Abstract

We demonstrate an energy scalable approach to implement ultrafast fiber laser sources suitable for deep tissue multi-photon microscopy imaging. Enabled by fiber-optic nonlinearities (dominated by self-phase modulation), these unique ultrafast sources produce nearly transform-limited pulses of 50–90 fs in duration with the center wavelength tunable in the wavelength range of 1030–1215 nm. The resulting pulse energy can be scaled up to 20 nJ by optimizing fiber dispersion, shortening fiber length, and using large-mode-area fibers. We applied such an energetic source to a proof-of-principle study of ex vivo human skin based on harmonics (i.e., second-harmonic generation and third-harmonic generation) imaging. This new type of fiber-format energetic ultrafast source provides a robust solution for multiphoton microscopy applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Self-phase modulation enabled, wavelength-tunable ultrafast fiber laser sources: an energy scalable approach

Wei Liu, Chen Li, Zhigang Zhang, Franz X. Kärtner, and Guoqing Chang
Opt. Express 24(14) 15328-15340 (2016)

Er-fiber laser enabled, energy scalable femtosecond source tunable from 1.3 to 1.7 µm

Hsiang-Yu Chung, Wei Liu, Qian Cao, Franz X. Kärtner, and Guoqing Chang
Opt. Express 25(14) 15760-15771 (2017)

Optimizing pulse compressibility in completely all-fibered Ytterbium chirped pulse amplifiers for in vivo two photon laser scanning microscopy

A. Fernández, L. Grüner-Nielsen, M. Andreana, M. Stadler, S. Kirchberger, C. Sturtzel, M. Distel, L. Zhu, W. Kautek, R. Leitgeb, A. Baltuska, K. Jespersen, and A. Verhoef
Biomed. Opt. Express 8(8) 3526-3537 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21 (11), 1369–1377 (2003).
    [Crossref] [PubMed]
  2. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photon. 7(3), 205–209 (2013).
    [Crossref]
  3. K. Wang, N. G. Horton, K. Charan, and C. Xu, “advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Select. Topics Quantum Electron. 20(2), 50–60 (2014).
    [Crossref]
  4. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
    [Crossref] [PubMed]
  5. S. Chu, I. Chen, T. Liu, P.C. Chen, C. Sun, and B. Lin, “Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser,” J. Opt. Soc. Am. B 26(23), 1909–1911 (2001).
  6. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
    [Crossref] [PubMed]
  7. M. Erkintalo, C. Aguergaray, A. Runge, and N. G. R. Broderick, “Environmentally stable all-PM all-fiber giant chirp oscillator,” Opt. Express 20(20), 22669–22674 (2012).
    [Crossref] [PubMed]
  8. C. Aguergaray, R. Hawker, A. F. Runge, M. Erkintalo, and N. G. R. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
    [Crossref]
  9. J. Szczepanek, T. M. Kardas, M. Michalska, C. Radzewicz, and Y. Stepanenko, “Simple all-PM-fiber laser mode-locked with a nonlinear loop mirror,” Opt. Lett. 40(15), 3500–3503 (2015).
    [Crossref] [PubMed]
  10. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2013).
  11. J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Select. Topics Quantum Electron. 14(3), 713–723 (2008).
    [Crossref]
  12. L. Sacconi, C. Ferrantini, J. Lotti, R. Coppini, P. Yan, L. M. Loew, C. Tesi, E. Cerbai, C. Poggesi, and F. S. Pavone, “Action potential propagation in transverse-axial tubular system is impaired in heart failure,” PNAS 109(15), 5815–5819 (2012).
    [Crossref] [PubMed]
  13. C. Crocini, R. Coppini, C. Ferrantini, P. Yan, L. M. Loew, C. Tesi, E. Cerbai, C. Poggesi, P. S. Pavone, and L. Sacconi, “Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure,” PNAS 111(42), 15196–15201 (2014).
    [Crossref] [PubMed]
  14. H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, and D. Walpita, “Sensitive red protein calcium indicators for imaging neural activity,” Elife 5, e12727 (2016).
    [Crossref] [PubMed]
  15. D. Ouzounov, T. Wang, M. Wang, D. Feng, N. Horton, J. Cruz-HernÃąndez, Y. Cheng, J. Reimer, A. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods (online) (2017).
    [Crossref] [PubMed]
  16. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett. 26(6), 358–360 (2001).
    [Crossref]
  17. I. G. Cormack, D. T. Reid, W. J. Wadsworth, J. C. Knight, and P. S. J. Russell, “Observation of soliton self-frequency shift in photonic crystal fibre,” Electron. Lett. 38(4), 167–169 (2002).
    [Crossref]
  18. H. Lim, J. Buckley, A. Chong, and F. W. Wise, “Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 µm,” Electron. Lett. 40(24), 1523–1525 (2004).
    [Crossref]
  19. J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0–1.7µm wavelength-tunable ultrashort-pulse generation using femtosecond Ybdoped fiber laser and photonic crystal fiber,” IEEE Photon. Technol. Lett. 18(21), 2284–2286 (2006).
    [Crossref]
  20. Tyler W. Neely, Todd A. Johnson, and Scott A. Diddams, “All-optical diode based on second-harmonic generation in an asymmetric waveguide,” Opt. Lett. 36(20), 4020–4022 (2011).
    [Crossref] [PubMed]
  21. J. van Howe, J. H. Lee, S. Zhou, F. Wise, C. Xu, S. Ramachandran, S. Ghalmi, and M. F. Yan, “Demonstration of soliton self-frequency shift below 1300 nm in higher-order mode, solid silica-based fiber,” Opt. Lett. 32(4), 340–342 (2007).
    [Crossref] [PubMed]
  22. L. Rishoj, G. Prabhakar, J. Demas, and S. Ramachandran, “30 nJ, ~50 fs all-fiber source at 1300 nm using soliton shifting in LMA HOM fiber,” Conference on Lasers and Electro-Optics (Optical Society of America, 2016), paper STh3O.3.
  23. R. J. Beck, J. P. Parry, W. N. MacPherson, A. Waddie, N. J. Weston, J. D. Shephard, and D. P. Hand, “application of cooled spatial light modulator for high power nanosecond laser micromachining,” Opt. Express 18(16), 17059–17065 (2010).
    [Crossref] [PubMed]
  24. W. Liu, C. Li, Z. G. Zhang, F. X. Kärtner, and G. Q. Chang, “Self-phase modulation enabled, wavelength tunable ultrafast fiber laser sources: an energy scalable approach,” Opt. Express 24(14), 15328–15340 (2016).
    [Crossref] [PubMed]
  25. L. GrÃijner-Nielsen, D. Jakobsen, K. G. Jespersen, and B. PÃąlsdÃşttir, “A stretcher fiber for use in fs chirped pulse Yb amplifiers,” Opt. Express 18(4), 3768–3773 (2010).
    [Crossref]
  26. S.-W. Chu, I-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy,” J. Microscopy 208(3), 190–200 (2002).
    [Crossref]
  27. S.-H. Chia, C.-H. Yu, C.-H. Lin, N.-C. Cheng, T.-M. Liu, M.-C. Chan, I.-H. Chen, and C.-K. Sun, “Miniaturized video-rate epi-third-harmonic-generation fiber-microscope,” Opt. Express 18(16), 17382–17391 (2010).
    [Crossref] [PubMed]
  28. C. H. Yu, S. P. Tai, C. T. Kung, I. J. Wang, H. C. Yu, H. J. Huang, W. J. Lee, Y. F. Chan, and C. K. Sun, “In vivo and ex vivo imaging of intra-tissue elastic fibers using third-harmonic-generation microscopy,” Opt. Express 15(18), 11167–11177 (2007).
    [Crossref] [PubMed]

2016 (2)

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, and D. Walpita, “Sensitive red protein calcium indicators for imaging neural activity,” Elife 5, e12727 (2016).
[Crossref] [PubMed]

W. Liu, C. Li, Z. G. Zhang, F. X. Kärtner, and G. Q. Chang, “Self-phase modulation enabled, wavelength tunable ultrafast fiber laser sources: an energy scalable approach,” Opt. Express 24(14), 15328–15340 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (2)

K. Wang, N. G. Horton, K. Charan, and C. Xu, “advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Select. Topics Quantum Electron. 20(2), 50–60 (2014).
[Crossref]

C. Crocini, R. Coppini, C. Ferrantini, P. Yan, L. M. Loew, C. Tesi, E. Cerbai, C. Poggesi, P. S. Pavone, and L. Sacconi, “Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure,” PNAS 111(42), 15196–15201 (2014).
[Crossref] [PubMed]

2013 (2)

C. Aguergaray, R. Hawker, A. F. Runge, M. Erkintalo, and N. G. R. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photon. 7(3), 205–209 (2013).
[Crossref]

2012 (2)

L. Sacconi, C. Ferrantini, J. Lotti, R. Coppini, P. Yan, L. M. Loew, C. Tesi, E. Cerbai, C. Poggesi, and F. S. Pavone, “Action potential propagation in transverse-axial tubular system is impaired in heart failure,” PNAS 109(15), 5815–5819 (2012).
[Crossref] [PubMed]

M. Erkintalo, C. Aguergaray, A. Runge, and N. G. R. Broderick, “Environmentally stable all-PM all-fiber giant chirp oscillator,” Opt. Express 20(20), 22669–22674 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (3)

2009 (1)

2008 (1)

J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Select. Topics Quantum Electron. 14(3), 713–723 (2008).
[Crossref]

2007 (2)

2006 (1)

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0–1.7µm wavelength-tunable ultrashort-pulse generation using femtosecond Ybdoped fiber laser and photonic crystal fiber,” IEEE Photon. Technol. Lett. 18(21), 2284–2286 (2006).
[Crossref]

2005 (1)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

2004 (1)

H. Lim, J. Buckley, A. Chong, and F. W. Wise, “Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 µm,” Electron. Lett. 40(24), 1523–1525 (2004).
[Crossref]

2003 (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21 (11), 1369–1377 (2003).
[Crossref] [PubMed]

2002 (2)

I. G. Cormack, D. T. Reid, W. J. Wadsworth, J. C. Knight, and P. S. J. Russell, “Observation of soliton self-frequency shift in photonic crystal fibre,” Electron. Lett. 38(4), 167–169 (2002).
[Crossref]

S.-W. Chu, I-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy,” J. Microscopy 208(3), 190–200 (2002).
[Crossref]

2001 (2)

X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett. 26(6), 358–360 (2001).
[Crossref]

S. Chu, I. Chen, T. Liu, P.C. Chen, C. Sun, and B. Lin, “Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser,” J. Opt. Soc. Am. B 26(23), 1909–1911 (2001).

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2013).

Aguergaray, C.

C. Aguergaray, R. Hawker, A. F. Runge, M. Erkintalo, and N. G. R. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

M. Erkintalo, C. Aguergaray, A. Runge, and N. G. R. Broderick, “Environmentally stable all-PM all-fiber giant chirp oscillator,” Opt. Express 20(20), 22669–22674 (2012).
[Crossref] [PubMed]

Beck, R. J.

Broderick, N. G. R.

C. Aguergaray, R. Hawker, A. F. Runge, M. Erkintalo, and N. G. R. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

M. Erkintalo, C. Aguergaray, A. Runge, and N. G. R. Broderick, “Environmentally stable all-PM all-fiber giant chirp oscillator,” Opt. Express 20(20), 22669–22674 (2012).
[Crossref] [PubMed]

Buckley, J.

H. Lim, J. Buckley, A. Chong, and F. W. Wise, “Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 µm,” Electron. Lett. 40(24), 1523–1525 (2004).
[Crossref]

Cerbai, E.

C. Crocini, R. Coppini, C. Ferrantini, P. Yan, L. M. Loew, C. Tesi, E. Cerbai, C. Poggesi, P. S. Pavone, and L. Sacconi, “Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure,” PNAS 111(42), 15196–15201 (2014).
[Crossref] [PubMed]

L. Sacconi, C. Ferrantini, J. Lotti, R. Coppini, P. Yan, L. M. Loew, C. Tesi, E. Cerbai, C. Poggesi, and F. S. Pavone, “Action potential propagation in transverse-axial tubular system is impaired in heart failure,” PNAS 109(15), 5815–5819 (2012).
[Crossref] [PubMed]

Chan, M.-C.

Chan, Y. F.

Chandalia, J. K.

Chang, G. Q.

Charan, K.

K. Wang, N. G. Horton, K. Charan, and C. Xu, “advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Select. Topics Quantum Electron. 20(2), 50–60 (2014).
[Crossref]

Chen, I.

S. Chu, I. Chen, T. Liu, P.C. Chen, C. Sun, and B. Lin, “Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser,” J. Opt. Soc. Am. B 26(23), 1909–1911 (2001).

Chen, I.-H.

Chen, I-S.

S.-W. Chu, I-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy,” J. Microscopy 208(3), 190–200 (2002).
[Crossref]

Chen, P.C.

S. Chu, I. Chen, T. Liu, P.C. Chen, C. Sun, and B. Lin, “Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser,” J. Opt. Soc. Am. B 26(23), 1909–1911 (2001).

Cheng, N.-C.

Cheng, P.-C.

S.-W. Chu, I-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy,” J. Microscopy 208(3), 190–200 (2002).
[Crossref]

Cheng, Y.

D. Ouzounov, T. Wang, M. Wang, D. Feng, N. Horton, J. Cruz-HernÃąndez, Y. Cheng, J. Reimer, A. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods (online) (2017).
[Crossref] [PubMed]

Chia, S.-H.

Chong, A.

H. Lim, J. Buckley, A. Chong, and F. W. Wise, “Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 µm,” Electron. Lett. 40(24), 1523–1525 (2004).
[Crossref]

Chu, S.

S. Chu, I. Chen, T. Liu, P.C. Chen, C. Sun, and B. Lin, “Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser,” J. Opt. Soc. Am. B 26(23), 1909–1911 (2001).

Chu, S.-W.

S.-W. Chu, I-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy,” J. Microscopy 208(3), 190–200 (2002).
[Crossref]

Clark, C. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photon. 7(3), 205–209 (2013).
[Crossref]

Coppini, R.

C. Crocini, R. Coppini, C. Ferrantini, P. Yan, L. M. Loew, C. Tesi, E. Cerbai, C. Poggesi, P. S. Pavone, and L. Sacconi, “Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure,” PNAS 111(42), 15196–15201 (2014).
[Crossref] [PubMed]

L. Sacconi, C. Ferrantini, J. Lotti, R. Coppini, P. Yan, L. M. Loew, C. Tesi, E. Cerbai, C. Poggesi, and F. S. Pavone, “Action potential propagation in transverse-axial tubular system is impaired in heart failure,” PNAS 109(15), 5815–5819 (2012).
[Crossref] [PubMed]

Cormack, I. G.

I. G. Cormack, D. T. Reid, W. J. Wadsworth, J. C. Knight, and P. S. J. Russell, “Observation of soliton self-frequency shift in photonic crystal fibre,” Electron. Lett. 38(4), 167–169 (2002).
[Crossref]

Crocini, C.

C. Crocini, R. Coppini, C. Ferrantini, P. Yan, L. M. Loew, C. Tesi, E. Cerbai, C. Poggesi, P. S. Pavone, and L. Sacconi, “Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure,” PNAS 111(42), 15196–15201 (2014).
[Crossref] [PubMed]

Cruz-HernÃandez, J.

D. Ouzounov, T. Wang, M. Wang, D. Feng, N. Horton, J. Cruz-HernÃąndez, Y. Cheng, J. Reimer, A. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods (online) (2017).
[Crossref] [PubMed]

Dana, H.

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, and D. Walpita, “Sensitive red protein calcium indicators for imaging neural activity,” Elife 5, e12727 (2016).
[Crossref] [PubMed]

Demas, J.

L. Rishoj, G. Prabhakar, J. Demas, and S. Ramachandran, “30 nJ, ~50 fs all-fiber source at 1300 nm using soliton shifting in LMA HOM fiber,” Conference on Lasers and Electro-Optics (Optical Society of America, 2016), paper STh3O.3.

Denk, W.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Diddams, Scott A.

Durst, M. E.

Eggleton, B. J.

Erkintalo, M.

C. Aguergaray, R. Hawker, A. F. Runge, M. Erkintalo, and N. G. R. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

M. Erkintalo, C. Aguergaray, A. Runge, and N. G. R. Broderick, “Environmentally stable all-PM all-fiber giant chirp oscillator,” Opt. Express 20(20), 22669–22674 (2012).
[Crossref] [PubMed]

Feng, D.

D. Ouzounov, T. Wang, M. Wang, D. Feng, N. Horton, J. Cruz-HernÃąndez, Y. Cheng, J. Reimer, A. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods (online) (2017).
[Crossref] [PubMed]

Ferrantini, C.

C. Crocini, R. Coppini, C. Ferrantini, P. Yan, L. M. Loew, C. Tesi, E. Cerbai, C. Poggesi, P. S. Pavone, and L. Sacconi, “Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure,” PNAS 111(42), 15196–15201 (2014).
[Crossref] [PubMed]

L. Sacconi, C. Ferrantini, J. Lotti, R. Coppini, P. Yan, L. M. Loew, C. Tesi, E. Cerbai, C. Poggesi, and F. S. Pavone, “Action potential propagation in transverse-axial tubular system is impaired in heart failure,” PNAS 109(15), 5815–5819 (2012).
[Crossref] [PubMed]

Ghalmi, S.

Gordus, A.

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, and D. Walpita, “Sensitive red protein calcium indicators for imaging neural activity,” Elife 5, e12727 (2016).
[Crossref] [PubMed]

GrÃijner-Nielsen, L.

Hand, D. P.

Hasseman, J. P.

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, and D. Walpita, “Sensitive red protein calcium indicators for imaging neural activity,” Elife 5, e12727 (2016).
[Crossref] [PubMed]

Hawker, R.

C. Aguergaray, R. Hawker, A. F. Runge, M. Erkintalo, and N. G. R. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Holt, G. T.

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, and D. Walpita, “Sensitive red protein calcium indicators for imaging neural activity,” Elife 5, e12727 (2016).
[Crossref] [PubMed]

Horton, N.

D. Ouzounov, T. Wang, M. Wang, D. Feng, N. Horton, J. Cruz-HernÃąndez, Y. Cheng, J. Reimer, A. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods (online) (2017).
[Crossref] [PubMed]

Horton, N. G.

K. Wang, N. G. Horton, K. Charan, and C. Xu, “advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Select. Topics Quantum Electron. 20(2), 50–60 (2014).
[Crossref]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photon. 7(3), 205–209 (2013).
[Crossref]

Hu, A.

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, and D. Walpita, “Sensitive red protein calcium indicators for imaging neural activity,” Elife 5, e12727 (2016).
[Crossref] [PubMed]

Huang, H. J.

Jakobsen, D.

Jespersen, K. G.

Johnson, Todd A.

Kardas, T. M.

Kärtner, F. X.

Knight, J. C.

I. G. Cormack, D. T. Reid, W. J. Wadsworth, J. C. Knight, and P. S. J. Russell, “Observation of soliton self-frequency shift in photonic crystal fibre,” Electron. Lett. 38(4), 167–169 (2002).
[Crossref]

Knox, W. H.

Kobat, D.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photon. 7(3), 205–209 (2013).
[Crossref]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
[Crossref] [PubMed]

Kosinski, S. G.

Kung, C. T.

Kuo, M.-X.

S.-W. Chu, I-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy,” J. Microscopy 208(3), 190–200 (2002).
[Crossref]

Lee, J. H.

J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Select. Topics Quantum Electron. 14(3), 713–723 (2008).
[Crossref]

J. van Howe, J. H. Lee, S. Zhou, F. Wise, C. Xu, S. Ramachandran, S. Ghalmi, and M. F. Yan, “Demonstration of soliton self-frequency shift below 1300 nm in higher-order mode, solid silica-based fiber,” Opt. Lett. 32(4), 340–342 (2007).
[Crossref] [PubMed]

Lee, S.-P.

S.-W. Chu, I-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy,” J. Microscopy 208(3), 190–200 (2002).
[Crossref]

Lee, W. J.

Li, C.

Lim, H.

H. Lim, J. Buckley, A. Chong, and F. W. Wise, “Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 µm,” Electron. Lett. 40(24), 1523–1525 (2004).
[Crossref]

Lin, B.

S. Chu, I. Chen, T. Liu, P.C. Chen, C. Sun, and B. Lin, “Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser,” J. Opt. Soc. Am. B 26(23), 1909–1911 (2001).

Lin, B.-L.

S.-W. Chu, I-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy,” J. Microscopy 208(3), 190–200 (2002).
[Crossref]

Lin, C.-H.

Lin, D.-J.

S.-W. Chu, I-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy,” J. Microscopy 208(3), 190–200 (2002).
[Crossref]

Liu, H.-L.

S.-W. Chu, I-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy,” J. Microscopy 208(3), 190–200 (2002).
[Crossref]

Liu, T.

S. Chu, I. Chen, T. Liu, P.C. Chen, C. Sun, and B. Lin, “Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser,” J. Opt. Soc. Am. B 26(23), 1909–1911 (2001).

Liu, T.-M.

S.-H. Chia, C.-H. Yu, C.-H. Lin, N.-C. Cheng, T.-M. Liu, M.-C. Chan, I.-H. Chen, and C.-K. Sun, “Miniaturized video-rate epi-third-harmonic-generation fiber-microscope,” Opt. Express 18(16), 17382–17391 (2010).
[Crossref] [PubMed]

S.-W. Chu, I-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy,” J. Microscopy 208(3), 190–200 (2002).
[Crossref]

Liu, W.

Liu, X.

J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Select. Topics Quantum Electron. 14(3), 713–723 (2008).
[Crossref]

X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett. 26(6), 358–360 (2001).
[Crossref]

Loew, L. M.

C. Crocini, R. Coppini, C. Ferrantini, P. Yan, L. M. Loew, C. Tesi, E. Cerbai, C. Poggesi, P. S. Pavone, and L. Sacconi, “Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure,” PNAS 111(42), 15196–15201 (2014).
[Crossref] [PubMed]

L. Sacconi, C. Ferrantini, J. Lotti, R. Coppini, P. Yan, L. M. Loew, C. Tesi, E. Cerbai, C. Poggesi, and F. S. Pavone, “Action potential propagation in transverse-axial tubular system is impaired in heart failure,” PNAS 109(15), 5815–5819 (2012).
[Crossref] [PubMed]

Lotti, J.

L. Sacconi, C. Ferrantini, J. Lotti, R. Coppini, P. Yan, L. M. Loew, C. Tesi, E. Cerbai, C. Poggesi, and F. S. Pavone, “Action potential propagation in transverse-axial tubular system is impaired in heart failure,” PNAS 109(15), 5815–5819 (2012).
[Crossref] [PubMed]

MacPherson, W. N.

Michalska, M.

Mohar, B.

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, and D. Walpita, “Sensitive red protein calcium indicators for imaging neural activity,” Elife 5, e12727 (2016).
[Crossref] [PubMed]

Narayan, S.

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, and D. Walpita, “Sensitive red protein calcium indicators for imaging neural activity,” Elife 5, e12727 (2016).
[Crossref] [PubMed]

Neely, Tyler W.

Nishimura, N.

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
[Crossref] [PubMed]

D. Ouzounov, T. Wang, M. Wang, D. Feng, N. Horton, J. Cruz-HernÃąndez, Y. Cheng, J. Reimer, A. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods (online) (2017).
[Crossref] [PubMed]

Nishizawa, N.

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0–1.7µm wavelength-tunable ultrashort-pulse generation using femtosecond Ybdoped fiber laser and photonic crystal fiber,” IEEE Photon. Technol. Lett. 18(21), 2284–2286 (2006).
[Crossref]

Ouzounov, D.

D. Ouzounov, T. Wang, M. Wang, D. Feng, N. Horton, J. Cruz-HernÃąndez, Y. Cheng, J. Reimer, A. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods (online) (2017).
[Crossref] [PubMed]

PÃalsdÃsttir, B.

Parry, J. P.

Pavone, F. S.

L. Sacconi, C. Ferrantini, J. Lotti, R. Coppini, P. Yan, L. M. Loew, C. Tesi, E. Cerbai, C. Poggesi, and F. S. Pavone, “Action potential propagation in transverse-axial tubular system is impaired in heart failure,” PNAS 109(15), 5815–5819 (2012).
[Crossref] [PubMed]

Pavone, P. S.

C. Crocini, R. Coppini, C. Ferrantini, P. Yan, L. M. Loew, C. Tesi, E. Cerbai, C. Poggesi, P. S. Pavone, and L. Sacconi, “Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure,” PNAS 111(42), 15196–15201 (2014).
[Crossref] [PubMed]

Poggesi, C.

C. Crocini, R. Coppini, C. Ferrantini, P. Yan, L. M. Loew, C. Tesi, E. Cerbai, C. Poggesi, P. S. Pavone, and L. Sacconi, “Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure,” PNAS 111(42), 15196–15201 (2014).
[Crossref] [PubMed]

L. Sacconi, C. Ferrantini, J. Lotti, R. Coppini, P. Yan, L. M. Loew, C. Tesi, E. Cerbai, C. Poggesi, and F. S. Pavone, “Action potential propagation in transverse-axial tubular system is impaired in heart failure,” PNAS 109(15), 5815–5819 (2012).
[Crossref] [PubMed]

Prabhakar, G.

L. Rishoj, G. Prabhakar, J. Demas, and S. Ramachandran, “30 nJ, ~50 fs all-fiber source at 1300 nm using soliton shifting in LMA HOM fiber,” Conference on Lasers and Electro-Optics (Optical Society of America, 2016), paper STh3O.3.

Radzewicz, C.

Ramachandran, S.

J. van Howe, J. H. Lee, S. Zhou, F. Wise, C. Xu, S. Ramachandran, S. Ghalmi, and M. F. Yan, “Demonstration of soliton self-frequency shift below 1300 nm in higher-order mode, solid silica-based fiber,” Opt. Lett. 32(4), 340–342 (2007).
[Crossref] [PubMed]

L. Rishoj, G. Prabhakar, J. Demas, and S. Ramachandran, “30 nJ, ~50 fs all-fiber source at 1300 nm using soliton shifting in LMA HOM fiber,” Conference on Lasers and Electro-Optics (Optical Society of America, 2016), paper STh3O.3.

Reid, D. T.

I. G. Cormack, D. T. Reid, W. J. Wadsworth, J. C. Knight, and P. S. J. Russell, “Observation of soliton self-frequency shift in photonic crystal fibre,” Electron. Lett. 38(4), 167–169 (2002).
[Crossref]

Reimer, J.

D. Ouzounov, T. Wang, M. Wang, D. Feng, N. Horton, J. Cruz-HernÃąndez, Y. Cheng, J. Reimer, A. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods (online) (2017).
[Crossref] [PubMed]

Rishoj, L.

L. Rishoj, G. Prabhakar, J. Demas, and S. Ramachandran, “30 nJ, ~50 fs all-fiber source at 1300 nm using soliton shifting in LMA HOM fiber,” Conference on Lasers and Electro-Optics (Optical Society of America, 2016), paper STh3O.3.

Runge, A.

Runge, A. F.

C. Aguergaray, R. Hawker, A. F. Runge, M. Erkintalo, and N. G. R. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

Russell, P. S. J.

I. G. Cormack, D. T. Reid, W. J. Wadsworth, J. C. Knight, and P. S. J. Russell, “Observation of soliton self-frequency shift in photonic crystal fibre,” Electron. Lett. 38(4), 167–169 (2002).
[Crossref]

Sacconi, L.

C. Crocini, R. Coppini, C. Ferrantini, P. Yan, L. M. Loew, C. Tesi, E. Cerbai, C. Poggesi, P. S. Pavone, and L. Sacconi, “Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure,” PNAS 111(42), 15196–15201 (2014).
[Crossref] [PubMed]

L. Sacconi, C. Ferrantini, J. Lotti, R. Coppini, P. Yan, L. M. Loew, C. Tesi, E. Cerbai, C. Poggesi, and F. S. Pavone, “Action potential propagation in transverse-axial tubular system is impaired in heart failure,” PNAS 109(15), 5815–5819 (2012).
[Crossref] [PubMed]

Schaffer, C. B.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photon. 7(3), 205–209 (2013).
[Crossref]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
[Crossref] [PubMed]

Shephard, J. D.

Stepanenko, Y.

Sugiura, T.

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0–1.7µm wavelength-tunable ultrashort-pulse generation using femtosecond Ybdoped fiber laser and photonic crystal fiber,” IEEE Photon. Technol. Lett. 18(21), 2284–2286 (2006).
[Crossref]

Sun, C.

S. Chu, I. Chen, T. Liu, P.C. Chen, C. Sun, and B. Lin, “Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser,” J. Opt. Soc. Am. B 26(23), 1909–1911 (2001).

Sun, C. K.

Sun, C.-K.

S.-H. Chia, C.-H. Yu, C.-H. Lin, N.-C. Cheng, T.-M. Liu, M.-C. Chan, I.-H. Chen, and C.-K. Sun, “Miniaturized video-rate epi-third-harmonic-generation fiber-microscope,” Opt. Express 18(16), 17382–17391 (2010).
[Crossref] [PubMed]

S.-W. Chu, I-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy,” J. Microscopy 208(3), 190–200 (2002).
[Crossref]

Sun, Y.

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, and D. Walpita, “Sensitive red protein calcium indicators for imaging neural activity,” Elife 5, e12727 (2016).
[Crossref] [PubMed]

Szczepanek, J.

Tai, S. P.

Takayanagi, J.

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0–1.7µm wavelength-tunable ultrashort-pulse generation using femtosecond Ybdoped fiber laser and photonic crystal fiber,” IEEE Photon. Technol. Lett. 18(21), 2284–2286 (2006).
[Crossref]

Tesi, C.

C. Crocini, R. Coppini, C. Ferrantini, P. Yan, L. M. Loew, C. Tesi, E. Cerbai, C. Poggesi, P. S. Pavone, and L. Sacconi, “Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure,” PNAS 111(42), 15196–15201 (2014).
[Crossref] [PubMed]

L. Sacconi, C. Ferrantini, J. Lotti, R. Coppini, P. Yan, L. M. Loew, C. Tesi, E. Cerbai, C. Poggesi, and F. S. Pavone, “Action potential propagation in transverse-axial tubular system is impaired in heart failure,” PNAS 109(15), 5815–5819 (2012).
[Crossref] [PubMed]

Tolias, A.

D. Ouzounov, T. Wang, M. Wang, D. Feng, N. Horton, J. Cruz-HernÃąndez, Y. Cheng, J. Reimer, A. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods (online) (2017).
[Crossref] [PubMed]

Tsegaye, G.

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, and D. Walpita, “Sensitive red protein calcium indicators for imaging neural activity,” Elife 5, e12727 (2016).
[Crossref] [PubMed]

van Howe, J.

J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Select. Topics Quantum Electron. 14(3), 713–723 (2008).
[Crossref]

J. van Howe, J. H. Lee, S. Zhou, F. Wise, C. Xu, S. Ramachandran, S. Ghalmi, and M. F. Yan, “Demonstration of soliton self-frequency shift below 1300 nm in higher-order mode, solid silica-based fiber,” Opt. Lett. 32(4), 340–342 (2007).
[Crossref] [PubMed]

Waddie, A.

Wadsworth, W. J.

I. G. Cormack, D. T. Reid, W. J. Wadsworth, J. C. Knight, and P. S. J. Russell, “Observation of soliton self-frequency shift in photonic crystal fibre,” Electron. Lett. 38(4), 167–169 (2002).
[Crossref]

Walpita, D.

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, and D. Walpita, “Sensitive red protein calcium indicators for imaging neural activity,” Elife 5, e12727 (2016).
[Crossref] [PubMed]

Wang, I. J.

Wang, K.

K. Wang, N. G. Horton, K. Charan, and C. Xu, “advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Select. Topics Quantum Electron. 20(2), 50–60 (2014).
[Crossref]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photon. 7(3), 205–209 (2013).
[Crossref]

Wang, M.

D. Ouzounov, T. Wang, M. Wang, D. Feng, N. Horton, J. Cruz-HernÃąndez, Y. Cheng, J. Reimer, A. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods (online) (2017).
[Crossref] [PubMed]

Wang, T.

D. Ouzounov, T. Wang, M. Wang, D. Feng, N. Horton, J. Cruz-HernÃąndez, Y. Cheng, J. Reimer, A. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods (online) (2017).
[Crossref] [PubMed]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21 (11), 1369–1377 (2003).
[Crossref] [PubMed]

Weston, N. J.

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21 (11), 1369–1377 (2003).
[Crossref] [PubMed]

Windler, R. S.

Wise, F.

Wise, F. W.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photon. 7(3), 205–209 (2013).
[Crossref]

H. Lim, J. Buckley, A. Chong, and F. W. Wise, “Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 µm,” Electron. Lett. 40(24), 1523–1525 (2004).
[Crossref]

Wong, A. W.

Xu, C.

K. Wang, N. G. Horton, K. Charan, and C. Xu, “advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Select. Topics Quantum Electron. 20(2), 50–60 (2014).
[Crossref]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photon. 7(3), 205–209 (2013).
[Crossref]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
[Crossref] [PubMed]

J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Select. Topics Quantum Electron. 14(3), 713–723 (2008).
[Crossref]

J. van Howe, J. H. Lee, S. Zhou, F. Wise, C. Xu, S. Ramachandran, S. Ghalmi, and M. F. Yan, “Demonstration of soliton self-frequency shift below 1300 nm in higher-order mode, solid silica-based fiber,” Opt. Lett. 32(4), 340–342 (2007).
[Crossref] [PubMed]

X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett. 26(6), 358–360 (2001).
[Crossref]

D. Ouzounov, T. Wang, M. Wang, D. Feng, N. Horton, J. Cruz-HernÃąndez, Y. Cheng, J. Reimer, A. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods (online) (2017).
[Crossref] [PubMed]

Yan, M. F.

Yan, P.

C. Crocini, R. Coppini, C. Ferrantini, P. Yan, L. M. Loew, C. Tesi, E. Cerbai, C. Poggesi, P. S. Pavone, and L. Sacconi, “Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure,” PNAS 111(42), 15196–15201 (2014).
[Crossref] [PubMed]

L. Sacconi, C. Ferrantini, J. Lotti, R. Coppini, P. Yan, L. M. Loew, C. Tesi, E. Cerbai, C. Poggesi, and F. S. Pavone, “Action potential propagation in transverse-axial tubular system is impaired in heart failure,” PNAS 109(15), 5815–5819 (2012).
[Crossref] [PubMed]

Yoshida, M.

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0–1.7µm wavelength-tunable ultrashort-pulse generation using femtosecond Ybdoped fiber laser and photonic crystal fiber,” IEEE Photon. Technol. Lett. 18(21), 2284–2286 (2006).
[Crossref]

Yu, C. H.

Yu, C.-H.

Yu, H. C.

Zhang, Z. G.

Zhou, S.

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21 (11), 1369–1377 (2003).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

C. Aguergaray, R. Hawker, A. F. Runge, M. Erkintalo, and N. G. R. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

Electron. Lett. (2)

I. G. Cormack, D. T. Reid, W. J. Wadsworth, J. C. Knight, and P. S. J. Russell, “Observation of soliton self-frequency shift in photonic crystal fibre,” Electron. Lett. 38(4), 167–169 (2002).
[Crossref]

H. Lim, J. Buckley, A. Chong, and F. W. Wise, “Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 µm,” Electron. Lett. 40(24), 1523–1525 (2004).
[Crossref]

Elife (1)

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, and D. Walpita, “Sensitive red protein calcium indicators for imaging neural activity,” Elife 5, e12727 (2016).
[Crossref] [PubMed]

IEEE J. Select. Topics Quantum Electron. (2)

K. Wang, N. G. Horton, K. Charan, and C. Xu, “advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Select. Topics Quantum Electron. 20(2), 50–60 (2014).
[Crossref]

J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Select. Topics Quantum Electron. 14(3), 713–723 (2008).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0–1.7µm wavelength-tunable ultrashort-pulse generation using femtosecond Ybdoped fiber laser and photonic crystal fiber,” IEEE Photon. Technol. Lett. 18(21), 2284–2286 (2006).
[Crossref]

J. Microscopy (1)

S.-W. Chu, I-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy,” J. Microscopy 208(3), 190–200 (2002).
[Crossref]

J. Opt. Soc. Am. B (1)

S. Chu, I. Chen, T. Liu, P.C. Chen, C. Sun, and B. Lin, “Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser,” J. Opt. Soc. Am. B 26(23), 1909–1911 (2001).

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21 (11), 1369–1377 (2003).
[Crossref] [PubMed]

Nat. Methods (1)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Nat. Photon. (1)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photon. 7(3), 205–209 (2013).
[Crossref]

Opt. Express (7)

C. H. Yu, S. P. Tai, C. T. Kung, I. J. Wang, H. C. Yu, H. J. Huang, W. J. Lee, Y. F. Chan, and C. K. Sun, “In vivo and ex vivo imaging of intra-tissue elastic fibers using third-harmonic-generation microscopy,” Opt. Express 15(18), 11167–11177 (2007).
[Crossref] [PubMed]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
[Crossref] [PubMed]

L. GrÃijner-Nielsen, D. Jakobsen, K. G. Jespersen, and B. PÃąlsdÃşttir, “A stretcher fiber for use in fs chirped pulse Yb amplifiers,” Opt. Express 18(4), 3768–3773 (2010).
[Crossref]

R. J. Beck, J. P. Parry, W. N. MacPherson, A. Waddie, N. J. Weston, J. D. Shephard, and D. P. Hand, “application of cooled spatial light modulator for high power nanosecond laser micromachining,” Opt. Express 18(16), 17059–17065 (2010).
[Crossref] [PubMed]

S.-H. Chia, C.-H. Yu, C.-H. Lin, N.-C. Cheng, T.-M. Liu, M.-C. Chan, I.-H. Chen, and C.-K. Sun, “Miniaturized video-rate epi-third-harmonic-generation fiber-microscope,” Opt. Express 18(16), 17382–17391 (2010).
[Crossref] [PubMed]

M. Erkintalo, C. Aguergaray, A. Runge, and N. G. R. Broderick, “Environmentally stable all-PM all-fiber giant chirp oscillator,” Opt. Express 20(20), 22669–22674 (2012).
[Crossref] [PubMed]

W. Liu, C. Li, Z. G. Zhang, F. X. Kärtner, and G. Q. Chang, “Self-phase modulation enabled, wavelength tunable ultrafast fiber laser sources: an energy scalable approach,” Opt. Express 24(14), 15328–15340 (2016).
[Crossref] [PubMed]

Opt. Lett. (4)

PNAS (2)

L. Sacconi, C. Ferrantini, J. Lotti, R. Coppini, P. Yan, L. M. Loew, C. Tesi, E. Cerbai, C. Poggesi, and F. S. Pavone, “Action potential propagation in transverse-axial tubular system is impaired in heart failure,” PNAS 109(15), 5815–5819 (2012).
[Crossref] [PubMed]

C. Crocini, R. Coppini, C. Ferrantini, P. Yan, L. M. Loew, C. Tesi, E. Cerbai, C. Poggesi, P. S. Pavone, and L. Sacconi, “Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure,” PNAS 111(42), 15196–15201 (2014).
[Crossref] [PubMed]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2013).

L. Rishoj, G. Prabhakar, J. Demas, and S. Ramachandran, “30 nJ, ~50 fs all-fiber source at 1300 nm using soliton shifting in LMA HOM fiber,” Conference on Lasers and Electro-Optics (Optical Society of America, 2016), paper STh3O.3.

D. Ouzounov, T. Wang, M. Wang, D. Feng, N. Horton, J. Cruz-HernÃąndez, Y. Cheng, J. Reimer, A. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods (online) (2017).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup. ISO: isolator, WDM: wavelength division multiplexer, LD: laser diode, DM: dichroic mirror, HWP: half-wave plate, PBS: polarization beam splitter, NL fiber: nonlinear fiber

Fig. 2
Fig. 2

(a–c) SPM-broadened spectra in three different fibers of all 70-mm long: LMA-8 (a), HI-1060 (b), and LMA-5 (c). The coupled average power is also given in each figure. (d) Power comparison of the rightmost spectral lobes filtered from the spectra shown in (a–c). The optical bandpass filter peaks at 1100 nm with 50-nm bandwidth.

Fig. 3
Fig. 3

SPM-enabled femtosecond sources using 70-mm LMA-8. (a) Spectral evolution versus coupled power. (b) Filtered rightmost spectral lobes for different coupled power. (c–e) Measured autocorrelation traces (red curves) of the filtered lobes at 1080 nm (c), 1140 nm (e), and 1215 nm (d). Calculated autocorrelation traces of transform-limited pulses allowed by the filtered spectra are shown as black dotted curves.

Fig. 4
Fig. 4

SPM-enabled spectral broadeing in fiber LMA 8 of different length: 20 mm, 30 mm, 50 mm, and 70 mm. The coupled average power is 3 W for all fibers. (b) Pulse energy of the filtered rightmost spectral lobes at different central wavelength for different fiber length.

Fig. 5
Fig. 5

Propagation of a 250-nJ, 190-fs pulse inside fiber HI-1060. (a) Spectrum evolution versus fiber length. The rightmost spectral lobe of the optical spectrum after propagating 2 cm is filtered. The corresponding optical pulse (blue curve) and the calculated tranform-limited pulse (red curve) from the filtered spectra are shown in (b). Inset of (b): the filtered rightmost spectral lobe.

Fig. 6
Fig. 6

Horizontal-sectioned epi-SHG/THG images of ex vivo human skin driven by the filtered source at 1100 nm. (a–d) Cell morphology from the stratum corneum to the stratum basale in epidermis from THG contrast. Combined with the epi-SHG modality, the collagen fibers in the dermal papilla [arrowhead in (d)] is revealed. (e–h) Depth-dependent collagenous distribution in the dermis observed through epi-SHG. Magenta: THG, Green: SHG. Scale bar: 50 μm.

Tables (1)

Tables Icon

Table 1 Properties of optical fibers used for spectra broadening

Metrics