Abstract

Electric-field induced physical phenomena, such as thermal, mechanical and electrochemical dynamics, may be the driving mechanism behind bioeffects observed in mammalian cells during exposure to nanosecond-duration electric pulses (nsEP) in-vitro. Correlating a driving mechanism to a biological response requires the experimental measurement and quantification of all physical dynamics resulting from the nsEP stimulus. A passive and electromagnetic interference (EMI) immune sensor is required to resolve these dynamics in high strength electric fields. The probe beam deflection technique (PBDT) is a passive and EMI immune optical method for quantifying and imaging refractive index gradients in liquids and gases, both dynamic and static, with nanosecond temporal resolution. In this work, a probe beam deflection imaging system was designed to acquire 2-D time-lapse images of thermal/mechanical dynamics resulting from monopolar and bipolar nsEP stimulus.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rhodamine B as an optical thermometer in cells focally exposed to infrared laser light or nanosecond pulsed electric fields

David Moreau, Claire Lefort, Ryan Burke, Philippe Leveque, and Rodney P. O’Connor
Biomed. Opt. Express 6(10) 4105-4117 (2015)

Probe beam deflection technique as acoustic emission directionality sensor with photoacoustic emission source

Ronald A. Barnes, Saher Maswadi, Randolph Glickman, and Mehdi Shadaram
Appl. Opt. 53(3) 511-519 (2014)

Changes in optical properties of electroporated cells as revealed by digital holographic microscopy

Violeta L. Calin, Mona Mihailescu, Nicolae Mihale, Alexandra V. Baluta, Eugenia Kovacs, Tudor Savopol, and Mihaela G. Moisescu
Biomed. Opt. Express 8(4) 2222-2234 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Nuccitelli, U. Pliquett, X. Chen, W. Ford, R. James Swanson, S. J. Beebe, J. F. Kolb, and K. H. Schoenbach, “Nanosecond pulsed electric fields cause melanomas to self-destruct,” Biochem. Biophys. Res. Commun. 343(2), 351–360 (2006).
    [Crossref] [PubMed]
  2. P. T. Vernier, Y. Sun, L. Marcu, S. Salemi, C. M. Craft, and M. A. Gundersen, “Calcium bursts induced by nanosecond electric pulses,” Biochem. Biophys. Res. Commun. 310(2), 286–295 (2003).
    [Crossref] [PubMed]
  3. K. H. Schoenbach, B. Hargrave, R. P. Joshi, J. F. Kolb, R. Nuccitelli, C. Osgood, A. Pakhomov, M. Stacey, R. J. Swanson, J. A. White, S. Xiao, J. Zhang, S. Beebe, P. Blackmore, and E. Buescher, “Bioelectric effects of intense nanosecond pulses,” IEEE Trans. Dielectr. Electr. Insul. 14(5), 1088–1109 (2007).
    [Crossref]
  4. K. H. Schoenbach, A. G. Pakhomov, I. Semenov, S. Xiao, O. N. Pakhomova, and B. L. Ibey, “Ion transport into cells exposed to monopolar and bipolar nanosecond pulses,” Bioelectrochemistry 103, 44–51 (2015).
    [Crossref] [PubMed]
  5. A. G. Pakhomov, J. F. Kolb, J. A. White, R. P. Joshi, S. Xiao, and K. H. Schoenbach, “Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF),” Bioelectromagnetics 28(8), 655–663 (2007).
    [Crossref] [PubMed]
  6. B. L. Ibey, S. Xiao, K. H. Schoenbach, M. R. Murphy, and A. G. Pakhomov, “Plasma membrane permeabilization by 60- and 600-ns electric pulses is determined by the absorbed dose,” Bioelectromagnetics 30(2), 92–99 (2009).
    [Crossref] [PubMed]
  7. B. L. Ibey, J. C. Ullery, O. N. Pakhomova, C. C. Roth, I. Semenov, H. T. Beier, M. Tarango, S. Xiao, K. H. Schoenbach, and A. G. Pakhomov, “Bipolar nanosecond electric pulses are less efficient at electropermeabilization and killing cells than monopolar pulses,” Biochem. Biophys. Res. Commun. 443(2), 568–573 (2014).
    [Crossref] [PubMed]
  8. J. Kolb, R. Joshi, S. Xiao, and K. Schoenbach, “Streamers in water and other dielectric liquids,” J. Phys. D Appl. Phys. 41(23), 234007 (2008).
    [Crossref]
  9. D. Kang, J. B. Nah, M. Cho, and S. Xiao, “Shock wave generation in water for biological studies,” IEEE Trans. Plasma Sci. 42(10), 3231–3238 (2014).
    [Crossref]
  10. V. Y. Ushakov, V. F. Klimkin, and S. Korobeynikov, Impulse Breakdown of Liquids (Springer Science & Business Media, 2007).
  11. J. A. Stratton, Electromagnetic Theory (John Wiley & Sons, 2007).
  12. L. D. Landau, J. Bell, M. Kearsley, L. Pitaevskii, E. Lifshitz, and J. Sykes, Electrodynamics of Continuous Media (Elsevier, 2013), Vol. 8.
  13. I. Marinov, O. Guaitella, A. Rousseau, and S. Starikovskaia, “Cavitation in the vicinity of the high-voltage electrode as a key step of nanosecond breakdown in liquids,” Plasma Sources Sci. Technol. 22(4), 042001 (2013).
    [Crossref]
  14. Y. Seepersad, M. Pekker, M. N. Shneider, D. Dobrynin, and A. Fridman, “On the electrostrictive mechanism of nanosecond-pulsed breakdown in liquid phase,” J. Phys. D Appl. Phys. 46(16), 162001 (2013).
    [Crossref]
  15. I. S. Jacobs and A. W. Lawson, “An analysis of the pressure dependence of the dielectric constant of polar liquids,” J. Chem. Phys. 20(7), 1161–1164 (1952).
    [Crossref]
  16. S. Karl, K. Juergen, X. Shu, K. Sunao, M. Yasushi, and J. Ravindra, “Electrical breakdown of water in microgaps,” Plasma Sources Sci. Technol. 17(2), 024010 (2008).
    [Crossref]
  17. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref] [PubMed]
  18. C. C. Roth, R. A. Barnes, B. L. Ibey, H. T. Beier, L. Christopher Mimun, S. M. Maswadi, M. Shadaram, and R. D. Glickman, “Characterization of pressure transients generated by nanosecond electrical pulse (nsEP) exposure,” Sci. Rep. 5, 15063 (2015).
    [Crossref] [PubMed]
  19. R. A. Barnes, S. Maswadi, R. Glickman, and M. Shadaram, “Probe beam deflection technique as acoustic emission directionality sensor with photoacoustic emission source,” Appl. Opt. 53(3), 511–519 (2014).
    [Crossref] [PubMed]
  20. J. N. Caron and G. P. DiComo, “Frequency response of optical beam deflection by ultrasound in water,” Appl. Opt. 53(32), 7677–7683 (2014).
    [Crossref] [PubMed]
  21. J. L. Johnson, K. van Wijk, J. N. Caron, and M. Timmerman, “Gas-coupled laser acoustic detection as a non-contact line detector for photoacoustic and ultrasound imaging,” J. Opt. 18(2), 024005 (2016).
    [Crossref]
  22. M. Waxler and C. E. Weir, “Effect of pressure and temperature on the refractive indices of benzene, carbon tetrachloride, and water,” J. Res. Natl. Bur. Stand. 67A(2), 163–171 (1963).
    [Crossref]
  23. J. Diaci, “Response functions of the laser beam deflection probe for detection of spherical acoustic waves,” Rev. Sci. Instrum. 63(11), 5306–5310 (1992).
    [Crossref]
  24. S. J. Brockington, R. D. Horton, D. Q. Hwang, R. W. Evans, S. J. Howard, and Y. F. Thio, “Plasma density gradient measurement using laser deflection,” Rev. Sci. Instrum. 76(6), 063503 (2005).
    [Crossref]
  25. L. W. Casperson, “Gaussian light beams in inhomogeneous media,” Appl. Opt. 12(10), 2434–2441 (1973).
    [Crossref] [PubMed]
  26. G. Purves, G. Jundt, C. Adams, and I. Hughes, “Refractive index measurements by probe-beam deflection,” EPJ Direct 29, 433–436 (2004).

2016 (1)

J. L. Johnson, K. van Wijk, J. N. Caron, and M. Timmerman, “Gas-coupled laser acoustic detection as a non-contact line detector for photoacoustic and ultrasound imaging,” J. Opt. 18(2), 024005 (2016).
[Crossref]

2015 (2)

K. H. Schoenbach, A. G. Pakhomov, I. Semenov, S. Xiao, O. N. Pakhomova, and B. L. Ibey, “Ion transport into cells exposed to monopolar and bipolar nanosecond pulses,” Bioelectrochemistry 103, 44–51 (2015).
[Crossref] [PubMed]

C. C. Roth, R. A. Barnes, B. L. Ibey, H. T. Beier, L. Christopher Mimun, S. M. Maswadi, M. Shadaram, and R. D. Glickman, “Characterization of pressure transients generated by nanosecond electrical pulse (nsEP) exposure,” Sci. Rep. 5, 15063 (2015).
[Crossref] [PubMed]

2014 (4)

R. A. Barnes, S. Maswadi, R. Glickman, and M. Shadaram, “Probe beam deflection technique as acoustic emission directionality sensor with photoacoustic emission source,” Appl. Opt. 53(3), 511–519 (2014).
[Crossref] [PubMed]

J. N. Caron and G. P. DiComo, “Frequency response of optical beam deflection by ultrasound in water,” Appl. Opt. 53(32), 7677–7683 (2014).
[Crossref] [PubMed]

B. L. Ibey, J. C. Ullery, O. N. Pakhomova, C. C. Roth, I. Semenov, H. T. Beier, M. Tarango, S. Xiao, K. H. Schoenbach, and A. G. Pakhomov, “Bipolar nanosecond electric pulses are less efficient at electropermeabilization and killing cells than monopolar pulses,” Biochem. Biophys. Res. Commun. 443(2), 568–573 (2014).
[Crossref] [PubMed]

D. Kang, J. B. Nah, M. Cho, and S. Xiao, “Shock wave generation in water for biological studies,” IEEE Trans. Plasma Sci. 42(10), 3231–3238 (2014).
[Crossref]

2013 (2)

I. Marinov, O. Guaitella, A. Rousseau, and S. Starikovskaia, “Cavitation in the vicinity of the high-voltage electrode as a key step of nanosecond breakdown in liquids,” Plasma Sources Sci. Technol. 22(4), 042001 (2013).
[Crossref]

Y. Seepersad, M. Pekker, M. N. Shneider, D. Dobrynin, and A. Fridman, “On the electrostrictive mechanism of nanosecond-pulsed breakdown in liquid phase,” J. Phys. D Appl. Phys. 46(16), 162001 (2013).
[Crossref]

2012 (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

2009 (1)

B. L. Ibey, S. Xiao, K. H. Schoenbach, M. R. Murphy, and A. G. Pakhomov, “Plasma membrane permeabilization by 60- and 600-ns electric pulses is determined by the absorbed dose,” Bioelectromagnetics 30(2), 92–99 (2009).
[Crossref] [PubMed]

2008 (2)

J. Kolb, R. Joshi, S. Xiao, and K. Schoenbach, “Streamers in water and other dielectric liquids,” J. Phys. D Appl. Phys. 41(23), 234007 (2008).
[Crossref]

S. Karl, K. Juergen, X. Shu, K. Sunao, M. Yasushi, and J. Ravindra, “Electrical breakdown of water in microgaps,” Plasma Sources Sci. Technol. 17(2), 024010 (2008).
[Crossref]

2007 (2)

K. H. Schoenbach, B. Hargrave, R. P. Joshi, J. F. Kolb, R. Nuccitelli, C. Osgood, A. Pakhomov, M. Stacey, R. J. Swanson, J. A. White, S. Xiao, J. Zhang, S. Beebe, P. Blackmore, and E. Buescher, “Bioelectric effects of intense nanosecond pulses,” IEEE Trans. Dielectr. Electr. Insul. 14(5), 1088–1109 (2007).
[Crossref]

A. G. Pakhomov, J. F. Kolb, J. A. White, R. P. Joshi, S. Xiao, and K. H. Schoenbach, “Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF),” Bioelectromagnetics 28(8), 655–663 (2007).
[Crossref] [PubMed]

2006 (1)

R. Nuccitelli, U. Pliquett, X. Chen, W. Ford, R. James Swanson, S. J. Beebe, J. F. Kolb, and K. H. Schoenbach, “Nanosecond pulsed electric fields cause melanomas to self-destruct,” Biochem. Biophys. Res. Commun. 343(2), 351–360 (2006).
[Crossref] [PubMed]

2005 (1)

S. J. Brockington, R. D. Horton, D. Q. Hwang, R. W. Evans, S. J. Howard, and Y. F. Thio, “Plasma density gradient measurement using laser deflection,” Rev. Sci. Instrum. 76(6), 063503 (2005).
[Crossref]

2004 (1)

G. Purves, G. Jundt, C. Adams, and I. Hughes, “Refractive index measurements by probe-beam deflection,” EPJ Direct 29, 433–436 (2004).

2003 (1)

P. T. Vernier, Y. Sun, L. Marcu, S. Salemi, C. M. Craft, and M. A. Gundersen, “Calcium bursts induced by nanosecond electric pulses,” Biochem. Biophys. Res. Commun. 310(2), 286–295 (2003).
[Crossref] [PubMed]

1992 (1)

J. Diaci, “Response functions of the laser beam deflection probe for detection of spherical acoustic waves,” Rev. Sci. Instrum. 63(11), 5306–5310 (1992).
[Crossref]

1973 (1)

1963 (1)

M. Waxler and C. E. Weir, “Effect of pressure and temperature on the refractive indices of benzene, carbon tetrachloride, and water,” J. Res. Natl. Bur. Stand. 67A(2), 163–171 (1963).
[Crossref]

1952 (1)

I. S. Jacobs and A. W. Lawson, “An analysis of the pressure dependence of the dielectric constant of polar liquids,” J. Chem. Phys. 20(7), 1161–1164 (1952).
[Crossref]

Adams, C.

G. Purves, G. Jundt, C. Adams, and I. Hughes, “Refractive index measurements by probe-beam deflection,” EPJ Direct 29, 433–436 (2004).

Barnes, R. A.

C. C. Roth, R. A. Barnes, B. L. Ibey, H. T. Beier, L. Christopher Mimun, S. M. Maswadi, M. Shadaram, and R. D. Glickman, “Characterization of pressure transients generated by nanosecond electrical pulse (nsEP) exposure,” Sci. Rep. 5, 15063 (2015).
[Crossref] [PubMed]

R. A. Barnes, S. Maswadi, R. Glickman, and M. Shadaram, “Probe beam deflection technique as acoustic emission directionality sensor with photoacoustic emission source,” Appl. Opt. 53(3), 511–519 (2014).
[Crossref] [PubMed]

Beebe, S.

K. H. Schoenbach, B. Hargrave, R. P. Joshi, J. F. Kolb, R. Nuccitelli, C. Osgood, A. Pakhomov, M. Stacey, R. J. Swanson, J. A. White, S. Xiao, J. Zhang, S. Beebe, P. Blackmore, and E. Buescher, “Bioelectric effects of intense nanosecond pulses,” IEEE Trans. Dielectr. Electr. Insul. 14(5), 1088–1109 (2007).
[Crossref]

Beebe, S. J.

R. Nuccitelli, U. Pliquett, X. Chen, W. Ford, R. James Swanson, S. J. Beebe, J. F. Kolb, and K. H. Schoenbach, “Nanosecond pulsed electric fields cause melanomas to self-destruct,” Biochem. Biophys. Res. Commun. 343(2), 351–360 (2006).
[Crossref] [PubMed]

Beier, H. T.

C. C. Roth, R. A. Barnes, B. L. Ibey, H. T. Beier, L. Christopher Mimun, S. M. Maswadi, M. Shadaram, and R. D. Glickman, “Characterization of pressure transients generated by nanosecond electrical pulse (nsEP) exposure,” Sci. Rep. 5, 15063 (2015).
[Crossref] [PubMed]

B. L. Ibey, J. C. Ullery, O. N. Pakhomova, C. C. Roth, I. Semenov, H. T. Beier, M. Tarango, S. Xiao, K. H. Schoenbach, and A. G. Pakhomov, “Bipolar nanosecond electric pulses are less efficient at electropermeabilization and killing cells than monopolar pulses,” Biochem. Biophys. Res. Commun. 443(2), 568–573 (2014).
[Crossref] [PubMed]

Blackmore, P.

K. H. Schoenbach, B. Hargrave, R. P. Joshi, J. F. Kolb, R. Nuccitelli, C. Osgood, A. Pakhomov, M. Stacey, R. J. Swanson, J. A. White, S. Xiao, J. Zhang, S. Beebe, P. Blackmore, and E. Buescher, “Bioelectric effects of intense nanosecond pulses,” IEEE Trans. Dielectr. Electr. Insul. 14(5), 1088–1109 (2007).
[Crossref]

Brockington, S. J.

S. J. Brockington, R. D. Horton, D. Q. Hwang, R. W. Evans, S. J. Howard, and Y. F. Thio, “Plasma density gradient measurement using laser deflection,” Rev. Sci. Instrum. 76(6), 063503 (2005).
[Crossref]

Buescher, E.

K. H. Schoenbach, B. Hargrave, R. P. Joshi, J. F. Kolb, R. Nuccitelli, C. Osgood, A. Pakhomov, M. Stacey, R. J. Swanson, J. A. White, S. Xiao, J. Zhang, S. Beebe, P. Blackmore, and E. Buescher, “Bioelectric effects of intense nanosecond pulses,” IEEE Trans. Dielectr. Electr. Insul. 14(5), 1088–1109 (2007).
[Crossref]

Caron, J. N.

J. L. Johnson, K. van Wijk, J. N. Caron, and M. Timmerman, “Gas-coupled laser acoustic detection as a non-contact line detector for photoacoustic and ultrasound imaging,” J. Opt. 18(2), 024005 (2016).
[Crossref]

J. N. Caron and G. P. DiComo, “Frequency response of optical beam deflection by ultrasound in water,” Appl. Opt. 53(32), 7677–7683 (2014).
[Crossref] [PubMed]

Casperson, L. W.

Chen, X.

R. Nuccitelli, U. Pliquett, X. Chen, W. Ford, R. James Swanson, S. J. Beebe, J. F. Kolb, and K. H. Schoenbach, “Nanosecond pulsed electric fields cause melanomas to self-destruct,” Biochem. Biophys. Res. Commun. 343(2), 351–360 (2006).
[Crossref] [PubMed]

Cho, M.

D. Kang, J. B. Nah, M. Cho, and S. Xiao, “Shock wave generation in water for biological studies,” IEEE Trans. Plasma Sci. 42(10), 3231–3238 (2014).
[Crossref]

Christopher Mimun, L.

C. C. Roth, R. A. Barnes, B. L. Ibey, H. T. Beier, L. Christopher Mimun, S. M. Maswadi, M. Shadaram, and R. D. Glickman, “Characterization of pressure transients generated by nanosecond electrical pulse (nsEP) exposure,” Sci. Rep. 5, 15063 (2015).
[Crossref] [PubMed]

Craft, C. M.

P. T. Vernier, Y. Sun, L. Marcu, S. Salemi, C. M. Craft, and M. A. Gundersen, “Calcium bursts induced by nanosecond electric pulses,” Biochem. Biophys. Res. Commun. 310(2), 286–295 (2003).
[Crossref] [PubMed]

Diaci, J.

J. Diaci, “Response functions of the laser beam deflection probe for detection of spherical acoustic waves,” Rev. Sci. Instrum. 63(11), 5306–5310 (1992).
[Crossref]

DiComo, G. P.

Dobrynin, D.

Y. Seepersad, M. Pekker, M. N. Shneider, D. Dobrynin, and A. Fridman, “On the electrostrictive mechanism of nanosecond-pulsed breakdown in liquid phase,” J. Phys. D Appl. Phys. 46(16), 162001 (2013).
[Crossref]

Evans, R. W.

S. J. Brockington, R. D. Horton, D. Q. Hwang, R. W. Evans, S. J. Howard, and Y. F. Thio, “Plasma density gradient measurement using laser deflection,” Rev. Sci. Instrum. 76(6), 063503 (2005).
[Crossref]

Ford, W.

R. Nuccitelli, U. Pliquett, X. Chen, W. Ford, R. James Swanson, S. J. Beebe, J. F. Kolb, and K. H. Schoenbach, “Nanosecond pulsed electric fields cause melanomas to self-destruct,” Biochem. Biophys. Res. Commun. 343(2), 351–360 (2006).
[Crossref] [PubMed]

Fridman, A.

Y. Seepersad, M. Pekker, M. N. Shneider, D. Dobrynin, and A. Fridman, “On the electrostrictive mechanism of nanosecond-pulsed breakdown in liquid phase,” J. Phys. D Appl. Phys. 46(16), 162001 (2013).
[Crossref]

Glickman, R.

Glickman, R. D.

C. C. Roth, R. A. Barnes, B. L. Ibey, H. T. Beier, L. Christopher Mimun, S. M. Maswadi, M. Shadaram, and R. D. Glickman, “Characterization of pressure transients generated by nanosecond electrical pulse (nsEP) exposure,” Sci. Rep. 5, 15063 (2015).
[Crossref] [PubMed]

Guaitella, O.

I. Marinov, O. Guaitella, A. Rousseau, and S. Starikovskaia, “Cavitation in the vicinity of the high-voltage electrode as a key step of nanosecond breakdown in liquids,” Plasma Sources Sci. Technol. 22(4), 042001 (2013).
[Crossref]

Gundersen, M. A.

P. T. Vernier, Y. Sun, L. Marcu, S. Salemi, C. M. Craft, and M. A. Gundersen, “Calcium bursts induced by nanosecond electric pulses,” Biochem. Biophys. Res. Commun. 310(2), 286–295 (2003).
[Crossref] [PubMed]

Hargrave, B.

K. H. Schoenbach, B. Hargrave, R. P. Joshi, J. F. Kolb, R. Nuccitelli, C. Osgood, A. Pakhomov, M. Stacey, R. J. Swanson, J. A. White, S. Xiao, J. Zhang, S. Beebe, P. Blackmore, and E. Buescher, “Bioelectric effects of intense nanosecond pulses,” IEEE Trans. Dielectr. Electr. Insul. 14(5), 1088–1109 (2007).
[Crossref]

Horton, R. D.

S. J. Brockington, R. D. Horton, D. Q. Hwang, R. W. Evans, S. J. Howard, and Y. F. Thio, “Plasma density gradient measurement using laser deflection,” Rev. Sci. Instrum. 76(6), 063503 (2005).
[Crossref]

Howard, S. J.

S. J. Brockington, R. D. Horton, D. Q. Hwang, R. W. Evans, S. J. Howard, and Y. F. Thio, “Plasma density gradient measurement using laser deflection,” Rev. Sci. Instrum. 76(6), 063503 (2005).
[Crossref]

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Hughes, I.

G. Purves, G. Jundt, C. Adams, and I. Hughes, “Refractive index measurements by probe-beam deflection,” EPJ Direct 29, 433–436 (2004).

Hwang, D. Q.

S. J. Brockington, R. D. Horton, D. Q. Hwang, R. W. Evans, S. J. Howard, and Y. F. Thio, “Plasma density gradient measurement using laser deflection,” Rev. Sci. Instrum. 76(6), 063503 (2005).
[Crossref]

Ibey, B. L.

C. C. Roth, R. A. Barnes, B. L. Ibey, H. T. Beier, L. Christopher Mimun, S. M. Maswadi, M. Shadaram, and R. D. Glickman, “Characterization of pressure transients generated by nanosecond electrical pulse (nsEP) exposure,” Sci. Rep. 5, 15063 (2015).
[Crossref] [PubMed]

K. H. Schoenbach, A. G. Pakhomov, I. Semenov, S. Xiao, O. N. Pakhomova, and B. L. Ibey, “Ion transport into cells exposed to monopolar and bipolar nanosecond pulses,” Bioelectrochemistry 103, 44–51 (2015).
[Crossref] [PubMed]

B. L. Ibey, J. C. Ullery, O. N. Pakhomova, C. C. Roth, I. Semenov, H. T. Beier, M. Tarango, S. Xiao, K. H. Schoenbach, and A. G. Pakhomov, “Bipolar nanosecond electric pulses are less efficient at electropermeabilization and killing cells than monopolar pulses,” Biochem. Biophys. Res. Commun. 443(2), 568–573 (2014).
[Crossref] [PubMed]

B. L. Ibey, S. Xiao, K. H. Schoenbach, M. R. Murphy, and A. G. Pakhomov, “Plasma membrane permeabilization by 60- and 600-ns electric pulses is determined by the absorbed dose,” Bioelectromagnetics 30(2), 92–99 (2009).
[Crossref] [PubMed]

Jacobs, I. S.

I. S. Jacobs and A. W. Lawson, “An analysis of the pressure dependence of the dielectric constant of polar liquids,” J. Chem. Phys. 20(7), 1161–1164 (1952).
[Crossref]

James Swanson, R.

R. Nuccitelli, U. Pliquett, X. Chen, W. Ford, R. James Swanson, S. J. Beebe, J. F. Kolb, and K. H. Schoenbach, “Nanosecond pulsed electric fields cause melanomas to self-destruct,” Biochem. Biophys. Res. Commun. 343(2), 351–360 (2006).
[Crossref] [PubMed]

Johnson, J. L.

J. L. Johnson, K. van Wijk, J. N. Caron, and M. Timmerman, “Gas-coupled laser acoustic detection as a non-contact line detector for photoacoustic and ultrasound imaging,” J. Opt. 18(2), 024005 (2016).
[Crossref]

Joshi, R.

J. Kolb, R. Joshi, S. Xiao, and K. Schoenbach, “Streamers in water and other dielectric liquids,” J. Phys. D Appl. Phys. 41(23), 234007 (2008).
[Crossref]

Joshi, R. P.

A. G. Pakhomov, J. F. Kolb, J. A. White, R. P. Joshi, S. Xiao, and K. H. Schoenbach, “Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF),” Bioelectromagnetics 28(8), 655–663 (2007).
[Crossref] [PubMed]

K. H. Schoenbach, B. Hargrave, R. P. Joshi, J. F. Kolb, R. Nuccitelli, C. Osgood, A. Pakhomov, M. Stacey, R. J. Swanson, J. A. White, S. Xiao, J. Zhang, S. Beebe, P. Blackmore, and E. Buescher, “Bioelectric effects of intense nanosecond pulses,” IEEE Trans. Dielectr. Electr. Insul. 14(5), 1088–1109 (2007).
[Crossref]

Juergen, K.

S. Karl, K. Juergen, X. Shu, K. Sunao, M. Yasushi, and J. Ravindra, “Electrical breakdown of water in microgaps,” Plasma Sources Sci. Technol. 17(2), 024010 (2008).
[Crossref]

Jundt, G.

G. Purves, G. Jundt, C. Adams, and I. Hughes, “Refractive index measurements by probe-beam deflection,” EPJ Direct 29, 433–436 (2004).

Kang, D.

D. Kang, J. B. Nah, M. Cho, and S. Xiao, “Shock wave generation in water for biological studies,” IEEE Trans. Plasma Sci. 42(10), 3231–3238 (2014).
[Crossref]

Karl, S.

S. Karl, K. Juergen, X. Shu, K. Sunao, M. Yasushi, and J. Ravindra, “Electrical breakdown of water in microgaps,” Plasma Sources Sci. Technol. 17(2), 024010 (2008).
[Crossref]

Kolb, J.

J. Kolb, R. Joshi, S. Xiao, and K. Schoenbach, “Streamers in water and other dielectric liquids,” J. Phys. D Appl. Phys. 41(23), 234007 (2008).
[Crossref]

Kolb, J. F.

K. H. Schoenbach, B. Hargrave, R. P. Joshi, J. F. Kolb, R. Nuccitelli, C. Osgood, A. Pakhomov, M. Stacey, R. J. Swanson, J. A. White, S. Xiao, J. Zhang, S. Beebe, P. Blackmore, and E. Buescher, “Bioelectric effects of intense nanosecond pulses,” IEEE Trans. Dielectr. Electr. Insul. 14(5), 1088–1109 (2007).
[Crossref]

A. G. Pakhomov, J. F. Kolb, J. A. White, R. P. Joshi, S. Xiao, and K. H. Schoenbach, “Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF),” Bioelectromagnetics 28(8), 655–663 (2007).
[Crossref] [PubMed]

R. Nuccitelli, U. Pliquett, X. Chen, W. Ford, R. James Swanson, S. J. Beebe, J. F. Kolb, and K. H. Schoenbach, “Nanosecond pulsed electric fields cause melanomas to self-destruct,” Biochem. Biophys. Res. Commun. 343(2), 351–360 (2006).
[Crossref] [PubMed]

Lawson, A. W.

I. S. Jacobs and A. W. Lawson, “An analysis of the pressure dependence of the dielectric constant of polar liquids,” J. Chem. Phys. 20(7), 1161–1164 (1952).
[Crossref]

Marcu, L.

P. T. Vernier, Y. Sun, L. Marcu, S. Salemi, C. M. Craft, and M. A. Gundersen, “Calcium bursts induced by nanosecond electric pulses,” Biochem. Biophys. Res. Commun. 310(2), 286–295 (2003).
[Crossref] [PubMed]

Marinov, I.

I. Marinov, O. Guaitella, A. Rousseau, and S. Starikovskaia, “Cavitation in the vicinity of the high-voltage electrode as a key step of nanosecond breakdown in liquids,” Plasma Sources Sci. Technol. 22(4), 042001 (2013).
[Crossref]

Maswadi, S.

Maswadi, S. M.

C. C. Roth, R. A. Barnes, B. L. Ibey, H. T. Beier, L. Christopher Mimun, S. M. Maswadi, M. Shadaram, and R. D. Glickman, “Characterization of pressure transients generated by nanosecond electrical pulse (nsEP) exposure,” Sci. Rep. 5, 15063 (2015).
[Crossref] [PubMed]

Murphy, M. R.

B. L. Ibey, S. Xiao, K. H. Schoenbach, M. R. Murphy, and A. G. Pakhomov, “Plasma membrane permeabilization by 60- and 600-ns electric pulses is determined by the absorbed dose,” Bioelectromagnetics 30(2), 92–99 (2009).
[Crossref] [PubMed]

Nah, J. B.

D. Kang, J. B. Nah, M. Cho, and S. Xiao, “Shock wave generation in water for biological studies,” IEEE Trans. Plasma Sci. 42(10), 3231–3238 (2014).
[Crossref]

Nuccitelli, R.

K. H. Schoenbach, B. Hargrave, R. P. Joshi, J. F. Kolb, R. Nuccitelli, C. Osgood, A. Pakhomov, M. Stacey, R. J. Swanson, J. A. White, S. Xiao, J. Zhang, S. Beebe, P. Blackmore, and E. Buescher, “Bioelectric effects of intense nanosecond pulses,” IEEE Trans. Dielectr. Electr. Insul. 14(5), 1088–1109 (2007).
[Crossref]

R. Nuccitelli, U. Pliquett, X. Chen, W. Ford, R. James Swanson, S. J. Beebe, J. F. Kolb, and K. H. Schoenbach, “Nanosecond pulsed electric fields cause melanomas to self-destruct,” Biochem. Biophys. Res. Commun. 343(2), 351–360 (2006).
[Crossref] [PubMed]

Osgood, C.

K. H. Schoenbach, B. Hargrave, R. P. Joshi, J. F. Kolb, R. Nuccitelli, C. Osgood, A. Pakhomov, M. Stacey, R. J. Swanson, J. A. White, S. Xiao, J. Zhang, S. Beebe, P. Blackmore, and E. Buescher, “Bioelectric effects of intense nanosecond pulses,” IEEE Trans. Dielectr. Electr. Insul. 14(5), 1088–1109 (2007).
[Crossref]

Pakhomov, A.

K. H. Schoenbach, B. Hargrave, R. P. Joshi, J. F. Kolb, R. Nuccitelli, C. Osgood, A. Pakhomov, M. Stacey, R. J. Swanson, J. A. White, S. Xiao, J. Zhang, S. Beebe, P. Blackmore, and E. Buescher, “Bioelectric effects of intense nanosecond pulses,” IEEE Trans. Dielectr. Electr. Insul. 14(5), 1088–1109 (2007).
[Crossref]

Pakhomov, A. G.

K. H. Schoenbach, A. G. Pakhomov, I. Semenov, S. Xiao, O. N. Pakhomova, and B. L. Ibey, “Ion transport into cells exposed to monopolar and bipolar nanosecond pulses,” Bioelectrochemistry 103, 44–51 (2015).
[Crossref] [PubMed]

B. L. Ibey, J. C. Ullery, O. N. Pakhomova, C. C. Roth, I. Semenov, H. T. Beier, M. Tarango, S. Xiao, K. H. Schoenbach, and A. G. Pakhomov, “Bipolar nanosecond electric pulses are less efficient at electropermeabilization and killing cells than monopolar pulses,” Biochem. Biophys. Res. Commun. 443(2), 568–573 (2014).
[Crossref] [PubMed]

B. L. Ibey, S. Xiao, K. H. Schoenbach, M. R. Murphy, and A. G. Pakhomov, “Plasma membrane permeabilization by 60- and 600-ns electric pulses is determined by the absorbed dose,” Bioelectromagnetics 30(2), 92–99 (2009).
[Crossref] [PubMed]

A. G. Pakhomov, J. F. Kolb, J. A. White, R. P. Joshi, S. Xiao, and K. H. Schoenbach, “Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF),” Bioelectromagnetics 28(8), 655–663 (2007).
[Crossref] [PubMed]

Pakhomova, O. N.

K. H. Schoenbach, A. G. Pakhomov, I. Semenov, S. Xiao, O. N. Pakhomova, and B. L. Ibey, “Ion transport into cells exposed to monopolar and bipolar nanosecond pulses,” Bioelectrochemistry 103, 44–51 (2015).
[Crossref] [PubMed]

B. L. Ibey, J. C. Ullery, O. N. Pakhomova, C. C. Roth, I. Semenov, H. T. Beier, M. Tarango, S. Xiao, K. H. Schoenbach, and A. G. Pakhomov, “Bipolar nanosecond electric pulses are less efficient at electropermeabilization and killing cells than monopolar pulses,” Biochem. Biophys. Res. Commun. 443(2), 568–573 (2014).
[Crossref] [PubMed]

Pekker, M.

Y. Seepersad, M. Pekker, M. N. Shneider, D. Dobrynin, and A. Fridman, “On the electrostrictive mechanism of nanosecond-pulsed breakdown in liquid phase,” J. Phys. D Appl. Phys. 46(16), 162001 (2013).
[Crossref]

Pliquett, U.

R. Nuccitelli, U. Pliquett, X. Chen, W. Ford, R. James Swanson, S. J. Beebe, J. F. Kolb, and K. H. Schoenbach, “Nanosecond pulsed electric fields cause melanomas to self-destruct,” Biochem. Biophys. Res. Commun. 343(2), 351–360 (2006).
[Crossref] [PubMed]

Purves, G.

G. Purves, G. Jundt, C. Adams, and I. Hughes, “Refractive index measurements by probe-beam deflection,” EPJ Direct 29, 433–436 (2004).

Ravindra, J.

S. Karl, K. Juergen, X. Shu, K. Sunao, M. Yasushi, and J. Ravindra, “Electrical breakdown of water in microgaps,” Plasma Sources Sci. Technol. 17(2), 024010 (2008).
[Crossref]

Roth, C. C.

C. C. Roth, R. A. Barnes, B. L. Ibey, H. T. Beier, L. Christopher Mimun, S. M. Maswadi, M. Shadaram, and R. D. Glickman, “Characterization of pressure transients generated by nanosecond electrical pulse (nsEP) exposure,” Sci. Rep. 5, 15063 (2015).
[Crossref] [PubMed]

B. L. Ibey, J. C. Ullery, O. N. Pakhomova, C. C. Roth, I. Semenov, H. T. Beier, M. Tarango, S. Xiao, K. H. Schoenbach, and A. G. Pakhomov, “Bipolar nanosecond electric pulses are less efficient at electropermeabilization and killing cells than monopolar pulses,” Biochem. Biophys. Res. Commun. 443(2), 568–573 (2014).
[Crossref] [PubMed]

Rousseau, A.

I. Marinov, O. Guaitella, A. Rousseau, and S. Starikovskaia, “Cavitation in the vicinity of the high-voltage electrode as a key step of nanosecond breakdown in liquids,” Plasma Sources Sci. Technol. 22(4), 042001 (2013).
[Crossref]

Salemi, S.

P. T. Vernier, Y. Sun, L. Marcu, S. Salemi, C. M. Craft, and M. A. Gundersen, “Calcium bursts induced by nanosecond electric pulses,” Biochem. Biophys. Res. Commun. 310(2), 286–295 (2003).
[Crossref] [PubMed]

Schoenbach, K.

J. Kolb, R. Joshi, S. Xiao, and K. Schoenbach, “Streamers in water and other dielectric liquids,” J. Phys. D Appl. Phys. 41(23), 234007 (2008).
[Crossref]

Schoenbach, K. H.

K. H. Schoenbach, A. G. Pakhomov, I. Semenov, S. Xiao, O. N. Pakhomova, and B. L. Ibey, “Ion transport into cells exposed to monopolar and bipolar nanosecond pulses,” Bioelectrochemistry 103, 44–51 (2015).
[Crossref] [PubMed]

B. L. Ibey, J. C. Ullery, O. N. Pakhomova, C. C. Roth, I. Semenov, H. T. Beier, M. Tarango, S. Xiao, K. H. Schoenbach, and A. G. Pakhomov, “Bipolar nanosecond electric pulses are less efficient at electropermeabilization and killing cells than monopolar pulses,” Biochem. Biophys. Res. Commun. 443(2), 568–573 (2014).
[Crossref] [PubMed]

B. L. Ibey, S. Xiao, K. H. Schoenbach, M. R. Murphy, and A. G. Pakhomov, “Plasma membrane permeabilization by 60- and 600-ns electric pulses is determined by the absorbed dose,” Bioelectromagnetics 30(2), 92–99 (2009).
[Crossref] [PubMed]

A. G. Pakhomov, J. F. Kolb, J. A. White, R. P. Joshi, S. Xiao, and K. H. Schoenbach, “Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF),” Bioelectromagnetics 28(8), 655–663 (2007).
[Crossref] [PubMed]

K. H. Schoenbach, B. Hargrave, R. P. Joshi, J. F. Kolb, R. Nuccitelli, C. Osgood, A. Pakhomov, M. Stacey, R. J. Swanson, J. A. White, S. Xiao, J. Zhang, S. Beebe, P. Blackmore, and E. Buescher, “Bioelectric effects of intense nanosecond pulses,” IEEE Trans. Dielectr. Electr. Insul. 14(5), 1088–1109 (2007).
[Crossref]

R. Nuccitelli, U. Pliquett, X. Chen, W. Ford, R. James Swanson, S. J. Beebe, J. F. Kolb, and K. H. Schoenbach, “Nanosecond pulsed electric fields cause melanomas to self-destruct,” Biochem. Biophys. Res. Commun. 343(2), 351–360 (2006).
[Crossref] [PubMed]

Seepersad, Y.

Y. Seepersad, M. Pekker, M. N. Shneider, D. Dobrynin, and A. Fridman, “On the electrostrictive mechanism of nanosecond-pulsed breakdown in liquid phase,” J. Phys. D Appl. Phys. 46(16), 162001 (2013).
[Crossref]

Semenov, I.

K. H. Schoenbach, A. G. Pakhomov, I. Semenov, S. Xiao, O. N. Pakhomova, and B. L. Ibey, “Ion transport into cells exposed to monopolar and bipolar nanosecond pulses,” Bioelectrochemistry 103, 44–51 (2015).
[Crossref] [PubMed]

B. L. Ibey, J. C. Ullery, O. N. Pakhomova, C. C. Roth, I. Semenov, H. T. Beier, M. Tarango, S. Xiao, K. H. Schoenbach, and A. G. Pakhomov, “Bipolar nanosecond electric pulses are less efficient at electropermeabilization and killing cells than monopolar pulses,” Biochem. Biophys. Res. Commun. 443(2), 568–573 (2014).
[Crossref] [PubMed]

Shadaram, M.

C. C. Roth, R. A. Barnes, B. L. Ibey, H. T. Beier, L. Christopher Mimun, S. M. Maswadi, M. Shadaram, and R. D. Glickman, “Characterization of pressure transients generated by nanosecond electrical pulse (nsEP) exposure,” Sci. Rep. 5, 15063 (2015).
[Crossref] [PubMed]

R. A. Barnes, S. Maswadi, R. Glickman, and M. Shadaram, “Probe beam deflection technique as acoustic emission directionality sensor with photoacoustic emission source,” Appl. Opt. 53(3), 511–519 (2014).
[Crossref] [PubMed]

Shneider, M. N.

Y. Seepersad, M. Pekker, M. N. Shneider, D. Dobrynin, and A. Fridman, “On the electrostrictive mechanism of nanosecond-pulsed breakdown in liquid phase,” J. Phys. D Appl. Phys. 46(16), 162001 (2013).
[Crossref]

Shu, X.

S. Karl, K. Juergen, X. Shu, K. Sunao, M. Yasushi, and J. Ravindra, “Electrical breakdown of water in microgaps,” Plasma Sources Sci. Technol. 17(2), 024010 (2008).
[Crossref]

Stacey, M.

K. H. Schoenbach, B. Hargrave, R. P. Joshi, J. F. Kolb, R. Nuccitelli, C. Osgood, A. Pakhomov, M. Stacey, R. J. Swanson, J. A. White, S. Xiao, J. Zhang, S. Beebe, P. Blackmore, and E. Buescher, “Bioelectric effects of intense nanosecond pulses,” IEEE Trans. Dielectr. Electr. Insul. 14(5), 1088–1109 (2007).
[Crossref]

Starikovskaia, S.

I. Marinov, O. Guaitella, A. Rousseau, and S. Starikovskaia, “Cavitation in the vicinity of the high-voltage electrode as a key step of nanosecond breakdown in liquids,” Plasma Sources Sci. Technol. 22(4), 042001 (2013).
[Crossref]

Sun, Y.

P. T. Vernier, Y. Sun, L. Marcu, S. Salemi, C. M. Craft, and M. A. Gundersen, “Calcium bursts induced by nanosecond electric pulses,” Biochem. Biophys. Res. Commun. 310(2), 286–295 (2003).
[Crossref] [PubMed]

Sunao, K.

S. Karl, K. Juergen, X. Shu, K. Sunao, M. Yasushi, and J. Ravindra, “Electrical breakdown of water in microgaps,” Plasma Sources Sci. Technol. 17(2), 024010 (2008).
[Crossref]

Swanson, R. J.

K. H. Schoenbach, B. Hargrave, R. P. Joshi, J. F. Kolb, R. Nuccitelli, C. Osgood, A. Pakhomov, M. Stacey, R. J. Swanson, J. A. White, S. Xiao, J. Zhang, S. Beebe, P. Blackmore, and E. Buescher, “Bioelectric effects of intense nanosecond pulses,” IEEE Trans. Dielectr. Electr. Insul. 14(5), 1088–1109 (2007).
[Crossref]

Tarango, M.

B. L. Ibey, J. C. Ullery, O. N. Pakhomova, C. C. Roth, I. Semenov, H. T. Beier, M. Tarango, S. Xiao, K. H. Schoenbach, and A. G. Pakhomov, “Bipolar nanosecond electric pulses are less efficient at electropermeabilization and killing cells than monopolar pulses,” Biochem. Biophys. Res. Commun. 443(2), 568–573 (2014).
[Crossref] [PubMed]

Thio, Y. F.

S. J. Brockington, R. D. Horton, D. Q. Hwang, R. W. Evans, S. J. Howard, and Y. F. Thio, “Plasma density gradient measurement using laser deflection,” Rev. Sci. Instrum. 76(6), 063503 (2005).
[Crossref]

Timmerman, M.

J. L. Johnson, K. van Wijk, J. N. Caron, and M. Timmerman, “Gas-coupled laser acoustic detection as a non-contact line detector for photoacoustic and ultrasound imaging,” J. Opt. 18(2), 024005 (2016).
[Crossref]

Ullery, J. C.

B. L. Ibey, J. C. Ullery, O. N. Pakhomova, C. C. Roth, I. Semenov, H. T. Beier, M. Tarango, S. Xiao, K. H. Schoenbach, and A. G. Pakhomov, “Bipolar nanosecond electric pulses are less efficient at electropermeabilization and killing cells than monopolar pulses,” Biochem. Biophys. Res. Commun. 443(2), 568–573 (2014).
[Crossref] [PubMed]

van Wijk, K.

J. L. Johnson, K. van Wijk, J. N. Caron, and M. Timmerman, “Gas-coupled laser acoustic detection as a non-contact line detector for photoacoustic and ultrasound imaging,” J. Opt. 18(2), 024005 (2016).
[Crossref]

Vernier, P. T.

P. T. Vernier, Y. Sun, L. Marcu, S. Salemi, C. M. Craft, and M. A. Gundersen, “Calcium bursts induced by nanosecond electric pulses,” Biochem. Biophys. Res. Commun. 310(2), 286–295 (2003).
[Crossref] [PubMed]

Wang, L. V.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Waxler, M.

M. Waxler and C. E. Weir, “Effect of pressure and temperature on the refractive indices of benzene, carbon tetrachloride, and water,” J. Res. Natl. Bur. Stand. 67A(2), 163–171 (1963).
[Crossref]

Weir, C. E.

M. Waxler and C. E. Weir, “Effect of pressure and temperature on the refractive indices of benzene, carbon tetrachloride, and water,” J. Res. Natl. Bur. Stand. 67A(2), 163–171 (1963).
[Crossref]

White, J. A.

K. H. Schoenbach, B. Hargrave, R. P. Joshi, J. F. Kolb, R. Nuccitelli, C. Osgood, A. Pakhomov, M. Stacey, R. J. Swanson, J. A. White, S. Xiao, J. Zhang, S. Beebe, P. Blackmore, and E. Buescher, “Bioelectric effects of intense nanosecond pulses,” IEEE Trans. Dielectr. Electr. Insul. 14(5), 1088–1109 (2007).
[Crossref]

A. G. Pakhomov, J. F. Kolb, J. A. White, R. P. Joshi, S. Xiao, and K. H. Schoenbach, “Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF),” Bioelectromagnetics 28(8), 655–663 (2007).
[Crossref] [PubMed]

Xiao, S.

K. H. Schoenbach, A. G. Pakhomov, I. Semenov, S. Xiao, O. N. Pakhomova, and B. L. Ibey, “Ion transport into cells exposed to monopolar and bipolar nanosecond pulses,” Bioelectrochemistry 103, 44–51 (2015).
[Crossref] [PubMed]

B. L. Ibey, J. C. Ullery, O. N. Pakhomova, C. C. Roth, I. Semenov, H. T. Beier, M. Tarango, S. Xiao, K. H. Schoenbach, and A. G. Pakhomov, “Bipolar nanosecond electric pulses are less efficient at electropermeabilization and killing cells than monopolar pulses,” Biochem. Biophys. Res. Commun. 443(2), 568–573 (2014).
[Crossref] [PubMed]

D. Kang, J. B. Nah, M. Cho, and S. Xiao, “Shock wave generation in water for biological studies,” IEEE Trans. Plasma Sci. 42(10), 3231–3238 (2014).
[Crossref]

B. L. Ibey, S. Xiao, K. H. Schoenbach, M. R. Murphy, and A. G. Pakhomov, “Plasma membrane permeabilization by 60- and 600-ns electric pulses is determined by the absorbed dose,” Bioelectromagnetics 30(2), 92–99 (2009).
[Crossref] [PubMed]

J. Kolb, R. Joshi, S. Xiao, and K. Schoenbach, “Streamers in water and other dielectric liquids,” J. Phys. D Appl. Phys. 41(23), 234007 (2008).
[Crossref]

A. G. Pakhomov, J. F. Kolb, J. A. White, R. P. Joshi, S. Xiao, and K. H. Schoenbach, “Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF),” Bioelectromagnetics 28(8), 655–663 (2007).
[Crossref] [PubMed]

K. H. Schoenbach, B. Hargrave, R. P. Joshi, J. F. Kolb, R. Nuccitelli, C. Osgood, A. Pakhomov, M. Stacey, R. J. Swanson, J. A. White, S. Xiao, J. Zhang, S. Beebe, P. Blackmore, and E. Buescher, “Bioelectric effects of intense nanosecond pulses,” IEEE Trans. Dielectr. Electr. Insul. 14(5), 1088–1109 (2007).
[Crossref]

Yasushi, M.

S. Karl, K. Juergen, X. Shu, K. Sunao, M. Yasushi, and J. Ravindra, “Electrical breakdown of water in microgaps,” Plasma Sources Sci. Technol. 17(2), 024010 (2008).
[Crossref]

Zhang, J.

K. H. Schoenbach, B. Hargrave, R. P. Joshi, J. F. Kolb, R. Nuccitelli, C. Osgood, A. Pakhomov, M. Stacey, R. J. Swanson, J. A. White, S. Xiao, J. Zhang, S. Beebe, P. Blackmore, and E. Buescher, “Bioelectric effects of intense nanosecond pulses,” IEEE Trans. Dielectr. Electr. Insul. 14(5), 1088–1109 (2007).
[Crossref]

Appl. Opt. (3)

Biochem. Biophys. Res. Commun. (3)

R. Nuccitelli, U. Pliquett, X. Chen, W. Ford, R. James Swanson, S. J. Beebe, J. F. Kolb, and K. H. Schoenbach, “Nanosecond pulsed electric fields cause melanomas to self-destruct,” Biochem. Biophys. Res. Commun. 343(2), 351–360 (2006).
[Crossref] [PubMed]

P. T. Vernier, Y. Sun, L. Marcu, S. Salemi, C. M. Craft, and M. A. Gundersen, “Calcium bursts induced by nanosecond electric pulses,” Biochem. Biophys. Res. Commun. 310(2), 286–295 (2003).
[Crossref] [PubMed]

B. L. Ibey, J. C. Ullery, O. N. Pakhomova, C. C. Roth, I. Semenov, H. T. Beier, M. Tarango, S. Xiao, K. H. Schoenbach, and A. G. Pakhomov, “Bipolar nanosecond electric pulses are less efficient at electropermeabilization and killing cells than monopolar pulses,” Biochem. Biophys. Res. Commun. 443(2), 568–573 (2014).
[Crossref] [PubMed]

Bioelectrochemistry (1)

K. H. Schoenbach, A. G. Pakhomov, I. Semenov, S. Xiao, O. N. Pakhomova, and B. L. Ibey, “Ion transport into cells exposed to monopolar and bipolar nanosecond pulses,” Bioelectrochemistry 103, 44–51 (2015).
[Crossref] [PubMed]

Bioelectromagnetics (2)

A. G. Pakhomov, J. F. Kolb, J. A. White, R. P. Joshi, S. Xiao, and K. H. Schoenbach, “Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF),” Bioelectromagnetics 28(8), 655–663 (2007).
[Crossref] [PubMed]

B. L. Ibey, S. Xiao, K. H. Schoenbach, M. R. Murphy, and A. G. Pakhomov, “Plasma membrane permeabilization by 60- and 600-ns electric pulses is determined by the absorbed dose,” Bioelectromagnetics 30(2), 92–99 (2009).
[Crossref] [PubMed]

EPJ Direct (1)

G. Purves, G. Jundt, C. Adams, and I. Hughes, “Refractive index measurements by probe-beam deflection,” EPJ Direct 29, 433–436 (2004).

IEEE Trans. Dielectr. Electr. Insul. (1)

K. H. Schoenbach, B. Hargrave, R. P. Joshi, J. F. Kolb, R. Nuccitelli, C. Osgood, A. Pakhomov, M. Stacey, R. J. Swanson, J. A. White, S. Xiao, J. Zhang, S. Beebe, P. Blackmore, and E. Buescher, “Bioelectric effects of intense nanosecond pulses,” IEEE Trans. Dielectr. Electr. Insul. 14(5), 1088–1109 (2007).
[Crossref]

IEEE Trans. Plasma Sci. (1)

D. Kang, J. B. Nah, M. Cho, and S. Xiao, “Shock wave generation in water for biological studies,” IEEE Trans. Plasma Sci. 42(10), 3231–3238 (2014).
[Crossref]

J. Chem. Phys. (1)

I. S. Jacobs and A. W. Lawson, “An analysis of the pressure dependence of the dielectric constant of polar liquids,” J. Chem. Phys. 20(7), 1161–1164 (1952).
[Crossref]

J. Opt. (1)

J. L. Johnson, K. van Wijk, J. N. Caron, and M. Timmerman, “Gas-coupled laser acoustic detection as a non-contact line detector for photoacoustic and ultrasound imaging,” J. Opt. 18(2), 024005 (2016).
[Crossref]

J. Phys. D Appl. Phys. (2)

J. Kolb, R. Joshi, S. Xiao, and K. Schoenbach, “Streamers in water and other dielectric liquids,” J. Phys. D Appl. Phys. 41(23), 234007 (2008).
[Crossref]

Y. Seepersad, M. Pekker, M. N. Shneider, D. Dobrynin, and A. Fridman, “On the electrostrictive mechanism of nanosecond-pulsed breakdown in liquid phase,” J. Phys. D Appl. Phys. 46(16), 162001 (2013).
[Crossref]

J. Res. Natl. Bur. Stand. (1)

M. Waxler and C. E. Weir, “Effect of pressure and temperature on the refractive indices of benzene, carbon tetrachloride, and water,” J. Res. Natl. Bur. Stand. 67A(2), 163–171 (1963).
[Crossref]

Plasma Sources Sci. Technol. (2)

I. Marinov, O. Guaitella, A. Rousseau, and S. Starikovskaia, “Cavitation in the vicinity of the high-voltage electrode as a key step of nanosecond breakdown in liquids,” Plasma Sources Sci. Technol. 22(4), 042001 (2013).
[Crossref]

S. Karl, K. Juergen, X. Shu, K. Sunao, M. Yasushi, and J. Ravindra, “Electrical breakdown of water in microgaps,” Plasma Sources Sci. Technol. 17(2), 024010 (2008).
[Crossref]

Rev. Sci. Instrum. (2)

J. Diaci, “Response functions of the laser beam deflection probe for detection of spherical acoustic waves,” Rev. Sci. Instrum. 63(11), 5306–5310 (1992).
[Crossref]

S. J. Brockington, R. D. Horton, D. Q. Hwang, R. W. Evans, S. J. Howard, and Y. F. Thio, “Plasma density gradient measurement using laser deflection,” Rev. Sci. Instrum. 76(6), 063503 (2005).
[Crossref]

Sci. Rep. (1)

C. C. Roth, R. A. Barnes, B. L. Ibey, H. T. Beier, L. Christopher Mimun, S. M. Maswadi, M. Shadaram, and R. D. Glickman, “Characterization of pressure transients generated by nanosecond electrical pulse (nsEP) exposure,” Sci. Rep. 5, 15063 (2015).
[Crossref] [PubMed]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Other (3)

V. Y. Ushakov, V. F. Klimkin, and S. Korobeynikov, Impulse Breakdown of Liquids (Springer Science & Business Media, 2007).

J. A. Stratton, Electromagnetic Theory (John Wiley & Sons, 2007).

L. D. Landau, J. Bell, M. Kearsley, L. Pitaevskii, E. Lifshitz, and J. Sykes, Electrodynamics of Continuous Media (Elsevier, 2013), Vol. 8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Diagram of spherical wave probe beam interaction.

Fig. 2
Fig. 2

(Top to Bottom) Geometry and mesh of 2-D FEM simulation of nsEP electromechanics.

Fig. 3
Fig. 3

A.) nsEP Voltage Waveform 600ns Monopolar, B.) nsEP Voltage Waveform 600ns Bipolar (1.2µs total duration), C.) nsEP Current Waveform 600ns Monopolar, D.) nsEP Current Waveform 600ns Bipolar (1.2µs total duration).

Fig. 4
Fig. 4

PBDT Imaging system diagram.

Fig. 5
Fig. 5

B-Mode single line scan methodology. A.) Line Scan methodology. B.) 1-D PBDT signal acquired when acoustic wave propagates past beam at the velocity c, the speed of sound in liquid . C.) Example image illustrating how each 1-D PBDT signal represents a strip of the reconstructed 2-D PBDT image.

Fig. 6
Fig. 6

M-Mode multiple line scan methodology. A.) M-Mode PBDT scan methodology. B.) Diagram of Acoustic wave propagating past optical beam. C.) 1-D PBDT signal acquired when acoustic wave propagates past beam, blue box is a segment of 1-D signal converted into a frame of the time-lapse image sequence. D.) Time lapse imaging frame where blue box represents a pixel (Beam Position) at the 3 µs frame (1-D signal temporal sample).

Fig. 7
Fig. 7

COMSOL electromechanics simulation results of electrostrictive acoustic generation from a monopolar nsEP (Duration: 400 ns-1.4µs, Interval: 200 ns per frame).

Fig. 8
Fig. 8

COMSOL electromechanics simulation results of electrostrictive acoustic generation from a bipolar nsEP stimulus (Duration: 400 ns-1.2µs Interval: 200 ns per frame).

Fig. 9
Fig. 9

PBDT thermal signals acquired with electrodes partial intersecting beam waist A.) Monopolar nsEP B.) Bipolar nsEP.

Fig. 10
Fig. 10

PBDT monopolar thermal signals acquired with electrodes partial intersecting beam waist (35 ms acquisition to capture thermal relaxation).

Fig. 11
Fig. 11

PBDT Acoustic signal acquired 100 µm from electrodes A.) Monopolar nsEP B.) Bipolar nsEP.

Fig. 12
Fig. 12

PBDT Acoustic signal acquired 12 mm below electrodes A.) Monopolar nsEP B.) Bipolar nsEP.

Fig. 13
Fig. 13

PBDT Acoustic propagation velocity.

Fig. 14
Fig. 14

PBDT images and surface plots acquired 100 um below electrodes A.) 600 ns monopolar nsEP acoustic image, B.) 600 ns monopolar nsEP acoustic image surface plot, C.) 1.2 µs bipolar nsEP image (600 ns per pulse), D.) 1.2 µs bipolar nsEP surface plot (600 ns per pulse).

Fig. 15
Fig. 15

PBDT images and surface plots acquired 12 mm below electrodes A.) 600 ns monopolar nsEP image, B.) 600 ns monopolar nsEP surface plot, C.) 1.2 µs bipolar nsEP image, D.) 1.2 µs bipolar nsEP surface plot.

Fig. 16
Fig. 16

PBDT time-lapse thermal and acoustic imaging of a monopolar nsEP (Duration: 0 µs-2 µs Interval: 1 µs per frame.

Fig. 17
Fig. 17

PBDT time-lapse thermal and acoustic imaging of a monopolar nsEP (Duration: 3 µs-6 µs Interval: 1 µs per frame.

Fig. 18
Fig. 18

PBDT time-lapse thermal and acoustic imaging of bipolar nsEP (Duration: 0 µs-2 µs Interval: 1 µs per frame.

Fig. 19
Fig. 19

PBDT time-lapse thermal and acoustic imaging of bipolar nsEP (Duration: 3 µs-6 µs Interval: 1 µs per frame.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

δn(r,t)= ( dn dρ ) ρ 0 δρ(r,t)
d ds ( n 0 d r v ds )= v n(r)
ϕ(l,t)= 2l n 0 l r s n r dr r 2 l 2
n(r,t)= n 0 π r r s θ(l) r 2 l 2 dl
f w = c l 2πw
Δ P es = ε 0 ρ ε ρ E 2 2
ρ ε ρ kε
f= P 0 =( P ε 0 ρ ε p E 2 2 )
ε=ε'jε'', ε''= σ 2πf .
W t 1 +c U r 1 = ε 0 ε p 2 E 0 2 r 0 4 c r 1 5 , U t 1 +2c W r 1 +c W r 1 =0.
T EM,V =( 1 2 ε 0 EE )I+ ε 0 E E T T EM,S = 1 2 ( ED+ a 2 EE )I+E D T + 1 2 ( a 2 a 1 )E E T ,
a 1 = a 2 =ρ ε ρ kε

Metrics