Abstract

The spectral phase noise of a cryogenically cooled Ti:Sapphire amplifier was analyzed by spectrally resolved interferometry. Since a relative phase difference measurement is performed, the effect of the amplifier stage can be determined with high precision. Contributions of the cooling system to the spectral phase noise were found to be below 50 mrad for both the vacuum pumps and the cryogenic system. The carrier-envelope phase noise of thermal and mechanical origin was also determined for different repetition rates of laser operation. Mechanical vibrational spectra were recorded by an accelerometer for different stages of operation and compared to the interferometric phase noise measurements.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Carrier-envelope-phase stabilized terawatt class laser at 1 kHz with a wavelength tunable option

Benjamin Langdon, Jonathan Garlick, Xiaoming Ren, Derrek J. Wilson, Adam M. Summers, Stefan Zigo, Matthias F. Kling, Shuting Lei, Christopher G. Elles, Eric Wells, Erwin D. Poliakoff, Kevin D. Carnes, Vinod Kumarappan, Itzik Ben-Itzhak, and Carlos A. Trallero-Herrero
Opt. Express 23(4) 4563-4572 (2015)

Measurement of pump-induced transient lensing in a cryogenically-cooled high average power Ti:sapphire amplifier

Thomas A. Planchon, Wafa Amir, Colby Childress, Jeff A. Squier, and Charles G. Durfee
Opt. Express 16(23) 18557-18564 (2008)

Temperature dependence of Ti:Sapphire fluorescence spectra for the design of cryogenic cooled Ti:Sapphire CPA laser

Harry Burton, Christopher Debardelaben, Wafa Amir, and Thomas A. Planchon
Opt. Express 25(6) 6954-6962 (2017)

References

  • View by:
  • |
  • |
  • |

  1. F. Krausz and M. Ivanov, “Attosecond Physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
    [Crossref]
  2. J. A. Cox, W. P. Putnam, A. Sell, A. Leitenstorfer, and F. X. Kärtner, “Pulse synthesis in the single-cycle regime from independent mode-locked lasers using attosecond-precision feedback,” Opt. Lett. 37(17), 3579–3581 (2012).
    [Crossref] [PubMed]
  3. T. Zhou, J. Ruppe, C. Zhu, I.-N. Hu, J. Nees, and A. Galvanauskas, “Coherent pulse stacking amplification using low-finesse Gires-Tournois interferometers,” Opt. Express 23(6), 7442–7462 (2015).
    [Crossref] [PubMed]
  4. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [Crossref] [PubMed]
  5. B. Borchers, S. Koke, A. Husakou, J. Herrmann, and G. Steinmeyer, “Carrier-envelope phase stabilization with sub-10 as residual timing jitter,” Opt. Lett. 36(21), 4146–4148 (2011).
    [Crossref] [PubMed]
  6. I. Thomann, E. Gagnon, R. Jones, A. Sandhu, A. Lytle, R. Anderson, J. Ye, M. Murnane, and H. Kapteyn, “Investigation of a grating-based stretcher/compressor for carrier-envelope phase stabilized fs pulses,” Opt. Express 12(15), 3493–3499 (2004).
    [Crossref] [PubMed]
  7. T. Fordell, M. Miranda, A. Persson, and A. L’Huillier, “Carrier-envelope phase stabilization of a multi-millijoule, regenerative-amplifier-based chirped-pulse smplifier system,” Opt. Express 17(23), 21091–21097 (2009).
    [Crossref] [PubMed]
  8. F. Lücking, V. Crozatier, N. Forget, A. Assion, and F. Krausz, “Approaching the limits of carrier-envelope phase stability in a millijoule-class amplifier,” Opt. Lett. 39(13), 3884–3887 (2014).
    [Crossref] [PubMed]
  9. A. Baltuška, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phys. Rev. Lett. 88(13), 133901 (2002).
    [Crossref] [PubMed]
  10. R. Budriūnas, T. Stanislauskas, and A. Varanavičius, “Passively CEP-stabilized frontend for few cycle terawatt OPCPA system,” J. Opt. 17(9), 094008 (2015).
    [Crossref]
  11. K. Osvay, L. Canova, C. Durfee, A. P. Kovács, A. Börzsönyi, O. Albert, and R. L. Martens, “Preservation of the carrier envelope phase during cross-polarized wave generation,” Opt. Express 17(25), 22358–22365 (2009).
    [Crossref] [PubMed]
  12. F. Lücking, A. Trabattoni, S. Anumula, G. Sansone, F. Calegari, M. Nisoli, T. Oksenhendler, and G. Tempea, “In situ measurement of nonlinear carrier-envelope phase changes in hollow fiber compression,” Opt. Lett. 39(8), 2302–2305 (2014).
    [Crossref] [PubMed]
  13. A. Börzsönyi, R. S. Nagymihaly, and K. Osvay, “Drift and noise of the carrier-envelope phase in a Ti:Sapphire amplifier,” Laser Phys. Lett. 13(1), 015301 (2016).
    [Crossref]
  14. S. Koke, C. Grebing, B. Manschwetus, and G. Steinmeyer, “Fast f-to-2f interferometer for a direct measurement of the carrier-envelope phase drift of ultrashort amplified laser pulses,” Opt. Lett. 33(21), 2545–2547 (2008).
    [Crossref] [PubMed]
  15. C. Li, E. Moon, H. Mashiko, H. Wang, C. M. Nakamura, J. Tackett, and Z. Chang, “Mechanism of phase-energy coupling in f-to-2f interferometry,” Appl. Opt. 48(7), 1303–1307 (2009).
    [Crossref] [PubMed]
  16. A. M. Sayler, T. Rathje, W. Müller, Ch. Kürbis, K. Rühle, G. Stibenz, and G. G. Paulus, “Real-time pulse length measurement of few-cycle laser pulses using above-threshold ionization,” Opt. Express 19(5), 4464–4471 (2011).
    [Crossref] [PubMed]
  17. D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
    [Crossref]
  18. A. Borzsonyi, A. P. Kovacs, and K. Osvay, “What we can learn about ultrashort pulses by linear optical methods,” Appl. Sci. 3(2), 515–544 (2013).
    [Crossref]
  19. L. Lepetit, G. Cheriaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12(12), 2467–2474 (1995).
    [Crossref]
  20. C. Dorrer and F. Salin, “Characterization of spectral phase modulation by classical and polarization spectral interferometry,” J. Opt. Soc. Am. B 15(8), 2331–2337 (1998).
    [Crossref]
  21. C. Dorrer, “Influence of the calibration of the detector on spectral interferometry,” J. Opt. Soc. Am. B 16(7), 1160–1168 (1999).
    [Crossref]
  22. C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17(10), 1795–1802 (2000).
    [Crossref]
  23. www.tewati.eu
  24. J. Limpert, A. Klenke, M. Kienel, S. Breitkopf, T. Eidam, S. Hadrich, C. Jauregui, and A. Tünnermann, “Performance scaling of ultrafast laser systems by coherent addition of femtosecond pulses,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0901810 (2014).
    [Crossref]

2016 (1)

A. Börzsönyi, R. S. Nagymihaly, and K. Osvay, “Drift and noise of the carrier-envelope phase in a Ti:Sapphire amplifier,” Laser Phys. Lett. 13(1), 015301 (2016).
[Crossref]

2015 (2)

R. Budriūnas, T. Stanislauskas, and A. Varanavičius, “Passively CEP-stabilized frontend for few cycle terawatt OPCPA system,” J. Opt. 17(9), 094008 (2015).
[Crossref]

T. Zhou, J. Ruppe, C. Zhu, I.-N. Hu, J. Nees, and A. Galvanauskas, “Coherent pulse stacking amplification using low-finesse Gires-Tournois interferometers,” Opt. Express 23(6), 7442–7462 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (1)

A. Borzsonyi, A. P. Kovacs, and K. Osvay, “What we can learn about ultrashort pulses by linear optical methods,” Appl. Sci. 3(2), 515–544 (2013).
[Crossref]

2012 (1)

2011 (2)

2009 (4)

2008 (1)

2005 (1)

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

2004 (1)

2002 (2)

A. Baltuška, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phys. Rev. Lett. 88(13), 133901 (2002).
[Crossref] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

2000 (1)

1999 (1)

1998 (1)

1995 (1)

Albert, O.

Anderson, R.

Anumula, S.

Assion, A.

Baltuška, A.

A. Baltuška, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phys. Rev. Lett. 88(13), 133901 (2002).
[Crossref] [PubMed]

Belabas, N.

Borchers, B.

Borzsonyi, A.

A. Borzsonyi, A. P. Kovacs, and K. Osvay, “What we can learn about ultrashort pulses by linear optical methods,” Appl. Sci. 3(2), 515–544 (2013).
[Crossref]

Börzsönyi, A.

A. Börzsönyi, R. S. Nagymihaly, and K. Osvay, “Drift and noise of the carrier-envelope phase in a Ti:Sapphire amplifier,” Laser Phys. Lett. 13(1), 015301 (2016).
[Crossref]

K. Osvay, L. Canova, C. Durfee, A. P. Kovács, A. Börzsönyi, O. Albert, and R. L. Martens, “Preservation of the carrier envelope phase during cross-polarized wave generation,” Opt. Express 17(25), 22358–22365 (2009).
[Crossref] [PubMed]

Breitkopf, S.

J. Limpert, A. Klenke, M. Kienel, S. Breitkopf, T. Eidam, S. Hadrich, C. Jauregui, and A. Tünnermann, “Performance scaling of ultrafast laser systems by coherent addition of femtosecond pulses,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0901810 (2014).
[Crossref]

Brown, D. C.

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

Budriunas, R.

R. Budriūnas, T. Stanislauskas, and A. Varanavičius, “Passively CEP-stabilized frontend for few cycle terawatt OPCPA system,” J. Opt. 17(9), 094008 (2015).
[Crossref]

Calegari, F.

Canova, L.

Chang, Z.

Cheriaux, G.

Cox, J. A.

Crozatier, V.

Dorrer, C.

Durfee, C.

Eidam, T.

J. Limpert, A. Klenke, M. Kienel, S. Breitkopf, T. Eidam, S. Hadrich, C. Jauregui, and A. Tünnermann, “Performance scaling of ultrafast laser systems by coherent addition of femtosecond pulses,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0901810 (2014).
[Crossref]

Fordell, T.

Forget, N.

Fuji, T.

A. Baltuška, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phys. Rev. Lett. 88(13), 133901 (2002).
[Crossref] [PubMed]

Gagnon, E.

Galvanauskas, A.

Grebing, C.

Hadrich, S.

J. Limpert, A. Klenke, M. Kienel, S. Breitkopf, T. Eidam, S. Hadrich, C. Jauregui, and A. Tünnermann, “Performance scaling of ultrafast laser systems by coherent addition of femtosecond pulses,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0901810 (2014).
[Crossref]

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Herrmann, J.

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Hu, I.-N.

Husakou, A.

Ivanov, M.

F. Krausz and M. Ivanov, “Attosecond Physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

Jauregui, C.

J. Limpert, A. Klenke, M. Kienel, S. Breitkopf, T. Eidam, S. Hadrich, C. Jauregui, and A. Tünnermann, “Performance scaling of ultrafast laser systems by coherent addition of femtosecond pulses,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0901810 (2014).
[Crossref]

Joffre, M.

Jones, R.

Kapteyn, H.

Kärtner, F. X.

Kienel, M.

J. Limpert, A. Klenke, M. Kienel, S. Breitkopf, T. Eidam, S. Hadrich, C. Jauregui, and A. Tünnermann, “Performance scaling of ultrafast laser systems by coherent addition of femtosecond pulses,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0901810 (2014).
[Crossref]

Klenke, A.

J. Limpert, A. Klenke, M. Kienel, S. Breitkopf, T. Eidam, S. Hadrich, C. Jauregui, and A. Tünnermann, “Performance scaling of ultrafast laser systems by coherent addition of femtosecond pulses,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0901810 (2014).
[Crossref]

Kobayashi, T.

A. Baltuška, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phys. Rev. Lett. 88(13), 133901 (2002).
[Crossref] [PubMed]

Koke, S.

Kovacs, A. P.

A. Borzsonyi, A. P. Kovacs, and K. Osvay, “What we can learn about ultrashort pulses by linear optical methods,” Appl. Sci. 3(2), 515–544 (2013).
[Crossref]

Kovács, A. P.

Krausz, F.

Kürbis, Ch.

L’Huillier, A.

Leitenstorfer, A.

Lepetit, L.

Li, C.

Likforman, J.-P.

Limpert, J.

J. Limpert, A. Klenke, M. Kienel, S. Breitkopf, T. Eidam, S. Hadrich, C. Jauregui, and A. Tünnermann, “Performance scaling of ultrafast laser systems by coherent addition of femtosecond pulses,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0901810 (2014).
[Crossref]

Lücking, F.

Lytle, A.

Manschwetus, B.

Martens, R. L.

Mashiko, H.

Miranda, M.

Moon, E.

Müller, W.

Murnane, M.

Nagymihaly, R. S.

A. Börzsönyi, R. S. Nagymihaly, and K. Osvay, “Drift and noise of the carrier-envelope phase in a Ti:Sapphire amplifier,” Laser Phys. Lett. 13(1), 015301 (2016).
[Crossref]

Nakamura, C. M.

Nees, J.

Nisoli, M.

Oksenhendler, T.

Osvay, K.

A. Börzsönyi, R. S. Nagymihaly, and K. Osvay, “Drift and noise of the carrier-envelope phase in a Ti:Sapphire amplifier,” Laser Phys. Lett. 13(1), 015301 (2016).
[Crossref]

A. Borzsonyi, A. P. Kovacs, and K. Osvay, “What we can learn about ultrashort pulses by linear optical methods,” Appl. Sci. 3(2), 515–544 (2013).
[Crossref]

K. Osvay, L. Canova, C. Durfee, A. P. Kovács, A. Börzsönyi, O. Albert, and R. L. Martens, “Preservation of the carrier envelope phase during cross-polarized wave generation,” Opt. Express 17(25), 22358–22365 (2009).
[Crossref] [PubMed]

Paulus, G. G.

Persson, A.

Putnam, W. P.

Rathje, T.

Rühle, K.

Ruppe, J.

Salin, F.

Sandhu, A.

Sansone, G.

Sayler, A. M.

Sell, A.

Stanislauskas, T.

R. Budriūnas, T. Stanislauskas, and A. Varanavičius, “Passively CEP-stabilized frontend for few cycle terawatt OPCPA system,” J. Opt. 17(9), 094008 (2015).
[Crossref]

Steinmeyer, G.

Stibenz, G.

Tackett, J.

Tempea, G.

Thomann, I.

Trabattoni, A.

Tünnermann, A.

J. Limpert, A. Klenke, M. Kienel, S. Breitkopf, T. Eidam, S. Hadrich, C. Jauregui, and A. Tünnermann, “Performance scaling of ultrafast laser systems by coherent addition of femtosecond pulses,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0901810 (2014).
[Crossref]

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Varanavicius, A.

R. Budriūnas, T. Stanislauskas, and A. Varanavičius, “Passively CEP-stabilized frontend for few cycle terawatt OPCPA system,” J. Opt. 17(9), 094008 (2015).
[Crossref]

Wang, H.

Ye, J.

Zhou, T.

Zhu, C.

Appl. Opt. (1)

Appl. Sci. (1)

A. Borzsonyi, A. P. Kovacs, and K. Osvay, “What we can learn about ultrashort pulses by linear optical methods,” Appl. Sci. 3(2), 515–544 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

J. Limpert, A. Klenke, M. Kienel, S. Breitkopf, T. Eidam, S. Hadrich, C. Jauregui, and A. Tünnermann, “Performance scaling of ultrafast laser systems by coherent addition of femtosecond pulses,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0901810 (2014).
[Crossref]

J. Opt. (1)

R. Budriūnas, T. Stanislauskas, and A. Varanavičius, “Passively CEP-stabilized frontend for few cycle terawatt OPCPA system,” J. Opt. 17(9), 094008 (2015).
[Crossref]

J. Opt. Soc. Am. B (4)

Laser Phys. Lett. (1)

A. Börzsönyi, R. S. Nagymihaly, and K. Osvay, “Drift and noise of the carrier-envelope phase in a Ti:Sapphire amplifier,” Laser Phys. Lett. 13(1), 015301 (2016).
[Crossref]

Nature (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (5)

Phys. Rev. Lett. (1)

A. Baltuška, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phys. Rev. Lett. 88(13), 133901 (2002).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

F. Krausz and M. Ivanov, “Attosecond Physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

Other (1)

www.tewati.eu

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Scheme of the experimental setup.

Fig. 2
Fig. 2

Histograms of the spectral phase noise RMS without amplification for various operational stages of the experiment.

Fig. 3
Fig. 3

Normalized thermal CEP noise histograms for different repetition rates in case of pumping with 10 mJ energy pulses.

Fig. 4
Fig. 4

Variation of the spectral phase (a) and temperature of the crystal holder (b) during warming up from cryogenic temperature in two cases: without amplification (blue) and with amplification (red).

Fig. 5
Fig. 5

Histograms of the spectral phase noise RMS in case of operation without (a) and with amplification (b).

Fig. 6
Fig. 6

Power spectral density of the noise spectra recorded with the vibrometer at different stages of starting up the experimental setup: background (a), vacuum operation (b), and the cryogenic refrigerator operation (c). Power spectral density of the noise spectra obtained from the interferometric phase measurements by FFT at different stages of starting up the experimental setup: background (d), vacuum operation (e), and the cryogenic refrigerator operation (f).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ φ CE =Δ φ 0 ΔGD ω 0 ,
Δ φ CE,vibrational =Δ φ 0 ( 1 ω 0 ΔG D air Δ φ 0,air )and
Δ φ CE,thermal =Δ φ 0 ( 1 ω 0 ΔG D Ti:Sa Δ φ 0 ,Ti:Sa ).
GD φ 0 = 1 ω + 1 n air ( ω ) d n air ( ω ) dω ,

Metrics