Abstract

We demonstrate the controllable optomechanical coupling and Drude self-pulsation plasma locking in chip-scale optomechanical cavities. The optomechanical coupling between the optical and mechanical degrees-of-freedom is dependent on the intracavity energy via the coupled fiber position. With the deterministic optomechanical stiffening, the interaction between optomechanical oscillation and self-pulsation can be controlled. Intracavity locking with 1/6 subharmonics is obtained over a wide optical detuning range of 190.01–192.23 THz. These results bring new insights into implementations of nonlinear dynamics at mesoscopic scale, with potential applications from photonic signal processing to nonlinear dynamic networks.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A chip-scale integrated cavity-electro-optomechanics platform

M. Winger, T. D. Blasius, T. P. Mayer Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter
Opt. Express 19(25) 24905-24921 (2011)

Optomechanical oscillator pumped and probed by optically two isolated photonic crystal cavity systems

Feng Tian, Hisashi Sumikura, Eiichi Kuramochi, Hideaki Taniyama, Masato Takiguchi, and Masaya Notomi
Opt. Express 24(24) 28039-28055 (2016)

Optical coupling to nanoscale optomechanical cavities for near quantum-limited motion transduction

Justin D. Cohen, Seán M. Meenehan, and Oskar Painter
Opt. Express 21(9) 11227-11236 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
    [Crossref]
  2. J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
    [Crossref] [PubMed]
  3. Y.-C. Liu, Y. F. Xiao, X. Luan, and C. W. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110(15), 153606 (2013).
    [Crossref] [PubMed]
  4. Y.-C. Liu, Y.-F. Xiao, X. Luan, Q. Gong, and C. W. Wong, “Coupled cavities for motional ground-state cooling and strong optomechanical coupling,” Phys. Rev. A 91(3), 033818 (2015).
    [Crossref]
  5. A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
    [Crossref] [PubMed]
  6. M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 276–287 (2010).
    [Crossref]
  7. H. Miao, K. Srinivasan, and V. Aksyuk, “A microelectromechanically controlled cavity optomechanical sensing system,” New J. Phys. 14(7), 075015 (2012).
    [Crossref]
  8. E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
    [Crossref] [PubMed]
  9. A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
    [Crossref]
  10. F. Guzmán Cervantes, L. Kumanchik, J. Pratt, and J. M. Taylor, “High sensitivity optomechanical reference accelerometer over 10 kHz,” Appl. Phys. Lett. 104(22), 221111 (2014).
    [Crossref]
  11. C. Comi, A. Corigliano, G. Langfelder, A. Longoni, A. Tocchio, and B. Simoni, “A resonant microaccelerometer with high sensitivity operating in an oscillating circuit,” J. Micromech. Syst. 19(5), 1140–1152 (2010).
    [Crossref]
  12. J. G. F. Flores, Y. Huang, Y. Li, Z. Cai, V. Iaia, M. Yu, D.-L. Kwong, L. Churchill, and C. W. Wong, “A chip-scale sub-mg/Hz1/2 optomechanical DC accelerometer at the thermodynamical limit,” in Proceedings of CLEO: Applications and Technology, (Optical Society of America, 2016), paper AM4K. 6.
  13. Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, “Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities,” Opt. Express 18(23), 23844–23856 (2010).
    [Crossref] [PubMed]
  14. J. Zheng, X. Sun, Y. Li, M. Poot, A. Dadgar, N. N. Shi, W. H. P. Pernice, H. X. Tang, and C. W. Wong, “Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 20(24), 26486–26498 (2012).
    [Crossref] [PubMed]
  15. X. Luan, Y. Huang, Y. Li, J. F. McMillan, J. Zheng, S.-W. Huang, P.-C. Hsieh, T. Gu, D. Wang, A. Hati, D. A. Howe, G. Wen, M. Yu, G. Lo, D.-L. Kwong, and C. W. Wong, “An integrated low phase noise radiation-pressure-driven optomechanical oscillator chipset,” Sci. Rep. 4, 6842 (2014).
    [Crossref] [PubMed]
  16. J. Gao, J. F. McMillan, M.-C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010).
    [Crossref]
  17. J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett. 104(6), 061104 (2014).
    [Crossref]
  18. T. Yamamoto, M. Notomi, H. Taniyama, E. Kuramochi, Y. Yoshikawa, Y. Torii, and T. Kuga, “Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab,” Opt. Express 16(18), 13809–13817 (2008).
    [Crossref] [PubMed]
  19. J. Gao, P. Heider, C. J. Chen, X. Yang, C. A. Husko, and C. W. Wong, “Observations of interior whispering gallery modes in asymmetric optical resonators with rational caustics,” Appl. Phys. Lett. 91(18), 181101 (2007).
    [Crossref]
  20. D. Navarro-Urrios, N. E. Capuj, J. Gomis-Bresco, F. Alzina, A. Pitanti, A. Griol, A. Martínez, and C. M. Sotomayor Torres, “A self-stabilized coherent phonon source driven by optical forces,” Sci. Rep. 5, 15733 (2015).
    [Crossref] [PubMed]
  21. X. Luan, J. F. McMillan, Y. Huang, T. Gu, M. Yu, D.-L. Kwong, and C. W. Wong, “Subharmonics generation based on synchronization of self-pulsation and optomechanical oscillation in a monolithic silicon cavity,” in Proceedings CLEO: QELS_Fundamental Science, (Optical Society of America, 2014), paper JTh5B. 5.
    [Crossref]
  22. J. Wu, Y. Huang, M. Yu, D.-L. Kwong, and C. W. Wong, “Subharmonics radio-frequency division in chip-scale optomechanical oscillators,” in Proceedings CLEO: Science and Innovations, (Optical Society of America, 2015), paper STh3I. 5.
    [Crossref]
  23. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
    [Crossref] [PubMed]
  24. M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A 85(3), 031803 (2012).
    [Crossref]
  25. Y. Huang, J. G. Flores, Z. Cai, M. Yu, D.-L. Kwong, G. Wen, and C. W. Wong, “Wide optical force-induced RF dynamic range and 100+high-order stable mechanics in chip-scale optomechanical cavities,” in Proceedings of CLEO: Science and Innovations, (Optical Society of America, 2016), paper STu4E. 7.
    [Crossref]
  26. L. Zhang, Y. Fei, T. Cao, Y. Cao, Q. Xu, and S. Chen, “Multibistability and self-pulsation in nonlinear high-Q silicon microring resonators considering thermo-optical effect,” Phys. Rev. A 87(5), 053805 (2013).
    [Crossref]
  27. N. Cazier, X. Checoury, L.-D. Haret, and P. Boucaud, “High-frequency self-induced oscillations in a silicon nanocavity,” Opt. Express 21(11), 13626–13638 (2013).
    [Crossref] [PubMed]
  28. L. Zhang, Y. Fei, Y. Cao, X. Lei, and S. Chen, “Experimental observations of thermo-optical bistability and self-pulsation in silicon microring resonators,” J. Opt. Soc. Am. B 31(2), 201–206 (2014).
    [Crossref]
  29. T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express 14(2), 817–831 (2006).
    [Crossref] [PubMed]
  30. M. Hossein-Zadeh and K. J. Vahala, “Observation of injection locking in an optomechanical rf oscillator,” Appl. Phys. Lett. 93(19), 191115 (2008).
    [Crossref]

2015 (2)

Y.-C. Liu, Y.-F. Xiao, X. Luan, Q. Gong, and C. W. Wong, “Coupled cavities for motional ground-state cooling and strong optomechanical coupling,” Phys. Rev. A 91(3), 033818 (2015).
[Crossref]

D. Navarro-Urrios, N. E. Capuj, J. Gomis-Bresco, F. Alzina, A. Pitanti, A. Griol, A. Martínez, and C. M. Sotomayor Torres, “A self-stabilized coherent phonon source driven by optical forces,” Sci. Rep. 5, 15733 (2015).
[Crossref] [PubMed]

2014 (5)

X. Luan, Y. Huang, Y. Li, J. F. McMillan, J. Zheng, S.-W. Huang, P.-C. Hsieh, T. Gu, D. Wang, A. Hati, D. A. Howe, G. Wen, M. Yu, G. Lo, D.-L. Kwong, and C. W. Wong, “An integrated low phase noise radiation-pressure-driven optomechanical oscillator chipset,” Sci. Rep. 4, 6842 (2014).
[Crossref] [PubMed]

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett. 104(6), 061104 (2014).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

F. Guzmán Cervantes, L. Kumanchik, J. Pratt, and J. M. Taylor, “High sensitivity optomechanical reference accelerometer over 10 kHz,” Appl. Phys. Lett. 104(22), 221111 (2014).
[Crossref]

L. Zhang, Y. Fei, Y. Cao, X. Lei, and S. Chen, “Experimental observations of thermo-optical bistability and self-pulsation in silicon microring resonators,” J. Opt. Soc. Am. B 31(2), 201–206 (2014).
[Crossref]

2013 (3)

N. Cazier, X. Checoury, L.-D. Haret, and P. Boucaud, “High-frequency self-induced oscillations in a silicon nanocavity,” Opt. Express 21(11), 13626–13638 (2013).
[Crossref] [PubMed]

L. Zhang, Y. Fei, T. Cao, Y. Cao, Q. Xu, and S. Chen, “Multibistability and self-pulsation in nonlinear high-Q silicon microring resonators considering thermo-optical effect,” Phys. Rev. A 87(5), 053805 (2013).
[Crossref]

Y.-C. Liu, Y. F. Xiao, X. Luan, and C. W. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110(15), 153606 (2013).
[Crossref] [PubMed]

2012 (5)

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A 85(3), 031803 (2012).
[Crossref]

H. Miao, K. Srinivasan, and V. Aksyuk, “A microelectromechanically controlled cavity optomechanical sensing system,” New J. Phys. 14(7), 075015 (2012).
[Crossref]

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref] [PubMed]

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

J. Zheng, X. Sun, Y. Li, M. Poot, A. Dadgar, N. N. Shi, W. H. P. Pernice, H. X. Tang, and C. W. Wong, “Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 20(24), 26486–26498 (2012).
[Crossref] [PubMed]

2011 (2)

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

2010 (4)

M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 276–287 (2010).
[Crossref]

C. Comi, A. Corigliano, G. Langfelder, A. Longoni, A. Tocchio, and B. Simoni, “A resonant microaccelerometer with high sensitivity operating in an oscillating circuit,” J. Micromech. Syst. 19(5), 1140–1152 (2010).
[Crossref]

J. Gao, J. F. McMillan, M.-C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010).
[Crossref]

Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, “Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities,” Opt. Express 18(23), 23844–23856 (2010).
[Crossref] [PubMed]

2008 (2)

2007 (1)

J. Gao, P. Heider, C. J. Chen, X. Yang, C. A. Husko, and C. W. Wong, “Observations of interior whispering gallery modes in asymmetric optical resonators with rational caustics,” Appl. Phys. Lett. 91(18), 181101 (2007).
[Crossref]

2006 (1)

2005 (1)

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref] [PubMed]

Aksyuk, V.

H. Miao, K. Srinivasan, and V. Aksyuk, “A microelectromechanically controlled cavity optomechanical sensing system,” New J. Phys. 14(7), 075015 (2012).
[Crossref]

Alegre, T. P. M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Allman, M. S.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

Alzina, F.

D. Navarro-Urrios, N. E. Capuj, J. Gomis-Bresco, F. Alzina, A. Pitanti, A. Griol, A. Martínez, and C. M. Sotomayor Torres, “A self-stabilized coherent phonon source driven by optical forces,” Sci. Rep. 5, 15733 (2015).
[Crossref] [PubMed]

Aras, M. S.

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Assefa, S.

J. Gao, J. F. McMillan, M.-C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010).
[Crossref]

Bigot, L.

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A 85(3), 031803 (2012).
[Crossref]

Blasius, T. D.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

Borselli, M.

Boucaud, P.

Brunstein, M.

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A 85(3), 031803 (2012).
[Crossref]

Cao, T.

L. Zhang, Y. Fei, T. Cao, Y. Cao, Q. Xu, and S. Chen, “Multibistability and self-pulsation in nonlinear high-Q silicon microring resonators considering thermo-optical effect,” Phys. Rev. A 87(5), 053805 (2013).
[Crossref]

Cao, Y.

L. Zhang, Y. Fei, Y. Cao, X. Lei, and S. Chen, “Experimental observations of thermo-optical bistability and self-pulsation in silicon microring resonators,” J. Opt. Soc. Am. B 31(2), 201–206 (2014).
[Crossref]

L. Zhang, Y. Fei, T. Cao, Y. Cao, Q. Xu, and S. Chen, “Multibistability and self-pulsation in nonlinear high-Q silicon microring resonators considering thermo-optical effect,” Phys. Rev. A 87(5), 053805 (2013).
[Crossref]

Capuj, N. E.

D. Navarro-Urrios, N. E. Capuj, J. Gomis-Bresco, F. Alzina, A. Pitanti, A. Griol, A. Martínez, and C. M. Sotomayor Torres, “A self-stabilized coherent phonon source driven by optical forces,” Sci. Rep. 5, 15733 (2015).
[Crossref] [PubMed]

Carmon, T.

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref] [PubMed]

Cazier, N.

Chan, J.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Chang, D. E.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Checoury, X.

Chen, C. J.

J. Gao, P. Heider, C. J. Chen, X. Yang, C. A. Husko, and C. W. Wong, “Observations of interior whispering gallery modes in asymmetric optical resonators with rational caustics,” Appl. Phys. Lett. 91(18), 181101 (2007).
[Crossref]

Chen, S.

L. Zhang, Y. Fei, Y. Cao, X. Lei, and S. Chen, “Experimental observations of thermo-optical bistability and self-pulsation in silicon microring resonators,” J. Opt. Soc. Am. B 31(2), 201–206 (2014).
[Crossref]

L. Zhang, Y. Fei, T. Cao, Y. Cao, Q. Xu, and S. Chen, “Multibistability and self-pulsation in nonlinear high-Q silicon microring resonators considering thermo-optical effect,” Phys. Rev. A 87(5), 053805 (2013).
[Crossref]

Cicak, K.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

Comi, C.

C. Comi, A. Corigliano, G. Langfelder, A. Longoni, A. Tocchio, and B. Simoni, “A resonant microaccelerometer with high sensitivity operating in an oscillating circuit,” J. Micromech. Syst. 19(5), 1140–1152 (2010).
[Crossref]

Corigliano, A.

C. Comi, A. Corigliano, G. Langfelder, A. Longoni, A. Tocchio, and B. Simoni, “A resonant microaccelerometer with high sensitivity operating in an oscillating circuit,” J. Micromech. Syst. 19(5), 1140–1152 (2010).
[Crossref]

Dadgar, A.

Donner, T.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

Eichenfield, M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Fei, Y.

L. Zhang, Y. Fei, Y. Cao, X. Lei, and S. Chen, “Experimental observations of thermo-optical bistability and self-pulsation in silicon microring resonators,” J. Opt. Soc. Am. B 31(2), 201–206 (2014).
[Crossref]

L. Zhang, Y. Fei, T. Cao, Y. Cao, Q. Xu, and S. Chen, “Multibistability and self-pulsation in nonlinear high-Q silicon microring resonators considering thermo-optical effect,” Phys. Rev. A 87(5), 053805 (2013).
[Crossref]

Gao, J.

J. Gao, J. F. McMillan, M.-C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010).
[Crossref]

Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, “Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities,” Opt. Express 18(23), 23844–23856 (2010).
[Crossref] [PubMed]

J. Gao, P. Heider, C. J. Chen, X. Yang, C. A. Husko, and C. W. Wong, “Observations of interior whispering gallery modes in asymmetric optical resonators with rational caustics,” Appl. Phys. Lett. 91(18), 181101 (2007).
[Crossref]

Gavartin, E.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref] [PubMed]

Gomis-Bresco, J.

D. Navarro-Urrios, N. E. Capuj, J. Gomis-Bresco, F. Alzina, A. Pitanti, A. Griol, A. Martínez, and C. M. Sotomayor Torres, “A self-stabilized coherent phonon source driven by optical forces,” Sci. Rep. 5, 15733 (2015).
[Crossref] [PubMed]

Gong, Q.

Y.-C. Liu, Y.-F. Xiao, X. Luan, Q. Gong, and C. W. Wong, “Coupled cavities for motional ground-state cooling and strong optomechanical coupling,” Phys. Rev. A 91(3), 033818 (2015).
[Crossref]

Griol, A.

D. Navarro-Urrios, N. E. Capuj, J. Gomis-Bresco, F. Alzina, A. Pitanti, A. Griol, A. Martínez, and C. M. Sotomayor Torres, “A self-stabilized coherent phonon source driven by optical forces,” Sci. Rep. 5, 15733 (2015).
[Crossref] [PubMed]

Gu, T.

X. Luan, Y. Huang, Y. Li, J. F. McMillan, J. Zheng, S.-W. Huang, P.-C. Hsieh, T. Gu, D. Wang, A. Hati, D. A. Howe, G. Wen, M. Yu, G. Lo, D.-L. Kwong, and C. W. Wong, “An integrated low phase noise radiation-pressure-driven optomechanical oscillator chipset,” Sci. Rep. 4, 6842 (2014).
[Crossref] [PubMed]

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett. 104(6), 061104 (2014).
[Crossref]

Guzmán Cervantes, F.

F. Guzmán Cervantes, L. Kumanchik, J. Pratt, and J. M. Taylor, “High sensitivity optomechanical reference accelerometer over 10 kHz,” Appl. Phys. Lett. 104(22), 221111 (2014).
[Crossref]

Haret, L.-D.

Harlow, J. W.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

Hati, A.

X. Luan, Y. Huang, Y. Li, J. F. McMillan, J. Zheng, S.-W. Huang, P.-C. Hsieh, T. Gu, D. Wang, A. Hati, D. A. Howe, G. Wen, M. Yu, G. Lo, D.-L. Kwong, and C. W. Wong, “An integrated low phase noise radiation-pressure-driven optomechanical oscillator chipset,” Sci. Rep. 4, 6842 (2014).
[Crossref] [PubMed]

Heider, P.

J. Gao, P. Heider, C. J. Chen, X. Yang, C. A. Husko, and C. W. Wong, “Observations of interior whispering gallery modes in asymmetric optical resonators with rational caustics,” Appl. Phys. Lett. 91(18), 181101 (2007).
[Crossref]

Hill, J. T.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Hossein-Zadeh, M.

M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 276–287 (2010).
[Crossref]

M. Hossein-Zadeh and K. J. Vahala, “Observation of injection locking in an optomechanical rf oscillator,” Appl. Phys. Lett. 93(19), 191115 (2008).
[Crossref]

Howe, D. A.

X. Luan, Y. Huang, Y. Li, J. F. McMillan, J. Zheng, S.-W. Huang, P.-C. Hsieh, T. Gu, D. Wang, A. Hati, D. A. Howe, G. Wen, M. Yu, G. Lo, D.-L. Kwong, and C. W. Wong, “An integrated low phase noise radiation-pressure-driven optomechanical oscillator chipset,” Sci. Rep. 4, 6842 (2014).
[Crossref] [PubMed]

Hsieh, P.-C.

X. Luan, Y. Huang, Y. Li, J. F. McMillan, J. Zheng, S.-W. Huang, P.-C. Hsieh, T. Gu, D. Wang, A. Hati, D. A. Howe, G. Wen, M. Yu, G. Lo, D.-L. Kwong, and C. W. Wong, “An integrated low phase noise radiation-pressure-driven optomechanical oscillator chipset,” Sci. Rep. 4, 6842 (2014).
[Crossref] [PubMed]

Huang, S.-W.

X. Luan, Y. Huang, Y. Li, J. F. McMillan, J. Zheng, S.-W. Huang, P.-C. Hsieh, T. Gu, D. Wang, A. Hati, D. A. Howe, G. Wen, M. Yu, G. Lo, D.-L. Kwong, and C. W. Wong, “An integrated low phase noise radiation-pressure-driven optomechanical oscillator chipset,” Sci. Rep. 4, 6842 (2014).
[Crossref] [PubMed]

Huang, Y.

X. Luan, Y. Huang, Y. Li, J. F. McMillan, J. Zheng, S.-W. Huang, P.-C. Hsieh, T. Gu, D. Wang, A. Hati, D. A. Howe, G. Wen, M. Yu, G. Lo, D.-L. Kwong, and C. W. Wong, “An integrated low phase noise radiation-pressure-driven optomechanical oscillator chipset,” Sci. Rep. 4, 6842 (2014).
[Crossref] [PubMed]

Husko, C. A.

J. Gao, P. Heider, C. J. Chen, X. Yang, C. A. Husko, and C. W. Wong, “Observations of interior whispering gallery modes in asymmetric optical resonators with rational caustics,” Appl. Phys. Lett. 91(18), 181101 (2007).
[Crossref]

Johnson, T. J.

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref] [PubMed]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref] [PubMed]

Krause, A. G.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

Kuga, T.

Kumanchik, L.

F. Guzmán Cervantes, L. Kumanchik, J. Pratt, and J. M. Taylor, “High sensitivity optomechanical reference accelerometer over 10 kHz,” Appl. Phys. Lett. 104(22), 221111 (2014).
[Crossref]

Kuramochi, E.

Kwong, D.-L.

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett. 104(6), 061104 (2014).
[Crossref]

X. Luan, Y. Huang, Y. Li, J. F. McMillan, J. Zheng, S.-W. Huang, P.-C. Hsieh, T. Gu, D. Wang, A. Hati, D. A. Howe, G. Wen, M. Yu, G. Lo, D.-L. Kwong, and C. W. Wong, “An integrated low phase noise radiation-pressure-driven optomechanical oscillator chipset,” Sci. Rep. 4, 6842 (2014).
[Crossref] [PubMed]

Langfelder, G.

C. Comi, A. Corigliano, G. Langfelder, A. Longoni, A. Tocchio, and B. Simoni, “A resonant microaccelerometer with high sensitivity operating in an oscillating circuit,” J. Micromech. Syst. 19(5), 1140–1152 (2010).
[Crossref]

Lehnert, K. W.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

Lei, X.

Levenson, A.

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A 85(3), 031803 (2012).
[Crossref]

Li, D.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

Li, Y.

Lin, Q.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Liu, Y.-C.

Y.-C. Liu, Y.-F. Xiao, X. Luan, Q. Gong, and C. W. Wong, “Coupled cavities for motional ground-state cooling and strong optomechanical coupling,” Phys. Rev. A 91(3), 033818 (2015).
[Crossref]

Y.-C. Liu, Y. F. Xiao, X. Luan, and C. W. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110(15), 153606 (2013).
[Crossref] [PubMed]

Lo, G.

X. Luan, Y. Huang, Y. Li, J. F. McMillan, J. Zheng, S.-W. Huang, P.-C. Hsieh, T. Gu, D. Wang, A. Hati, D. A. Howe, G. Wen, M. Yu, G. Lo, D.-L. Kwong, and C. W. Wong, “An integrated low phase noise radiation-pressure-driven optomechanical oscillator chipset,” Sci. Rep. 4, 6842 (2014).
[Crossref] [PubMed]

Lo, G.-Q.

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett. 104(6), 061104 (2014).
[Crossref]

Longoni, A.

C. Comi, A. Corigliano, G. Langfelder, A. Longoni, A. Tocchio, and B. Simoni, “A resonant microaccelerometer with high sensitivity operating in an oscillating circuit,” J. Micromech. Syst. 19(5), 1140–1152 (2010).
[Crossref]

Luan, X.

Y.-C. Liu, Y.-F. Xiao, X. Luan, Q. Gong, and C. W. Wong, “Coupled cavities for motional ground-state cooling and strong optomechanical coupling,” Phys. Rev. A 91(3), 033818 (2015).
[Crossref]

X. Luan, Y. Huang, Y. Li, J. F. McMillan, J. Zheng, S.-W. Huang, P.-C. Hsieh, T. Gu, D. Wang, A. Hati, D. A. Howe, G. Wen, M. Yu, G. Lo, D.-L. Kwong, and C. W. Wong, “An integrated low phase noise radiation-pressure-driven optomechanical oscillator chipset,” Sci. Rep. 4, 6842 (2014).
[Crossref] [PubMed]

Y.-C. Liu, Y. F. Xiao, X. Luan, and C. W. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110(15), 153606 (2013).
[Crossref] [PubMed]

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Martínez, A.

D. Navarro-Urrios, N. E. Capuj, J. Gomis-Bresco, F. Alzina, A. Pitanti, A. Griol, A. Martínez, and C. M. Sotomayor Torres, “A self-stabilized coherent phonon source driven by optical forces,” Sci. Rep. 5, 15733 (2015).
[Crossref] [PubMed]

McMillan, J. F.

X. Luan, Y. Huang, Y. Li, J. F. McMillan, J. Zheng, S.-W. Huang, P.-C. Hsieh, T. Gu, D. Wang, A. Hati, D. A. Howe, G. Wen, M. Yu, G. Lo, D.-L. Kwong, and C. W. Wong, “An integrated low phase noise radiation-pressure-driven optomechanical oscillator chipset,” Sci. Rep. 4, 6842 (2014).
[Crossref] [PubMed]

J. Gao, J. F. McMillan, M.-C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010).
[Crossref]

Miao, H.

H. Miao, K. Srinivasan, and V. Aksyuk, “A microelectromechanically controlled cavity optomechanical sensing system,” New J. Phys. 14(7), 075015 (2012).
[Crossref]

Navarro-Urrios, D.

D. Navarro-Urrios, N. E. Capuj, J. Gomis-Bresco, F. Alzina, A. Pitanti, A. Griol, A. Martínez, and C. M. Sotomayor Torres, “A self-stabilized coherent phonon source driven by optical forces,” Sci. Rep. 5, 15733 (2015).
[Crossref] [PubMed]

Notomi, M.

Painter, O.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express 14(2), 817–831 (2006).
[Crossref] [PubMed]

Pernice, W. H. P.

Pitanti, A.

D. Navarro-Urrios, N. E. Capuj, J. Gomis-Bresco, F. Alzina, A. Pitanti, A. Griol, A. Martínez, and C. M. Sotomayor Torres, “A self-stabilized coherent phonon source driven by optical forces,” Sci. Rep. 5, 15733 (2015).
[Crossref] [PubMed]

Poot, M.

Pratt, J.

F. Guzmán Cervantes, L. Kumanchik, J. Pratt, and J. M. Taylor, “High sensitivity optomechanical reference accelerometer over 10 kHz,” Appl. Phys. Lett. 104(22), 221111 (2014).
[Crossref]

Raineri, F.

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A 85(3), 031803 (2012).
[Crossref]

Rokhsari, H.

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref] [PubMed]

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Sagnes, I.

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A 85(3), 031803 (2012).
[Crossref]

Scherer, A.

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref] [PubMed]

Shi, N. N.

Shu, J.

Simmonds, R. W.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

Simoni, B.

C. Comi, A. Corigliano, G. Langfelder, A. Longoni, A. Tocchio, and B. Simoni, “A resonant microaccelerometer with high sensitivity operating in an oscillating circuit,” J. Micromech. Syst. 19(5), 1140–1152 (2010).
[Crossref]

Sirois, A. J.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

Sotomayor Torres, C. M.

D. Navarro-Urrios, N. E. Capuj, J. Gomis-Bresco, F. Alzina, A. Pitanti, A. Griol, A. Martínez, and C. M. Sotomayor Torres, “A self-stabilized coherent phonon source driven by optical forces,” Sci. Rep. 5, 15733 (2015).
[Crossref] [PubMed]

Srinivasan, K.

H. Miao, K. Srinivasan, and V. Aksyuk, “A microelectromechanically controlled cavity optomechanical sensing system,” New J. Phys. 14(7), 075015 (2012).
[Crossref]

Sun, X.

Tang, H. X.

Taniyama, H.

Taylor, J. M.

F. Guzmán Cervantes, L. Kumanchik, J. Pratt, and J. M. Taylor, “High sensitivity optomechanical reference accelerometer over 10 kHz,” Appl. Phys. Lett. 104(22), 221111 (2014).
[Crossref]

Teufel, J. D.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

Tocchio, A.

C. Comi, A. Corigliano, G. Langfelder, A. Longoni, A. Tocchio, and B. Simoni, “A resonant microaccelerometer with high sensitivity operating in an oscillating circuit,” J. Micromech. Syst. 19(5), 1140–1152 (2010).
[Crossref]

Torii, Y.

Vahala, K. J.

M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 276–287 (2010).
[Crossref]

M. Hossein-Zadeh and K. J. Vahala, “Observation of injection locking in an optomechanical rf oscillator,” Appl. Phys. Lett. 93(19), 191115 (2008).
[Crossref]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref] [PubMed]

Verlot, P.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref] [PubMed]

Wang, D.

X. Luan, Y. Huang, Y. Li, J. F. McMillan, J. Zheng, S.-W. Huang, P.-C. Hsieh, T. Gu, D. Wang, A. Hati, D. A. Howe, G. Wen, M. Yu, G. Lo, D.-L. Kwong, and C. W. Wong, “An integrated low phase noise radiation-pressure-driven optomechanical oscillator chipset,” Sci. Rep. 4, 6842 (2014).
[Crossref] [PubMed]

Wen, G.

X. Luan, Y. Huang, Y. Li, J. F. McMillan, J. Zheng, S.-W. Huang, P.-C. Hsieh, T. Gu, D. Wang, A. Hati, D. A. Howe, G. Wen, M. Yu, G. Lo, D.-L. Kwong, and C. W. Wong, “An integrated low phase noise radiation-pressure-driven optomechanical oscillator chipset,” Sci. Rep. 4, 6842 (2014).
[Crossref] [PubMed]

Whittaker, J. D.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

Winger, M.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Wong, C. W.

Y.-C. Liu, Y.-F. Xiao, X. Luan, Q. Gong, and C. W. Wong, “Coupled cavities for motional ground-state cooling and strong optomechanical coupling,” Phys. Rev. A 91(3), 033818 (2015).
[Crossref]

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett. 104(6), 061104 (2014).
[Crossref]

X. Luan, Y. Huang, Y. Li, J. F. McMillan, J. Zheng, S.-W. Huang, P.-C. Hsieh, T. Gu, D. Wang, A. Hati, D. A. Howe, G. Wen, M. Yu, G. Lo, D.-L. Kwong, and C. W. Wong, “An integrated low phase noise radiation-pressure-driven optomechanical oscillator chipset,” Sci. Rep. 4, 6842 (2014).
[Crossref] [PubMed]

Y.-C. Liu, Y. F. Xiao, X. Luan, and C. W. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110(15), 153606 (2013).
[Crossref] [PubMed]

J. Zheng, X. Sun, Y. Li, M. Poot, A. Dadgar, N. N. Shi, W. H. P. Pernice, H. X. Tang, and C. W. Wong, “Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 20(24), 26486–26498 (2012).
[Crossref] [PubMed]

Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, “Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities,” Opt. Express 18(23), 23844–23856 (2010).
[Crossref] [PubMed]

J. Gao, J. F. McMillan, M.-C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010).
[Crossref]

J. Gao, P. Heider, C. J. Chen, X. Yang, C. A. Husko, and C. W. Wong, “Observations of interior whispering gallery modes in asymmetric optical resonators with rational caustics,” Appl. Phys. Lett. 91(18), 181101 (2007).
[Crossref]

Wu, M.-C.

J. Gao, J. F. McMillan, M.-C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010).
[Crossref]

Xiao, Y. F.

Y.-C. Liu, Y. F. Xiao, X. Luan, and C. W. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110(15), 153606 (2013).
[Crossref] [PubMed]

Xiao, Y.-F.

Y.-C. Liu, Y.-F. Xiao, X. Luan, Q. Gong, and C. W. Wong, “Coupled cavities for motional ground-state cooling and strong optomechanical coupling,” Phys. Rev. A 91(3), 033818 (2015).
[Crossref]

Xu, Q.

L. Zhang, Y. Fei, T. Cao, Y. Cao, Q. Xu, and S. Chen, “Multibistability and self-pulsation in nonlinear high-Q silicon microring resonators considering thermo-optical effect,” Phys. Rev. A 87(5), 053805 (2013).
[Crossref]

Yacomotti, A. M.

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A 85(3), 031803 (2012).
[Crossref]

Yamamoto, T.

Yang, J.

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett. 104(6), 061104 (2014).
[Crossref]

Yang, X.

J. Gao, P. Heider, C. J. Chen, X. Yang, C. A. Husko, and C. W. Wong, “Observations of interior whispering gallery modes in asymmetric optical resonators with rational caustics,” Appl. Phys. Lett. 91(18), 181101 (2007).
[Crossref]

Yoshikawa, Y.

Yu, M.

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett. 104(6), 061104 (2014).
[Crossref]

X. Luan, Y. Huang, Y. Li, J. F. McMillan, J. Zheng, S.-W. Huang, P.-C. Hsieh, T. Gu, D. Wang, A. Hati, D. A. Howe, G. Wen, M. Yu, G. Lo, D.-L. Kwong, and C. W. Wong, “An integrated low phase noise radiation-pressure-driven optomechanical oscillator chipset,” Sci. Rep. 4, 6842 (2014).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, Y. Fei, Y. Cao, X. Lei, and S. Chen, “Experimental observations of thermo-optical bistability and self-pulsation in silicon microring resonators,” J. Opt. Soc. Am. B 31(2), 201–206 (2014).
[Crossref]

L. Zhang, Y. Fei, T. Cao, Y. Cao, Q. Xu, and S. Chen, “Multibistability and self-pulsation in nonlinear high-Q silicon microring resonators considering thermo-optical effect,” Phys. Rev. A 87(5), 053805 (2013).
[Crossref]

Zheng, J.

X. Luan, Y. Huang, Y. Li, J. F. McMillan, J. Zheng, S.-W. Huang, P.-C. Hsieh, T. Gu, D. Wang, A. Hati, D. A. Howe, G. Wen, M. Yu, G. Lo, D.-L. Kwong, and C. W. Wong, “An integrated low phase noise radiation-pressure-driven optomechanical oscillator chipset,” Sci. Rep. 4, 6842 (2014).
[Crossref] [PubMed]

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett. 104(6), 061104 (2014).
[Crossref]

J. Zheng, X. Sun, Y. Li, M. Poot, A. Dadgar, N. N. Shi, W. H. P. Pernice, H. X. Tang, and C. W. Wong, “Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 20(24), 26486–26498 (2012).
[Crossref] [PubMed]

Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, “Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities,” Opt. Express 18(23), 23844–23856 (2010).
[Crossref] [PubMed]

J. Gao, J. F. McMillan, M.-C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010).
[Crossref]

Appl. Phys. Lett. (5)

F. Guzmán Cervantes, L. Kumanchik, J. Pratt, and J. M. Taylor, “High sensitivity optomechanical reference accelerometer over 10 kHz,” Appl. Phys. Lett. 104(22), 221111 (2014).
[Crossref]

J. Gao, P. Heider, C. J. Chen, X. Yang, C. A. Husko, and C. W. Wong, “Observations of interior whispering gallery modes in asymmetric optical resonators with rational caustics,” Appl. Phys. Lett. 91(18), 181101 (2007).
[Crossref]

J. Gao, J. F. McMillan, M.-C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010).
[Crossref]

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett. 104(6), 061104 (2014).
[Crossref]

M. Hossein-Zadeh and K. J. Vahala, “Observation of injection locking in an optomechanical rf oscillator,” Appl. Phys. Lett. 93(19), 191115 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 276–287 (2010).
[Crossref]

J. Micromech. Syst. (1)

C. Comi, A. Corigliano, G. Langfelder, A. Longoni, A. Tocchio, and B. Simoni, “A resonant microaccelerometer with high sensitivity operating in an oscillating circuit,” J. Micromech. Syst. 19(5), 1140–1152 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Nanotechnol. (1)

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

Nature (2)

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

New J. Phys. (1)

H. Miao, K. Srinivasan, and V. Aksyuk, “A microelectromechanically controlled cavity optomechanical sensing system,” New J. Phys. 14(7), 075015 (2012).
[Crossref]

Opt. Express (5)

Phys. Rev. A (3)

L. Zhang, Y. Fei, T. Cao, Y. Cao, Q. Xu, and S. Chen, “Multibistability and self-pulsation in nonlinear high-Q silicon microring resonators considering thermo-optical effect,” Phys. Rev. A 87(5), 053805 (2013).
[Crossref]

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A 85(3), 031803 (2012).
[Crossref]

Y.-C. Liu, Y.-F. Xiao, X. Luan, Q. Gong, and C. W. Wong, “Coupled cavities for motional ground-state cooling and strong optomechanical coupling,” Phys. Rev. A 91(3), 033818 (2015).
[Crossref]

Phys. Rev. Lett. (2)

Y.-C. Liu, Y. F. Xiao, X. Luan, and C. W. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110(15), 153606 (2013).
[Crossref] [PubMed]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Sci. Rep. (2)

X. Luan, Y. Huang, Y. Li, J. F. McMillan, J. Zheng, S.-W. Huang, P.-C. Hsieh, T. Gu, D. Wang, A. Hati, D. A. Howe, G. Wen, M. Yu, G. Lo, D.-L. Kwong, and C. W. Wong, “An integrated low phase noise radiation-pressure-driven optomechanical oscillator chipset,” Sci. Rep. 4, 6842 (2014).
[Crossref] [PubMed]

D. Navarro-Urrios, N. E. Capuj, J. Gomis-Bresco, F. Alzina, A. Pitanti, A. Griol, A. Martínez, and C. M. Sotomayor Torres, “A self-stabilized coherent phonon source driven by optical forces,” Sci. Rep. 5, 15733 (2015).
[Crossref] [PubMed]

Other (4)

X. Luan, J. F. McMillan, Y. Huang, T. Gu, M. Yu, D.-L. Kwong, and C. W. Wong, “Subharmonics generation based on synchronization of self-pulsation and optomechanical oscillation in a monolithic silicon cavity,” in Proceedings CLEO: QELS_Fundamental Science, (Optical Society of America, 2014), paper JTh5B. 5.
[Crossref]

J. Wu, Y. Huang, M. Yu, D.-L. Kwong, and C. W. Wong, “Subharmonics radio-frequency division in chip-scale optomechanical oscillators,” in Proceedings CLEO: Science and Innovations, (Optical Society of America, 2015), paper STh3I. 5.
[Crossref]

J. G. F. Flores, Y. Huang, Y. Li, Z. Cai, V. Iaia, M. Yu, D.-L. Kwong, L. Churchill, and C. W. Wong, “A chip-scale sub-mg/Hz1/2 optomechanical DC accelerometer at the thermodynamical limit,” in Proceedings of CLEO: Applications and Technology, (Optical Society of America, 2016), paper AM4K. 6.

Y. Huang, J. G. Flores, Z. Cai, M. Yu, D.-L. Kwong, G. Wen, and C. W. Wong, “Wide optical force-induced RF dynamic range and 100+high-order stable mechanics in chip-scale optomechanical cavities,” in Proceedings of CLEO: Science and Innovations, (Optical Society of America, 2016), paper STu4E. 7.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Scanning electron micrograph (SEM) images for (a) the full size low-frequency optomechanical cavity with large test mass. Scale bar: 20 μm. (b) Zoom-in view showing the air-slot photonic crystal cavity. Scale bar: 2 μm. (c) Zoom-in illustration indicating the lattice perturbations. Scale bar: 500 nm. (d) Tapered fiber measurement setup to characterize the optical and mechanical resonances.
Fig. 2
Fig. 2 (a) Optical transmission spectra at different laser drive powers. (b) One example optical transmission spectrum with Lorentzian curve fit at drive power of 158 µW. (c) Mechanical power spectral densities under different laser detunings. (d) One example mechanical power spectral density with Lorentzian curve fit at blue detuning. The insets of panel (b) and (d) are the corresponding |Ey|2 field distribution of the optical resonance and fundamental mechanical displacement field.
Fig. 3
Fig. 3 (a) Optical transmissions at different fiber-cavity coupling positions. (b) Mechanical resonance shifts for laser detunings corresponding to the eight fiber-cavity coupling positions. (c) Two-dimensional mechanical frequency versus laser wavelength maps for four selected coupling positions in panel (b). The eight different colored curves (black, red, blue, purple, cyan, green, yellow, and brown) correspond to the fiber positions continuously changed in one direction.
Fig. 4
Fig. 4 (a) and (b) Optical transmissions for the two modes under drive power of ≈6 mW. (c) and (d) Zoom-in plots which indicate the signatures of exciting self-pulsation oscillation. The insets shown in panel (a) and (b) are the |Ey|2 field distributions of such two optical resonance modes.
Fig. 5
Fig. 5 (a) Two-dimensional map of mechanical frequency power spectral densities versus laser wavelength showing the Drude self-pulsation plasma locking, subharmonics and harmonics. (b) Example power spectral density at laser detuning of 1561 nm and the corresponding zoom-in plot in the frequency range up to 50 kHz.

Tables (1)

Tables Icon

Table 1 Obtained gom (in GHz/nm) for different fiber-cavity couplings

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Ω ' m = Ω m 2 +( 2 | a | 2 g om 2 ( ( ω l ω c ) 2 + (Γ/2) 2 ) ω c m x )( ω l ω c ) .
n cav = a a = κ e 2 1 Δ 2 + κ 2 /4 P in ω l ,
P th_OM 1 Q m 1 Q o 3 ,
P th_SP V Q o 2 .
Ω τ fc γ TPA γ i FCA 2 (ω) 2 V × T max ( P in 2τ ) 2 5 Δω 5 .

Metrics