Abstract

The effect of dielectric cladding on the waveguiding characteristics of an array of metallic pillars on a metal plane in the sub-terahertz band is explored. Firstly, a 2D structure made up of a metallic grating of infinite lateral width with various dielectric overlays is analytically studied to get more insight into the problem. Then the ideas inferred from the 2D structure are applied to the realistic 3D structure that has a finite lateral width. It is shown that by proper design of the dielectric medium surrounding the metallic structure the modal field confinement can be enhanced in a broad frequency band resulting in a low bending loss. Especially, by integrating the pillars into a silicon channel of finite size and evacuating the spaces between them a highly confined spoof surface plasmon is supported and a considerable reduction in the bending loss over a broad bandwidth is observed. Due to small cross-sectional size, low bending loss and ease of fabrication, the proposed waveguide is a promising choice for millimeter-wave and terahertz integrated circuits; particularly those based on the silicon technology.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Andrews, “Microstructured terahertz waveguides,” J. Phys. D Appl. Phys. 47(37), 374004 (2014).
    [Crossref]
  2. O. Mitrofanov, R. James, F. A. Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci, Technol. 1(1), 124–132 (2011).
    [Crossref]
  3. Y. J. Ding, “Terahertz parametric converters by use of novel metallic-dielectric hybrid waveguides,” J. Opt. Soc. Am. B 23(7), 1354–1359 (2006).
    [Crossref]
  4. K. Saito, T. Tanabe, and Y. Oyama, “Terahertz-wave detection in a GaP-based hybrid waveguide using a nonlinear optical parametric process,” J. Opt. Soc. Am. B 32(4), 708–713 (2015).
    [Crossref]
  5. W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16(9), 6216–6226 (2008).
    [Crossref] [PubMed]
  6. X. Shi, J. Qin, and Z. Han, “Enhanced terahertz sensing with a coupled comb-shaped spoof surface plasmon waveguide,” Opt. Express 25(1), 278–283 (2017).
    [Crossref] [PubMed]
  7. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref] [PubMed]
  8. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
    [Crossref]
  9. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
    [Crossref]
  10. M. Martl, J. Darmo, K. Unterrainer, and E. Gornik, “Excitation of terahertz surface plasmon polaritons on etched groove gratings,” J. Opt. Soc. Am. B 26(3), 554–558 (2009).
    [Crossref]
  11. M. Ahmadi-Boroujeni and M. Shahabadi, “Application of the generalized multipole technique to the analysis of a ladder parallel-plate waveguide for terahertz guided-wave applications,” J. Opt. Soc. Am. B 27(10), 2061–2067 (2010).
    [Crossref]
  12. M. Ahmadi-Boroujeni, K. Altmann, B. Scherger, C. Jansen, M. Shahabadi, and M. Koch, ““Terahertz parallel-plate ladder waveguide with highly confined guided modes,” IEEE Trans. THz,” Sci. Tech. (Paris) 3(1), 87–95 (2013).
  13. D. Martín-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
    [Crossref] [PubMed]
  14. Y. G. Ma, L. Lan, S. M. Zhong, and C. K. Ong, “Experimental demonstration of subwavelength domino plasmon devices for compact high-frequency circuit,” Opt. Express 19(22), 21189–21198 (2011).
    [Crossref] [PubMed]
  15. X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D Appl. Phys. 45(50), 505104 (2012).
    [Crossref]
  16. X. Wan and T. J. Cui, “Guiding spoof surface plasmon polaritons by infinitely thin grooved metal strip,” AIP Adv. 4(4), 047137 (2014).
    [Crossref]
  17. L. Tian, Z. Zhang, J. Liu, K. Zhou, Y. Gao, and S. Liu, “Compact spoof surface plasmon polaritons waveguide drilled with L-shaped grooves,” Opt. Express 24(25), 28693–28703 (2016).
    [Crossref] [PubMed]
  18. B. You, J.-Y. Lu, W.-L. Chang, C.-P. Yu, T.-A. Liu, and J.-L. Peng, “Subwavelength confined terahertz waves on planar waveguides using metallic gratings,” Opt. Express 21(5), 6009–6019 (2013).
    [Crossref] [PubMed]
  19. C. Qin, B. Wang, H. Long, K. Wang, and P. Lu, “Bloch mode engineering in graphene modulated periodic waveguides and cavities,” J. Opt. Soc. Am. B 32(8), 1748–1753 (2015).
    [Crossref]
  20. W. Zhao, D. Ju, and Y. Jiang, “Efficient localization of terahertz waves within a gradient dielectric-filled metallic grating,” Appl. Phys. Express 7(12), 124301 (2014).
    [Crossref]
  21. M. van Exter and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett. 56(17), 1694–1696 (1990).
    [Crossref]
  22. A. Malekabadi, S. A. Charlebois, D. Deslandes, and F. Boone, ““High-resistivity silicon dielectric ribbon waveguide for single-mode low-loss propagation at F/G-bands,” IEEE Trans. THz,” Sci. Tech. (Paris) 4(4), 447–453 (2014).
  23. N. Ranjkesh, M. Basha, A. Taeb, and S. Safavi-Naeini, ““Silicon-on-glass dielectric waveguide—Part II: For THz applications,” IEEE Trans. THz,” Sci. Tech. (Paris) 5(2), 280–287 (2015).
  24. S. Li, M. M. Jadidi, T. E. Murphy, and G. Kumar, “Terahertz surface plasmon polaritons on a semiconductor surface structured with periodic V-grooves,” Opt. Express 21(6), 7041–7049 (2013).
    [Crossref] [PubMed]
  25. K. M. Leong, K. Hennig, C. Zhang, R. N. Elmadjian, Z. Zhou, B. S. Gorospe, P. P. Chang-Chien, V. Radisic, and W. R. Deal, “WR1. 5 silicon micromachined waveguide components and active circuit integration methodology,” IEEE Trans. Microw. Theory Tech. 60(4), 998–1005 (2012).
    [Crossref]
  26. M. Vahidpour and K. Sarabandi, ““2.5 D micromachined 240 GHz cavity-backed coplanar waveguide to rectangular waveguide transition,” IEEE Trans. THz,” Sci. Tech. (Paris) 2(3), 315–322 (2012).
  27. L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
    [Crossref]

2017 (1)

2016 (1)

2015 (4)

K. Saito, T. Tanabe, and Y. Oyama, “Terahertz-wave detection in a GaP-based hybrid waveguide using a nonlinear optical parametric process,” J. Opt. Soc. Am. B 32(4), 708–713 (2015).
[Crossref]

C. Qin, B. Wang, H. Long, K. Wang, and P. Lu, “Bloch mode engineering in graphene modulated periodic waveguides and cavities,” J. Opt. Soc. Am. B 32(8), 1748–1753 (2015).
[Crossref]

N. Ranjkesh, M. Basha, A. Taeb, and S. Safavi-Naeini, ““Silicon-on-glass dielectric waveguide—Part II: For THz applications,” IEEE Trans. THz,” Sci. Tech. (Paris) 5(2), 280–287 (2015).

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

2014 (4)

W. Zhao, D. Ju, and Y. Jiang, “Efficient localization of terahertz waves within a gradient dielectric-filled metallic grating,” Appl. Phys. Express 7(12), 124301 (2014).
[Crossref]

X. Wan and T. J. Cui, “Guiding spoof surface plasmon polaritons by infinitely thin grooved metal strip,” AIP Adv. 4(4), 047137 (2014).
[Crossref]

A. Malekabadi, S. A. Charlebois, D. Deslandes, and F. Boone, ““High-resistivity silicon dielectric ribbon waveguide for single-mode low-loss propagation at F/G-bands,” IEEE Trans. THz,” Sci. Tech. (Paris) 4(4), 447–453 (2014).

S. R. Andrews, “Microstructured terahertz waveguides,” J. Phys. D Appl. Phys. 47(37), 374004 (2014).
[Crossref]

2013 (3)

2012 (3)

K. M. Leong, K. Hennig, C. Zhang, R. N. Elmadjian, Z. Zhou, B. S. Gorospe, P. P. Chang-Chien, V. Radisic, and W. R. Deal, “WR1. 5 silicon micromachined waveguide components and active circuit integration methodology,” IEEE Trans. Microw. Theory Tech. 60(4), 998–1005 (2012).
[Crossref]

M. Vahidpour and K. Sarabandi, ““2.5 D micromachined 240 GHz cavity-backed coplanar waveguide to rectangular waveguide transition,” IEEE Trans. THz,” Sci. Tech. (Paris) 2(3), 315–322 (2012).

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D Appl. Phys. 45(50), 505104 (2012).
[Crossref]

2011 (2)

Y. G. Ma, L. Lan, S. M. Zhong, and C. K. Ong, “Experimental demonstration of subwavelength domino plasmon devices for compact high-frequency circuit,” Opt. Express 19(22), 21189–21198 (2011).
[Crossref] [PubMed]

O. Mitrofanov, R. James, F. A. Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci, Technol. 1(1), 124–132 (2011).
[Crossref]

2010 (2)

2009 (1)

2008 (2)

W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16(9), 6216–6226 (2008).
[Crossref] [PubMed]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

2006 (1)

2005 (1)

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

2004 (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

1990 (1)

M. van Exter and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett. 56(17), 1694–1696 (1990).
[Crossref]

Agrawal, A.

Ahmadi-Boroujeni, M.

M. Ahmadi-Boroujeni, K. Altmann, B. Scherger, C. Jansen, M. Shahabadi, and M. Koch, ““Terahertz parallel-plate ladder waveguide with highly confined guided modes,” IEEE Trans. THz,” Sci. Tech. (Paris) 3(1), 87–95 (2013).

M. Ahmadi-Boroujeni and M. Shahabadi, “Application of the generalized multipole technique to the analysis of a ladder parallel-plate waveguide for terahertz guided-wave applications,” J. Opt. Soc. Am. B 27(10), 2061–2067 (2010).
[Crossref]

Altmann, K.

M. Ahmadi-Boroujeni, K. Altmann, B. Scherger, C. Jansen, M. Shahabadi, and M. Koch, ““Terahertz parallel-plate ladder waveguide with highly confined guided modes,” IEEE Trans. THz,” Sci. Tech. (Paris) 3(1), 87–95 (2013).

Andrews, S. R.

S. R. Andrews, “Microstructured terahertz waveguides,” J. Phys. D Appl. Phys. 47(37), 374004 (2014).
[Crossref]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Basha, M.

N. Ranjkesh, M. Basha, A. Taeb, and S. Safavi-Naeini, ““Silicon-on-glass dielectric waveguide—Part II: For THz applications,” IEEE Trans. THz,” Sci. Tech. (Paris) 5(2), 280–287 (2015).

Boone, F.

A. Malekabadi, S. A. Charlebois, D. Deslandes, and F. Boone, ““High-resistivity silicon dielectric ribbon waveguide for single-mode low-loss propagation at F/G-bands,” IEEE Trans. THz,” Sci. Tech. (Paris) 4(4), 447–453 (2014).

Chang, W.-L.

Chang-Chien, P. P.

K. M. Leong, K. Hennig, C. Zhang, R. N. Elmadjian, Z. Zhou, B. S. Gorospe, P. P. Chang-Chien, V. Radisic, and W. R. Deal, “WR1. 5 silicon micromachined waveguide components and active circuit integration methodology,” IEEE Trans. Microw. Theory Tech. 60(4), 998–1005 (2012).
[Crossref]

Charlebois, S. A.

A. Malekabadi, S. A. Charlebois, D. Deslandes, and F. Boone, ““High-resistivity silicon dielectric ribbon waveguide for single-mode low-loss propagation at F/G-bands,” IEEE Trans. THz,” Sci. Tech. (Paris) 4(4), 447–453 (2014).

Chen, C.

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

Chen, X.

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

Cui, T. J.

X. Wan and T. J. Cui, “Guiding spoof surface plasmon polaritons by infinitely thin grooved metal strip,” AIP Adv. 4(4), 047137 (2014).
[Crossref]

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D Appl. Phys. 45(50), 505104 (2012).
[Crossref]

Darmo, J.

Deal, W. R.

K. M. Leong, K. Hennig, C. Zhang, R. N. Elmadjian, Z. Zhou, B. S. Gorospe, P. P. Chang-Chien, V. Radisic, and W. R. Deal, “WR1. 5 silicon micromachined waveguide components and active circuit integration methodology,” IEEE Trans. Microw. Theory Tech. 60(4), 998–1005 (2012).
[Crossref]

Deslandes, D.

A. Malekabadi, S. A. Charlebois, D. Deslandes, and F. Boone, ““High-resistivity silicon dielectric ribbon waveguide for single-mode low-loss propagation at F/G-bands,” IEEE Trans. THz,” Sci. Tech. (Paris) 4(4), 447–453 (2014).

Ding, Y. J.

Elmadjian, R. N.

K. M. Leong, K. Hennig, C. Zhang, R. N. Elmadjian, Z. Zhou, B. S. Gorospe, P. P. Chang-Chien, V. Radisic, and W. R. Deal, “WR1. 5 silicon micromachined waveguide components and active circuit integration methodology,” IEEE Trans. Microw. Theory Tech. 60(4), 998–1005 (2012).
[Crossref]

Fernández, F. A.

O. Mitrofanov, R. James, F. A. Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci, Technol. 1(1), 124–132 (2011).
[Crossref]

Fernandez-Dominguez, A. I.

Fernández-Domínguez, A. I.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Gao, X.

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D Appl. Phys. 45(50), 505104 (2012).
[Crossref]

Gao, Y.

Garcia-Vidal, F. J.

D. Martín-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

García-Vidal, F. J.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Gornik, E.

Gorospe, B. S.

K. M. Leong, K. Hennig, C. Zhang, R. N. Elmadjian, Z. Zhou, B. S. Gorospe, P. P. Chang-Chien, V. Radisic, and W. R. Deal, “WR1. 5 silicon micromachined waveguide components and active circuit integration methodology,” IEEE Trans. Microw. Theory Tech. 60(4), 998–1005 (2012).
[Crossref]

Grischkowsky, D.

M. van Exter and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett. 56(17), 1694–1696 (1990).
[Crossref]

Gu, C.

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

Han, Z.

Harrington, J. A.

O. Mitrofanov, R. James, F. A. Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci, Technol. 1(1), 124–132 (2011).
[Crossref]

Hennig, K.

K. M. Leong, K. Hennig, C. Zhang, R. N. Elmadjian, Z. Zhou, B. S. Gorospe, P. P. Chang-Chien, V. Radisic, and W. R. Deal, “WR1. 5 silicon micromachined waveguide components and active circuit integration methodology,” IEEE Trans. Microw. Theory Tech. 60(4), 998–1005 (2012).
[Crossref]

Jadidi, M. M.

James, R.

O. Mitrofanov, R. James, F. A. Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci, Technol. 1(1), 124–132 (2011).
[Crossref]

Jansen, C.

M. Ahmadi-Boroujeni, K. Altmann, B. Scherger, C. Jansen, M. Shahabadi, and M. Koch, ““Terahertz parallel-plate ladder waveguide with highly confined guided modes,” IEEE Trans. THz,” Sci. Tech. (Paris) 3(1), 87–95 (2013).

Jiang, W. X.

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D Appl. Phys. 45(50), 505104 (2012).
[Crossref]

Jiang, Y.

W. Zhao, D. Ju, and Y. Jiang, “Efficient localization of terahertz waves within a gradient dielectric-filled metallic grating,” Appl. Phys. Express 7(12), 124301 (2014).
[Crossref]

Ju, D.

W. Zhao, D. Ju, and Y. Jiang, “Efficient localization of terahertz waves within a gradient dielectric-filled metallic grating,” Appl. Phys. Express 7(12), 124301 (2014).
[Crossref]

Koch, M.

M. Ahmadi-Boroujeni, K. Altmann, B. Scherger, C. Jansen, M. Shahabadi, and M. Koch, ““Terahertz parallel-plate ladder waveguide with highly confined guided modes,” IEEE Trans. THz,” Sci. Tech. (Paris) 3(1), 87–95 (2013).

Kumar, G.

Lan, L.

Leong, K. M.

K. M. Leong, K. Hennig, C. Zhang, R. N. Elmadjian, Z. Zhou, B. S. Gorospe, P. P. Chang-Chien, V. Radisic, and W. R. Deal, “WR1. 5 silicon micromachined waveguide components and active circuit integration methodology,” IEEE Trans. Microw. Theory Tech. 60(4), 998–1005 (2012).
[Crossref]

Li, S.

Li, Z.

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

Liu, J.

Liu, L.

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

Liu, S.

Liu, T.-A.

Long, H.

Lu, J.-Y.

Lu, P.

Ma, H. F.

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D Appl. Phys. 45(50), 505104 (2012).
[Crossref]

Ma, Y. G.

Maier, S. A.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Malekabadi, A.

A. Malekabadi, S. A. Charlebois, D. Deslandes, and F. Boone, ““High-resistivity silicon dielectric ribbon waveguide for single-mode low-loss propagation at F/G-bands,” IEEE Trans. THz,” Sci. Tech. (Paris) 4(4), 447–453 (2014).

Martín-Cano, D.

Martin-Moreno, L.

D. Martín-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

Martín-Moreno, L.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Martl, M.

Mavrogordatos, T. K.

O. Mitrofanov, R. James, F. A. Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci, Technol. 1(1), 124–132 (2011).
[Crossref]

Mitrofanov, O.

O. Mitrofanov, R. James, F. A. Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci, Technol. 1(1), 124–132 (2011).
[Crossref]

Moreno, E.

Murphy, T. E.

Nahata, A.

Nesterov, M. L.

Ning, P.

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

Ong, C. K.

Oyama, Y.

Pendry, J. B.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Peng, J.-L.

Qin, C.

Qin, J.

Radisic, V.

K. M. Leong, K. Hennig, C. Zhang, R. N. Elmadjian, Z. Zhou, B. S. Gorospe, P. P. Chang-Chien, V. Radisic, and W. R. Deal, “WR1. 5 silicon micromachined waveguide components and active circuit integration methodology,” IEEE Trans. Microw. Theory Tech. 60(4), 998–1005 (2012).
[Crossref]

Ranjkesh, N.

N. Ranjkesh, M. Basha, A. Taeb, and S. Safavi-Naeini, ““Silicon-on-glass dielectric waveguide—Part II: For THz applications,” IEEE Trans. THz,” Sci. Tech. (Paris) 5(2), 280–287 (2015).

Safavi-Naeini, S.

N. Ranjkesh, M. Basha, A. Taeb, and S. Safavi-Naeini, ““Silicon-on-glass dielectric waveguide—Part II: For THz applications,” IEEE Trans. THz,” Sci. Tech. (Paris) 5(2), 280–287 (2015).

Saito, K.

Sarabandi, K.

M. Vahidpour and K. Sarabandi, ““2.5 D micromachined 240 GHz cavity-backed coplanar waveguide to rectangular waveguide transition,” IEEE Trans. THz,” Sci. Tech. (Paris) 2(3), 315–322 (2012).

Scherger, B.

M. Ahmadi-Boroujeni, K. Altmann, B. Scherger, C. Jansen, M. Shahabadi, and M. Koch, ““Terahertz parallel-plate ladder waveguide with highly confined guided modes,” IEEE Trans. THz,” Sci. Tech. (Paris) 3(1), 87–95 (2013).

Shahabadi, M.

M. Ahmadi-Boroujeni, K. Altmann, B. Scherger, C. Jansen, M. Shahabadi, and M. Koch, ““Terahertz parallel-plate ladder waveguide with highly confined guided modes,” IEEE Trans. THz,” Sci. Tech. (Paris) 3(1), 87–95 (2013).

M. Ahmadi-Boroujeni and M. Shahabadi, “Application of the generalized multipole technique to the analysis of a ladder parallel-plate waveguide for terahertz guided-wave applications,” J. Opt. Soc. Am. B 27(10), 2061–2067 (2010).
[Crossref]

Shi, J. H.

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D Appl. Phys. 45(50), 505104 (2012).
[Crossref]

Shi, X.

Taeb, A.

N. Ranjkesh, M. Basha, A. Taeb, and S. Safavi-Naeini, ““Silicon-on-glass dielectric waveguide—Part II: For THz applications,” IEEE Trans. THz,” Sci. Tech. (Paris) 5(2), 280–287 (2015).

Tanabe, T.

Tian, L.

Unterrainer, K.

Vahidpour, M.

M. Vahidpour and K. Sarabandi, ““2.5 D micromachined 240 GHz cavity-backed coplanar waveguide to rectangular waveguide transition,” IEEE Trans. THz,” Sci. Tech. (Paris) 2(3), 315–322 (2012).

van Exter, M.

M. van Exter and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett. 56(17), 1694–1696 (1990).
[Crossref]

Wan, X.

X. Wan and T. J. Cui, “Guiding spoof surface plasmon polaritons by infinitely thin grooved metal strip,” AIP Adv. 4(4), 047137 (2014).
[Crossref]

Wang, B.

Wang, K.

Williams, C. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Xu, B.

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

Yan, J.

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

You, B.

Yu, C.-P.

Zhang, C.

K. M. Leong, K. Hennig, C. Zhang, R. N. Elmadjian, Z. Zhou, B. S. Gorospe, P. P. Chang-Chien, V. Radisic, and W. R. Deal, “WR1. 5 silicon micromachined waveguide components and active circuit integration methodology,” IEEE Trans. Microw. Theory Tech. 60(4), 998–1005 (2012).
[Crossref]

Zhang, Z.

Zhao, W.

W. Zhao, D. Ju, and Y. Jiang, “Efficient localization of terahertz waves within a gradient dielectric-filled metallic grating,” Appl. Phys. Express 7(12), 124301 (2014).
[Crossref]

Zhong, S. M.

Zhou, K.

Zhou, Z.

K. M. Leong, K. Hennig, C. Zhang, R. N. Elmadjian, Z. Zhou, B. S. Gorospe, P. P. Chang-Chien, V. Radisic, and W. R. Deal, “WR1. 5 silicon micromachined waveguide components and active circuit integration methodology,” IEEE Trans. Microw. Theory Tech. 60(4), 998–1005 (2012).
[Crossref]

Zhu, W.

AIP Adv. (2)

X. Wan and T. J. Cui, “Guiding spoof surface plasmon polaritons by infinitely thin grooved metal strip,” AIP Adv. 4(4), 047137 (2014).
[Crossref]

L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, and X. Chen, “High-efficiency transition between rectangular waveguide and domino plasmonic waveguide,” AIP Adv. 5(2), 027105 (2015).
[Crossref]

Appl. Phys. Express (1)

W. Zhao, D. Ju, and Y. Jiang, “Efficient localization of terahertz waves within a gradient dielectric-filled metallic grating,” Appl. Phys. Express 7(12), 124301 (2014).
[Crossref]

Appl. Phys. Lett. (1)

M. van Exter and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett. 56(17), 1694–1696 (1990).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

K. M. Leong, K. Hennig, C. Zhang, R. N. Elmadjian, Z. Zhou, B. S. Gorospe, P. P. Chang-Chien, V. Radisic, and W. R. Deal, “WR1. 5 silicon micromachined waveguide components and active circuit integration methodology,” IEEE Trans. Microw. Theory Tech. 60(4), 998–1005 (2012).
[Crossref]

IEEE Trans. THz Sci, Technol. (1)

O. Mitrofanov, R. James, F. A. Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci, Technol. 1(1), 124–132 (2011).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. Opt. Soc. Am. B (5)

J. Phys. D Appl. Phys. (2)

S. R. Andrews, “Microstructured terahertz waveguides,” J. Phys. D Appl. Phys. 47(37), 374004 (2014).
[Crossref]

X. Gao, J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Dual-band spoof surface plasmon polaritons based on composite-periodic gratings,” J. Phys. D Appl. Phys. 45(50), 505104 (2012).
[Crossref]

Nat. Photonics (1)

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Opt. Express (7)

Sci. Tech. (Paris) (4)

M. Vahidpour and K. Sarabandi, ““2.5 D micromachined 240 GHz cavity-backed coplanar waveguide to rectangular waveguide transition,” IEEE Trans. THz,” Sci. Tech. (Paris) 2(3), 315–322 (2012).

A. Malekabadi, S. A. Charlebois, D. Deslandes, and F. Boone, ““High-resistivity silicon dielectric ribbon waveguide for single-mode low-loss propagation at F/G-bands,” IEEE Trans. THz,” Sci. Tech. (Paris) 4(4), 447–453 (2014).

N. Ranjkesh, M. Basha, A. Taeb, and S. Safavi-Naeini, ““Silicon-on-glass dielectric waveguide—Part II: For THz applications,” IEEE Trans. THz,” Sci. Tech. (Paris) 5(2), 280–287 (2015).

M. Ahmadi-Boroujeni, K. Altmann, B. Scherger, C. Jansen, M. Shahabadi, and M. Koch, ““Terahertz parallel-plate ladder waveguide with highly confined guided modes,” IEEE Trans. THz,” Sci. Tech. (Paris) 3(1), 87–95 (2013).

Science (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

(a) Perspective view, (b) front view and (c) side view of proposed hybrid plasmonic waveguide based on an array of metallic pillars (gray regions) on a metal plate embedded in a dielectric cladding composed of regions with dielectric constants ε1, ε2, and ε3.

Fig. 2
Fig. 2

Dispersion diagram of the hybrid dielectric-metallic grating with d = 50μm, a = 40μm, ε1 = ε2 = 1, and for different dielectric constants of ε3 = 1, 3, 11.9 and corresponding heights of h=240 μm , 140 μm , 72 μm .

Fig. 3
Fig. 3

Dispersion curves of the hybrid dielectric-metallic grating with d = 50μm and a = 40μm covered by silicon (ε1 = ε2 = 11.9) for the grooves filled with silicon (solid line, ε3 = 11.9 and h = 65μm) and air (dashed line, ε3 = 1 and h = 165μm). Narrower dashed line is the light line in silicon.

Fig. 4
Fig. 4

Decaying length of hybrid grating of period d = 50μm and a = 40μm normalized to the wavelength in silicon. Solid curve: all the space is homogeneously filled with silicon (ε1 = ε2 = ε3 = 11.9 and h = 65μm). Dashed curve: the grooves are filled with air (ε1 = ε2 = 11.9, ε3 = 1 and h = 165μm).

Fig. 5
Fig. 5

Dispersion curves of a hybrid grating with d = 50μm, a = 40μm, and h = 65μm for various thicknesses of the silicon overlay h 1 =10μm, 50μm, 250μm , and h 1 = .

Fig. 6
Fig. 6

Normalized decaying length of the hybrid grating with d = 50μm, a = 40μm, and h = 65μm for various thicknesses of the silicon overlay: h1 = 50μm (dotted line), h1 = 250μm (solid line), and h1→∞ (dashed line).

Fig. 7
Fig. 7

dispersion curves of a metallic grating with d = 50μm, a = 40μm and the resonant frequency of 300GHz embedded in various dielectric structures: a homogeneous silicon space (ε1 = ε2 = ε3 = 11.9 and h = 65μm), a finite silicon overlay (ε1 = 1, ε2 = ε3 = 11.9, h1 = 50μm, and h = 65μm), an infinite silicon overlay with air-filled grooves (ε1 = ε2 = 11.9, ε3 = 1 and h = 165μm, a finite silicon overlay with air-filled grooves (ε2 = 11.9, ε1 = ε3 = 1, h1 = 50μm, and h = 165μm).

Fig. 8
Fig. 8

dispersion curves of an array of metallic pillars of width l = 50μm and period d = 50μm embedded in various dielectric structures: a homogeneous silicon space (C), a finite-size silicon coating (DR), an infinite silicon overlay with air-filled grooves (C-AF), and a finite-size silicon coating with air-filled grooves (DR-AF). The width of the grooves is a = 40μm and the resonant frequency is kept fixed by choosing a proper height for the pillars.

Fig. 9
Fig. 9

Normalized electric field intensity at the cross-section of the waveguides at 200GHz: a) conventional domino waveguide (C), b) conventional domino waveguide with air-filled grooves (C-AF), c) domino waveguide embedded in a silicon ridge (DR), and d) domino waveguide embedded in a silicon ridge with air-filled grooves (DR-AF). Waveguide dimensions are the same as those given in Fig. 8.

Fig. 10
Fig. 10

Behavior of transverse electric field (Ez) in the vicinity of a groove in a conventional SSP waveguide (C) in comparison with that of a waveguide with air-filled grooves (C-AF) at 200GHz. The shading highlights the interior region of the groove.

Fig. 11
Fig. 11

Top view of a bend with radius of R bend (a) and the normalized electric field intensity in the plane of the bend at 200GHz for the waveguide structures C (b), C-AF (c), DR (d), and DR-AF (e).

Fig. 12
Fig. 12

Bending loss versus frequency for various waveguide configurations with d = 50μm, l = 50μm, a = 40μm, and Rbend = 255μm. Solid curve is for the metallic pillar array covered by an unbounded silicon medium (C). Dashed one is for air-filled grooves in an unbounded silicon medium (C-AF). Dash-dot curve pertains to the waveguide with finite-size silicon coating (DR) and the dotted one is for the air-filled grooves in a finite-size silicon coating (DR-AF).

Fig. 13
Fig. 13

Normalized propagation lengths of different waveguides mentioned in Fig. 12.

Fig. 14
Fig. 14

Overall transmission along a bend of radius R=255μm connecting two straight waveguide sections of length 1mm for different waveguide configurations mentioned in Fig. 12. The inset shows the bend structure along with the adapters used for S-parameter calculation.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

H 1y = n= A n exp( j k xn x )exp[ α 1n ( z+ h 1 )]
H 2y = n= + exp( j k xn x ) [ B n exp( α 2n z )+ C n exp( α 2n z ) ]
H 3y =Dcos[ k 3 ( zh ) ]
( d a )cot( k 3 h )= n= ( η 3 η 2n )( 1+ P n 1 P n ) S n 2
( d a )cot( k 3 h )= n= ( η 3 η 2n ) S n 2 .

Metrics