco, G.

G. Antonacci, S. De Panfilis, G. Di Domenico, E. DelRe, and G. Ruocco, “Breaking the contrast limit in single-pass fabry-pérot spectrometers,” Phys. Rev. Appl. 6(5), 054020 (2016).
[Crossref]

Sainidou, R.

T. Still, R. Sainidou, M. Retsch, U. Jonas, P. Spahn, G. P. Hellmann, and G. Fytas, “The “music” Of core-shell spheres and hollow capsules: influence of the architecture on the mechanical properties at the nanoscale,” Nano Lett. 8(10), 3194–3199 (2008).
[Crossref] [PubMed]

Sakai, K.

Y. Minami and K. Sakai, “Ripplon on high viscosity liquid,” Rev. Sci. Instrum. 80(1), 014902 (2009).
[Crossref] [PubMed]

Sánchez Guajardo, E. R.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Sandercock, J.

J. Sandercock, “Brillouin scattering study of sbsi using a double-passed, stabilised scanning interferometer,” Opt. Commun. 2(2), 73–76 (1970).
[Crossref]

Scarcelli, G.

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108(20), 203701 (2016).
[Crossref] [PubMed]

J. Zhang, A. Fiore, S.-H. Yun, H. Kim, and G. Scarcelli, “Line-scanning Brillouin microscopy for rapid non-invasive mechanical imaging,” Sci. Rep. 6, 35398 (2016).
[Crossref] [PubMed]

S. Besner, G. Scarcelli, R. Pineda, and S.-H. Yun, “In vivo brillouin analysis of the aging crystalline lensin vivo brillouin analysis of the aging human lens,” Invest. Ophthalmol. Vis. Sci. 57(13), 5093–5100 (2016).
[Crossref] [PubMed]

P. Shao, S. Besner, J. Zhang, G. Scarcelli, and S.-H. Yun, “Etalon filters for Brillouin microscopy of highly scattering tissues,” Opt. Express 24(19), 22232–22238 (2016).
[Crossref] [PubMed]

M. J. Girard, W. J. Dupps, M. Baskaran, G. Scarcelli, S. H. Yun, H. A. Quigley, I. A. Sigal, and N. G. Strouthidis, “Translating ocular biomechanics into clinical practice: current state and future prospects,” Curr. Eye Res. 40(1), 1–18 (2015).
[Crossref] [PubMed]

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

G. Scarcelli, S. Besner, R. Pineda, P. Kalout, and S. H. Yun, “In vivo biomechanical mapping of normal and keratoconus corneas,” JAMA Ophthalmol. 133(4), 480–482 (2015).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20(8), 9197–9202 (2012).
[Crossref] [PubMed]

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19(11), 10913–10922 (2011).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “Cross-axis cascading of spectral dispersion,” Opt. Lett. 33(24), 2979–2981 (2008).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
[Crossref] [PubMed]

Schneider, T.

A. A. Serga, T. Schneider, B. Hillebrands, S. O. Demokritov, and M. P. Kostylev, “Phase-sensitive brillouin light scattering spectroscopy from spin-wave packets,” Appl. Phys. Lett. 89(6), 063506 (2006).
[Crossref]

Serga, A. A.

A. A. Serga, T. Schneider, B. Hillebrands, S. O. Demokritov, and M. P. Kostylev, “Phase-sensitive brillouin light scattering spectroscopy from spin-wave packets,” Appl. Phys. Lett. 89(6), 063506 (2006).
[Crossref]

Shao, P.

P. Shao, S. Besner, J. Zhang, G. Scarcelli, and S.-H. Yun, “Etalon filters for Brillouin microscopy of highly scattering tissues,” Opt. Express 24(19), 22232–22238 (2016).
[Crossref] [PubMed]

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108(20), 203701 (2016).
[Crossref] [PubMed]

Sigal, I. A.

M. J. Girard, W. J. Dupps, M. Baskaran, G. Scarcelli, S. H. Yun, H. A. Quigley, I. A. Sigal, and N. G. Strouthidis, “Translating ocular biomechanics into clinical practice: current state and future prospects,” Curr. Eye Res. 40(1), 1–18 (2015).
[Crossref] [PubMed]

Sivaramakrishnan, A.

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552(1), 397–408 (2001).
[Crossref]

Sokolov, A. P.

R. D. Hartschuh, A. Kisliuk, V. Novikov, A. P. Sokolov, P. R. Heyliger, C. M. Flannery, W. L. Johnson, C. L. Soles, and W. L. Wu, “Acoustic modes and elastic properties of polymeric nanostructures,” Appl. Phys. Lett. 87(17), 173121 (2005).
[Crossref]

Soles, C. L.

R. D. Hartschuh, A. Kisliuk, V. Novikov, A. P. Sokolov, P. R. Heyliger, C. M. Flannery, W. L. Johnson, C. L. Soles, and W. L. Wu, “Acoustic modes and elastic properties of polymeric nanostructures,” Appl. Phys. Lett. 87(17), 173121 (2005).
[Crossref]

Spahn, P.

T. Still, R. Sainidou, M. Retsch, U. Jonas, P. Spahn, G. P. Hellmann, and G. Fytas, “The “music” Of core-shell spheres and hollow capsules: influence of the architecture on the mechanical properties at the nanoscale,” Nano Lett. 8(10), 3194–3199 (2008).
[Crossref] [PubMed]

Steelman, Z.

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
[Crossref] [PubMed]

Still, T.

T. Still, R. Sainidou, M. Retsch, U. Jonas, P. Spahn, G. P. Hellmann, and G. Fytas, “The “music” Of core-shell spheres and hollow capsules: influence of the architecture on the mechanical properties at the nanoscale,” Nano Lett. 8(10), 3194–3199 (2008).
[Crossref] [PubMed]

Stone, N.

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

Strouthidis, N. G.

M. J. Girard, W. J. Dupps, M. Baskaran, G. Scarcelli, S. H. Yun, H. A. Quigley, I. A. Sigal, and N. G. Strouthidis, “Translating ocular biomechanics into clinical practice: current state and future prospects,” Curr. Eye Res. 40(1), 1–18 (2015).
[Crossref] [PubMed]

Surdej, J.

D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633(2), 1191–1200 (2005).
[Crossref]

Torok, P.

G. Antonacci, G. Lepert, C. Paterson, and P. Torok, “Elastic suppression in brillouin imaging by destructive interference,” Appl. Phys. Lett. 107(6), 061102 (2015).
[Crossref]

Török, P.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
[Crossref] [PubMed]

Traverso, A. J.

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: A renaissance of brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300–327 (2016).
[Crossref]

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
[Crossref] [PubMed]

Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Background clean-up in Brillouin microspectroscopy of scattering medium,” Opt. Express 22(5), 5410–5415 (2014).
[Crossref] [PubMed]

Troyanova-Wood, M. A.

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: A renaissance of brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300–327 (2016).
[Crossref]

Werner, S.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Winlove, C. P.

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

Wu, W. L.

R. D. Hartschuh, A. Kisliuk, V. Novikov, A. P. Sokolov, P. R. Heyliger, C. M. Flannery, W. L. Johnson, C. L. Soles, and W. L. Wu, “Acoustic modes and elastic properties of polymeric nanostructures,” Appl. Phys. Lett. 87(17), 173121 (2005).
[Crossref]

Yakovlev, V. V.

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: A renaissance of brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300–327 (2016).
[Crossref]

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
[Crossref] [PubMed]

Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Background clean-up in Brillouin microspectroscopy of scattering medium,” Opt. Express 22(5), 5410–5415 (2014).
[Crossref] [PubMed]

Yun, S. H.

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108(20), 203701 (2016).
[Crossref] [PubMed]

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

M. J. Girard, W. J. Dupps, M. Baskaran, G. Scarcelli, S. H. Yun, H. A. Quigley, I. A. Sigal, and N. G. Strouthidis, “Translating ocular biomechanics into clinical practice: current state and future prospects,” Curr. Eye Res. 40(1), 1–18 (2015).
[Crossref] [PubMed]

G. Scarcelli, S. Besner, R. Pineda, P. Kalout, and S. H. Yun, “In vivo biomechanical mapping of normal and keratoconus corneas,” JAMA Ophthalmol. 133(4), 480–482 (2015).
[Crossref] [PubMed]

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20(8), 9197–9202 (2012).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19(11), 10913–10922 (2011).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “Cross-axis cascading of spectral dispersion,” Opt. Lett. 33(24), 2979–2981 (2008).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
[Crossref] [PubMed]

Yun, S.-H.

J. Zhang, A. Fiore, S.-H. Yun, H. Kim, and G. Scarcelli, “Line-scanning Brillouin microscopy for rapid non-invasive mechanical imaging,” Sci. Rep. 6, 35398 (2016).
[Crossref] [PubMed]

S. Besner, G. Scarcelli, R. Pineda, and S.-H. Yun, “In vivo brillouin analysis of the aging crystalline lensin vivo brillouin analysis of the aging human lens,” Invest. Ophthalmol. Vis. Sci. 57(13), 5093–5100 (2016).
[Crossref] [PubMed]

P. Shao, S. Besner, J. Zhang, G. Scarcelli, and S.-H. Yun, “Etalon filters for Brillouin microscopy of highly scattering tissues,” Opt. Express 24(19), 22232–22238 (2016).
[Crossref] [PubMed]

Zhang, J.

P. Shao, S. Besner, J. Zhang, G. Scarcelli, and S.-H. Yun, “Etalon filters for Brillouin microscopy of highly scattering tissues,” Opt. Express 24(19), 22232–22238 (2016).
[Crossref] [PubMed]

J. Zhang, A. Fiore, S.-H. Yun, H. Kim, and G. Scarcelli, “Line-scanning Brillouin microscopy for rapid non-invasive mechanical imaging,” Sci. Rep. 6, 35398 (2016).
[Crossref] [PubMed]

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108(20), 203701 (2016).
[Crossref] [PubMed]

Zhang, L.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: A renaissance of brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300–327 (2016).
[Crossref]

Appl. Phys. Lett. (4)

A. A. Serga, T. Schneider, B. Hillebrands, S. O. Demokritov, and M. P. Kostylev, “Phase-sensitive brillouin light scattering spectroscopy from spin-wave packets,” Appl. Phys. Lett. 89(6), 063506 (2006).
[Crossref]

R. D. Hartschuh, A. Kisliuk, V. Novikov, A. P. Sokolov, P. R. Heyliger, C. M. Flannery, W. L. Johnson, C. L. Soles, and W. L. Wu, “Acoustic modes and elastic properties of polymeric nanostructures,” Appl. Phys. Lett. 87(17), 173121 (2005).
[Crossref]

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108(20), 203701 (2016).
[Crossref] [PubMed]

G. Antonacci, G. Lepert, C. Paterson, and P. Torok, “Elastic suppression in brillouin imaging by destructive interference,” Appl. Phys. Lett. 107(6), 061102 (2015).
[Crossref]

Astrophys. J. (2)

D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633(2), 1191–1200 (2005).
[Crossref]

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552(1), 397–408 (2001).
[Crossref]

Curr. Eye Res. (1)

M. J. Girard, W. J. Dupps, M. Baskaran, G. Scarcelli, S. H. Yun, H. A. Quigley, I. A. Sigal, and N. G. Strouthidis, “Translating ocular biomechanics into clinical practice: current state and future prospects,” Curr. Eye Res. 40(1), 1–18 (2015).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (2)

S. Besner, G. Scarcelli, R. Pineda, and S.-H. Yun, “In vivo brillouin analysis of the aging crystalline lensin vivo brillouin analysis of the aging human lens,” Invest. Ophthalmol. Vis. Sci. 57(13), 5093–5100 (2016).
[Crossref] [PubMed]

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[Crossref] [PubMed]

J. Biophotonics (1)

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
[Crossref] [PubMed]

J. R. Soc. Interface (2)

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
[Crossref] [PubMed]

F. Palombo, C. P. Winlove, R. S. Edginton, E. Green, N. Stone, S. Caponi, M. Madami, and D. Fioretto, “Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering,” J. R. Soc. Interface 11(101), 20140739 (2014).
[Crossref] [PubMed]

JAMA Ophthalmol. (1)

G. Scarcelli, S. Besner, R. Pineda, P. Kalout, and S. H. Yun, “In vivo biomechanical mapping of normal and keratoconus corneas,” JAMA Ophthalmol. 133(4), 480–482 (2015).
[Crossref] [PubMed]

Mon. Not. R. Astron. Soc. (1)

M. Lyot, “A study of the solar corona and prominences without eclipses,” Mon. Not. R. Astron. Soc. 99, 580 (1939).

Nano Lett. (1)

T. Still, R. Sainidou, M. Retsch, U. Jonas, P. Spahn, G. P. Hellmann, and G. Fytas, “The “music” Of core-shell spheres and hollow capsules: influence of the architecture on the mechanical properties at the nanoscale,” Nano Lett. 8(10), 3194–3199 (2008).
[Crossref] [PubMed]

Nat. Methods (1)

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
[Crossref] [PubMed]

Opt. Commun. (1)

J. Sandercock, “Brillouin scattering study of sbsi using a double-passed, stabilised scanning interferometer,” Opt. Commun. 2(2), 73–76 (1970).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. Appl. (1)

G. Antonacci, S. De Panfilis, G. Di Domenico, E. DelRe, and G. Ruocco, “Breaking the contrast limit in single-pass fabry-pérot spectrometers,” Phys. Rev. Appl. 6(5), 054020 (2016).
[Crossref]

Publ. Astron. Soc. Pac. (2)

F. Roddier and C. Roddier, “Stellar coronagraph with phase mask,” Publ. Astron. Soc. Pac. 109(737), 815–820 (1997).
[Crossref]

D. Rouan, P. Riaud, A. Boccaletti, Y. Clenet, and A. Labeyrie, “The four-quadrant phase-mask coronagraph. I. Principle,” Publ. Astron. Soc. Pac. 112(777), 1479–1486 (2000).
[Crossref]

Rep. Prog. Phys. (1)

J. G. Dil, “Brillouin-scattering in condensed matter,” Rep. Prog. Phys. 45(3), 285–334 (1982).
[Crossref]

Rev. Sci. Instrum. (1)

Y. Minami and K. Sakai, “Ripplon on high viscosity liquid,” Rev. Sci. Instrum. 80(1), 014902 (2009).
[Crossref] [PubMed]

Sci. Rep. (2)

G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6, 37217 (2016).
[Crossref] [PubMed]

J. Zhang, A. Fiore, S.-H. Yun, H. Kim, and G. Scarcelli, “Line-scanning Brillouin microscopy for rapid non-invasive mechanical imaging,” Sci. Rep. 6, 35398 (2016).
[Crossref] [PubMed]

Sci. Signal. (1)

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Other (3)

R. W. Boyd, “Nonlinear Optics,” 3rd Edition (2008).

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).

“Interfero-coronagraphy: A tool for detection of faint companions,” Workshop on Brown Dwarfs and Extrasolar Planets; Mar 17–21 1997; Puerto La Cruz, Spain.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Illustration of diffraction noise in the double stage VIPA spectrometer: (a) Schematics of the spectrometer. The first VIPA pattern is observed at the focal plane of a cylindrical lens (plane A) and imaged via a 4-f imaging system and through a second VIPA onto a second plane (plane B). Finally the pattern is recorded by a camera (planes A, B and C are conjugated). (b) An illustration of the Airy patterns and the Brillouin signals as recorded by the camera, under a high back-reflection condition. Two vague Brillouin peaks located within the Airy patterns can be barely distinguished from the background noise. (c) By physically blocking the periphery of the field of view the majority of the light intensity is blocked, yet, the diffraction pattern is still present. (d) In the absence of the diffraction patterns very faint signals can be visualized.

Fig. 2
Fig. 2

Setup and quantification of the coronagraphy effect: (a) An expanded laser beam (red path) is focused into a sample by a 0.7 NA lens (Olympus, LUCPLFLN 60X). Back scattered light (orange path) is collected in an epi-detection configuration and coupled into a single mode fiber. The collimated beam exiting the fiber is focused by a cylindrical lens (Cy1) into the first VIPA; the pattern is gradually filtered and focused onto a vertical slit (slit 1) placed in the focal plane of a second cylindrical lens (Cy2). Next, the pattern is imaged by a 4-f imaging system and through a second VIPA onto a horizontal slit (slit 2). The final plane of the spectrometer (plane A) is imaged onto the camera (plane C) via another 4-f imaging system with a spatial filter (Lyot stop) located in the Fourier plane (plane B). (b, c) Brillouin signal from the interface between water and a plastic cuvette, recorded with 27 mW laser power at the sample and 100 ms integration time. The back reflection from the interface was measured to be ~0.7%. (b) With the Lyot stop open the background overcomes the Brillouin signal. (c) By closing the Lyot stop, a clean Brillouin signal can be observed. (d) Average line plot of the signal width in b and c, demonstrating a ~20 dB noise reduction obtained by the Lyot stop.

Fig. 3
Fig. 3

(a) Noise levels as a function of Lyot aperture diameter, closing the aperture reduces the noise levels (red symbols). The noise was determined by averaging the value of 30 pixels at the center of the image; the error bars represent the standard deviation over the same region. (b) Brillouin signal intensity as a function of the Lyot stop diameter. For Lyot stop diameters larger than 1 mm the signal intensity is not affected. Error bars represent the standard deviation of 25 repeated measurements of the Brillouin peak intensity (average of Stokes and anti-Stokes signals). All measurements were performed on a water sample as in Fig. 2.

Fig. 4
Fig. 4

Brillouin imaging of a micro-fluidic channel: (a) Illustration of the PDMS micro fluidic channel (width = 250 µm, height = 360 µm). Scanning was performed across the XZ plane highlighted in red. Background noise levels defined as the average intensity value between the Brillouin peaks with (b) the Lyot stop widely open and (c) with a closed Lyot stop (scale bar = 100 µm). The noise from the interfaces was nearly removed for the latter. False color bar indicates camera counts on log scale. Brillouin shifts recorded with (d) an open Lyot stop and (e) a closed Lyot stop. For the former there are clear artifacts up to 50 microns away from the interfaces, whereas the latter show a continuous Brillouin shift up to the interface between air and PDMS. (f) Line plots of the Brillouin shift measurements across the central part of microfluidic channel denoted by a dashed line in Figs. 4(d) and 4(e), for an opened Lyot stop (red) and a closed Lyot stop (blue).

Metrics