Abstract

In this work, numerical heat transfer simulations of direct water-cooled gain modules for thin disk (TD) Ti:Sapphire (Ti:Sa) power amplifiers are presented. By using the TD technique in combination with the extraction during pumping (EDP) method 100-TW class amplifiers operating around 300 W average power could be reached in the future. Single and double-sided cooling arrangements were investigated for several coolant flow velocities. Simulations which upscale the gain module for multiple kilowatts of average power were also performed for large aperture Ti:Sa disks and for multiple disks with several coolant channels.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of a thin disk amplifier with extraction during pumping for high peak and average power Ti:Sa systems (EDP-TD)

Vladimir Chvykov, Roland S. Nagymihaly, Huabao Cao, Mikhail Kalashnikov, and Karoly Osvay
Opt. Express 24(4) 3721-3733 (2016)

High peak and average power Ti:sapphire thin disk amplifier with extraction during pumping

Vladimir Chvykov, Huabao Cao, Roland Nagymihaly, Mikhail P. Kalashnikov, Nikita Khodakovskiy, Richard Glassock, Lutz Ehrentraut, Matthias Schnuerer, and Károly Osvay
Opt. Lett. 41(13) 3017-3020 (2016)

Generation of 10-W average-power, 40-TW peak-power, 24-fs pulses from a Ti:sapphire amplifier system

H. Wang, S. Backus, Z. Chang, R. Wagner, K. Kim, X. Wang, D. Umstadter, T. Lei, M. Murnane, and H. Kapteyn
J. Opt. Soc. Am. B 16(10) 1790-1794 (1999)

References

  • View by:
  • |
  • |
  • |

  1. V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Malshakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
    [Crossref]
  2. E. W. Gaul, M. Martinez, J. Blakeney, A. Jochmann, M. Ringuette, D. Hammond, T. Borger, R. Escamilla, S. Douglas, W. Henderson, G. Dyer, A. Erlandson, R. Cross, J. Caird, C. Ebbers, and T. Ditmire, “Demonstration of a 1.1 petawatt laser based on a hybrid optical parametric chirped pulse amplification/mixed Nd:glass amplifier,” Appl. Opt. 49(9), 1676–1681 (2010).
    [Crossref] [PubMed]
  3. J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong, and J. Lee, “0.1 Hz 1.0 PW Ti:sapphire laser,” Opt. Lett. 35(18), 3021–3023 (2010).
    [Crossref] [PubMed]
  4. T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong, and J. Lee, “Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti:sapphire laser,” Opt. Express 20(10), 10807–10815 (2012).
    [Crossref] [PubMed]
  5. Y. Chu, X. Liang, L. Yu, Y. Xu, L. Xu, L. Ma, X. Lu, Y. Liu, Y. Leng, R. Li, and Z. Xu, “High-contrast 2.0 Petawatt Ti:sapphire laser system,” Opt. Express 21(24), 29231–29239 (2013).
    [Crossref] [PubMed]
  6. J. H. Sung, S. K. Lee, H. W. Lee, J. Y. Yoo, and C. H. Nam, “Development of 0.1 Hz 4.0 PW Laser at CoReLS,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper SM1M.3.
    [Crossref]
  7. Y. Arikawa, S. Kojima, A. Morace, S. Sakata, T. Gawa, Y. Taguchi, Y. Abe, Z. Zhang, X. Vaisseau, S. H. Lee, K. Matsuo, S. Tosaki, M. Hata, K. Kawabata, Y. Kawakami, M. Ishida, K. Tsuji, S. Matsuo, N. Morio, T. Kawasaki, S. Tokita, Y. Nakata, T. Jitsuno, N. Miyanaga, J. Kawanaka, H. Nagatomo, A. Yogo, M. Nakai, H. Nishimura, H. Shiraga, S. Fujioka, H. Azechi, A. Sunahara, T. Johzaki, T. Ozaki, H. Sakagami, A. Sagisaka, K. Ogura, A. S. Pirozhkov, M. Nishikino, K. Kondo, S. Inoue, K. Teramoto, M. Hashida, and S. Sakabe, “Ultrahigh-contrast kilojoule-class petawatt LFEX laser using a plasma mirror,” Appl. Opt. 55(25), 6850–6857 (2016).
    [Crossref]
  8. W. P. Leemans, J. Daniels, A. Deshmukh, A. J. Gonsalves, A. Magana, H. S. Mao, D. E. Mittelberger, K. Nakamura, J. R. Riley, D. Syversrud, C. Toth, and N. Ybarrolaza, “Bella laser and operations,” in Proceedings of PAC2013 (2013), paper THYAA1.
  9. K. Yamakawa, M. Aoyama, S. Matsuoka, T. Kase, Y. Akahane, and H. Takuma, “100-TW sub-20-fs Ti:sapphire laser system operating at a 10-Hz repetition rate,” Opt. Lett. 23(18), 1468–1470 (1998).
    [Crossref] [PubMed]
  10. Y. H. Peng, Y. X. Lim, J. Cheng, Y. Guo, Y. Y. Cheah, and K. S. Lai, “Near fundamental mode 1.1 kW Yb:YAG thin-disk laser,” Opt. Lett. 38(10), 1709–1711 (2013).
    [Crossref] [PubMed]
  11. C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80 μJ pulse energy and 242 W of average power,” Opt. Lett. 39(1), 9–12 (2014).
    [Crossref] [PubMed]
  12. H. Fattahi, H. G. Barros, M. Gorjan, T. Nubbemeyer, B. Alsaif, C. Y. Teisset, M. Schultze, S. Prinz, M. Haefner, M. Ueffing, A. Alismail, L. Vámos, A. Schwarz, O. Pronin, J. Brons, X. T. Geng, G. Arisholm, M. Ciappina, V. S. Yakovlev, D.-E. Kim, A. M. Azzeer, N. Karpowicz, D. Sutter, Zs. Major, T. Metzger, and F. Krausz, “Third-generation femtosecond technology,” Optica 1(1), 45–63 (2014).
    [Crossref]
  13. P. F. Moulton, “Spectroscopic and laser caracteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3(1), 125–133 (1986).
    [Crossref]
  14. E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, Sapphire: Material, Manufacturing, Applications (Springer, 2009).
  15. S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
    [Crossref]
  16. V. Chvykov, R. S. Nagymihaly, H. Cao, M. Kalashnikov, and K. Osvay, “Design of a thin disk amplifier with extraction during pumping for high peak and average power Ti:Sa systems (EDP-TD),” Opt. Express 24(4), 3721–3733 (2016).
    [Crossref] [PubMed]
  17. V. Chvykov and K. Krushelnick, “Large aperture multi-pass amplifiers for high peak power lasers,” Opt. Commun. 285(8), 2134–2136 (2012).
    [Crossref]
  18. V. Chvykov, H. Cao, R. Nagymihaly, M. P. Kalashnikov, N. Khodakovskiy, R. Glassock, L. Ehrentraut, M. Schnuerer, and K. Osvay, “High peak and average power Ti:sapphire thin disk amplifier with extraction during pumping,” Opt. Lett. 41(13), 3017–3020 (2016).
    [Crossref] [PubMed]
  19. www.eli-alps.hu
  20. www.comsol.com
  21. F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA J. 32(8), 1598–1605 (1994).
    [Crossref]
  22. F. R. Menter, M. Kuntz, and R. Langtry, “Ten years of industrial experience with the SST turbulence model,” in Turbulence Heat and Mass Transfer 4 (2003).
  23. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena (John Wiley & Sons, 2007).
  24. T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. Dewitt, Fundamentals of Heat and Mass Transfer (John Wiley & Sons, 2011).
  25. P. Ferrara, M. Ciofini, L. Esposito, J. Hostaša, L. Labate, A. Lapucci, A. Pirri, G. Toci, M. Vannini, and L. A. Gizzi, “3-D numerical simulation of Yb:YAG active slabs with longitudinal doping gradient for thermal load effects assessment,” Opt. Express 22(5), 5375–5386 (2014).
    [Crossref] [PubMed]
  26. J. Tapping and M. L. Reilly, “Index of refraction of sapphire between 24 and 1060 °C for wavelengths of 633 and 799 nm,” J. Opt. Soc. Am. A 3(5), 610–616 (1986).
    [Crossref]
  27. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt. 12(3), 555–563 (1973).
    [Crossref] [PubMed]
  28. Z. Ye, C. Liu, B. Tu, K. Wang, Q. Gao, C. Tang, and Z. Cai, “Kilowatt-level direct-‘refractive index matching liquid’-cooled Nd:YLF thin disk laser resonator,” Opt. Express 24(2), 1758–1772 (2016).
    [Crossref] [PubMed]

2016 (4)

2014 (3)

2013 (2)

2012 (2)

2010 (2)

2007 (1)

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Malshakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
[Crossref]

2006 (1)

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

1998 (1)

1994 (1)

F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA J. 32(8), 1598–1605 (1994).
[Crossref]

1986 (2)

1973 (1)

Abe, Y.

Akahane, Y.

Alismail, A.

Alsaif, B.

Aoyama, M.

Arikawa, Y.

Arisholm, G.

Azechi, H.

Azzeer, A. M.

Balembois, F.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Barros, H. G.

Blakeney, J.

Borger, T.

Brons, J.

Cai, Z.

Caird, J.

Cao, H.

Cheah, Y. Y.

Chénais, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Cheng, J.

Chu, Y.

Chvykov, V.

Ciappina, M.

Ciofini, M.

Cross, R.

Ditmire, T.

Douglas, S.

Druon, F.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Dyer, G.

Ebbers, C.

Ehrentraut, L.

Emaury, F.

Erlandson, A.

Escamilla, R.

Esposito, L.

Fattahi, H.

Ferrara, P.

Forget, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Freidman, G. I.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Malshakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
[Crossref]

Fujioka, S.

Gao, Q.

Gaul, E. W.

Gawa, T.

Geng, X. T.

Georges, P.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Ginzburg, V. N.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Malshakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
[Crossref]

Gizzi, L. A.

Glassock, R.

Golling, M.

Gorjan, M.

Guo, Y.

Haefner, M.

Hale, G. M.

Hammond, D.

Hashida, M.

Hata, M.

Henderson, W.

Hoffmann, M.

Hostaša, J.

Inoue, S.

Ishida, M.

Jeong, T. M.

Jitsuno, T.

Jochmann, A.

Johzaki, T.

Kalashnikov, M.

Kalashnikov, M. P.

Karpowicz, N.

Kase, T.

Katin, E. V.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Malshakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
[Crossref]

Kawabata, K.

Kawakami, Y.

Kawanaka, J.

Kawasaki, T.

Keller, U.

Khazanov, E. A.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Malshakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
[Crossref]

Khodakovskiy, N.

Kim, D.-E.

Kirsanov, A. V.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Malshakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
[Crossref]

Kojima, S.

Kondo, K.

Krausz, F.

Krushelnick, K.

V. Chvykov and K. Krushelnick, “Large aperture multi-pass amplifiers for high peak power lasers,” Opt. Commun. 285(8), 2134–2136 (2012).
[Crossref]

Labate, L.

Lai, K. S.

Lapucci, A.

Lee, J.

Lee, S. H.

Lee, S. K.

Leng, Y.

Li, R.

Liang, X.

Lim, Y. X.

Liu, C.

Liu, Y.

Lozhkarev, V. V.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Malshakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
[Crossref]

Lu, X.

Luchinin, G. A.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Malshakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
[Crossref]

Ma, L.

Major, Zs.

Malshakov, A. N.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Malshakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
[Crossref]

Martinez, M.

Martyanov, M. A.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Malshakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
[Crossref]

Matsuo, K.

Matsuo, S.

Matsuoka, S.

Menter, F. R.

F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA J. 32(8), 1598–1605 (1994).
[Crossref]

Metzger, T.

Miyanaga, N.

Morace, A.

Morio, N.

Moulton, P. F.

Nagatomo, H.

Nagymihaly, R.

Nagymihaly, R. S.

Nakai, M.

Nakata, Y.

Nishikino, M.

Nishimura, H.

Nubbemeyer, T.

Ogura, K.

Osvay, K.

Ozaki, T.

Palashov, O. V.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Malshakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
[Crossref]

Peng, Y. H.

Pirozhkov, A. S.

Pirri, A.

Poteomkin, A. K.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Malshakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
[Crossref]

Prinz, S.

Pronin, O.

Querry, M. R.

Reilly, M. L.

Ringuette, M.

Sagisaka, A.

Sakabe, S.

Sakagami, H.

Sakata, S.

Saraceno, C. J.

Schnuerer, M.

Schriber, C.

Schultze, M.

Schwarz, A.

Sergeev, A. M.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Malshakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
[Crossref]

Shaykin, A. A.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Malshakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
[Crossref]

Shiraga, H.

Südmeyer, T.

Sunahara, A.

Sung, J. H.

Sutter, D.

Taguchi, Y.

Takuma, H.

Tang, C.

Tapping, J.

Teisset, C. Y.

Teramoto, K.

Toci, G.

Tokita, S.

Tosaki, S.

Tsuji, K.

Tu, B.

Ueffing, M.

Vaisseau, X.

Vámos, L.

Vannini, M.

Wang, K.

Xu, L.

Xu, Y.

Xu, Z.

Yakovlev, I. V.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Malshakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
[Crossref]

Yakovlev, V. S.

Yamakawa, K.

Ye, Z.

Yogo, A.

Yoon, J. W.

Yu, L.

Yu, T. J.

Zhang, Z.

AIAA J. (1)

F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA J. 32(8), 1598–1605 (1994).
[Crossref]

Appl. Opt. (3)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Malshakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007).
[Crossref]

Opt. Commun. (1)

V. Chvykov and K. Krushelnick, “Large aperture multi-pass amplifiers for high peak power lasers,” Opt. Commun. 285(8), 2134–2136 (2012).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Optica (1)

Prog. Quantum Electron. (1)

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Other (8)

F. R. Menter, M. Kuntz, and R. Langtry, “Ten years of industrial experience with the SST turbulence model,” in Turbulence Heat and Mass Transfer 4 (2003).

R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena (John Wiley & Sons, 2007).

T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. Dewitt, Fundamentals of Heat and Mass Transfer (John Wiley & Sons, 2011).

J. H. Sung, S. K. Lee, H. W. Lee, J. Y. Yoo, and C. H. Nam, “Development of 0.1 Hz 4.0 PW Laser at CoReLS,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper SM1M.3.
[Crossref]

www.eli-alps.hu

www.comsol.com

E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, Sapphire: Material, Manufacturing, Applications (Springer, 2009).

W. P. Leemans, J. Daniels, A. Deshmukh, A. J. Gonsalves, A. Magana, H. S. Mao, D. E. Mittelberger, K. Nakamura, J. R. Riley, D. Syversrud, C. Toth, and N. Ybarrolaza, “Bella laser and operations,” in Proceedings of PAC2013 (2013), paper THYAA1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic picture of the two types of cooling arrangements. Single channel cooling with reflection based optical scheme (a), when the rear optical surface of the Ti:Sa disk is HR coated. Double channel cooling with a transmission based optical scheme (b), where the front and rear surfaces of the Ti:Sa disk are AR coated. I is the inlet and O is outlet for coolant, while W is window and Ab is absorber material to reduce Fresnel reflection. The material visualized with grey is metal, and with blue is the coolant.

Fig. 2
Fig. 2

2D model of the coolant channel geometry with the Ti:Sa crystal. CPB1 and CPB2 are boundaries of the central part of the model.

Fig. 3
Fig. 3

Simulated velocity magnitude in the center section of the channel (gain crystal presented with only boundary lines) calculated with the SST model for different inlet velocities of the complete channel (a-e). Inlet flow velocities of the center section were indicated at the input of the channels in case of (a-e). Temperature distributions obtained with the corresponding flow velocity in the crystal and the center section of the channel (f-j).

Fig. 4
Fig. 4

TI within lasing crystal for different peak flow velocities in front of the Ti:Sa disk.

Fig. 5
Fig. 5

Optical path difference caused by the thermal load in case of the single channel (one side) cooled 3 mm thick crystal. OPD was calculated in the central cross section parallel with the flow direction.

Fig. 6
Fig. 6

2D model of the double coolant channel geometry with a 6 x 35 mm Ti:Sa crystal. CPB1 and CPB2 are boundaries of the central part of the model.

Fig. 7
Fig. 7

Simulated velocity magnitude in the center section of half of the channel (gain crystal presented with only boundary lines) calculated with the SST model for different inlet velocities of the complete channel (a-e). Inlet flow velocities of the center section were indicated at the input of the channels in case of (a-e). Temperature distributions obtained with the corresponding flow velocities in half of the disk center section of the channel (f-j).

Fig. 8
Fig. 8

Simulated temperature increase values for different peak flow velocities in front of the Ti:Sa disk. Results for disk size of 6 x 35 mm are plotted with red and for 4 x 35 mm disk size with blue.

Fig. 9
Fig. 9

Optical path difference caused by the thermal load in case of the 4 (blue), and 6 mm (red) thick crystals. The inlet flow velocity was taken to be 1 m/s for both cases.

Fig. 10
Fig. 10

Temperature profiles in the horizontal direction, in the center of the disks in case of the identical (red curve) and contra-directional (blue curve) flow cooling. The modeled amplifier contained a disk with a size of 6 x 60mm.

Fig. 11
Fig. 11

Temperature increase in the disk for different repetition rates of operation and various disk sizes (a). Pump energy for the given diameters starting from 6 cm are the following: 40 J, 57 J, 77 J, 101 J, 127 J, 308 J, 567 J, respectively. Peak power of compressed pulses reached by amplification with the pump energies listed above (b), where 60% for compressor efficiency, 100 Hz for repetition rate and 20 fs for compressed pulse duration were taken into account.

Fig. 12
Fig. 12

Temperature distribution in half of the double disk amplifier module with 3 x 60 mm (a), 5 x 100 mm (b), 7.5 x 150 mm (c), 10 x 200 mm (d) Ti:Sa crystals. The disks are cooled by three channels.

Fig. 13
Fig. 13

Temperature increase in the single and double disk modules with Ti:Sa crystals of 6 cm, 10 cm, 15 cm and 20 cm diameters, cooled by three channels using 4 m/s flow velocity at the inlet boundary of the channels. The repetition rate is 100 Hz for all cases.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

( ρk ) t + ( ρ U i k ) x i = P ˜ k ρ β kω+ x i [ ( μ+ σ k μ T ) k x i ],
( ρω ) t + ( ρ U i ω ) x i =αρ S 2 ρβ ω 2 + x i [ ( μ+ σ ω μ T ) ω x i ]+2( 1 F 1 ) ρ σ ω2 ω k x i ω x i ,
P k = μ T U i x j ( U i x j + U j x i ) P ˜ k =min( P k ,10 β kρω ).
μ T = a 1 k max( a 1 ω, S F 2 ) ,
α= α 1 F+ α 2 ( 1F ).
ρ C p uT+q=Q+ Q p + Q vd ,
q=kT,
Q p = α p Tup
Q vd =τ:u
q s = Q s ,
q s = k s T s ,

Metrics