Abstract

The influence of structure geometry on THz emission from Black Silicon (BS) surfaces fabricated by reactive ion etching (RIE) has been investigated by a comprehensive study including optical simulations, optical-pump THz probe and THz emission studies. A strong enhancement of THz emission is observed with increasing structure depth, which is mainly related to the increased number of carriers created within the silicon needles and not due to the overall absorption enhancement as previously claimed for silicon nanowires.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Geometry-dependent terahertz emission of silicon nanowires

Gyeong Bok Jung, Yong Jae Cho, Yoon Myung, Han Sung Kim, Young Suk Seo, Jeunghee Park, and Chul Kang
Opt. Express 18(16) 16353-16359 (2010)

Strong polarization-dependent terahertz modulation of aligned Ag nanowires on Si substrate

Gyuseok Lee, Inhee Maeng, Chul Kang, Myoung-Kyu Oh, and Chul-Sik Kee
Opt. Express 26(10) 13677-13685 (2018)

Ultrafast active control of localized surface plasmon resonances in silicon bowtie antennas

Audrey Berrier, Ronald Ulbricht, Mischa Bonn, and Jaime Gómez Rivas
Opt. Express 18(22) 23226-23235 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
    [Crossref] [PubMed]
  2. H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
    [Crossref] [PubMed]
  3. J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
    [Crossref]
  4. C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19, 305201 (2008).
    [Crossref] [PubMed]
  5. M. Steglich, M. Oehme, T. Käsebier, M. Zilk, K. Kostecki, E.-B. Kley, J. Schulze, and A. Tünnermann, “Ge-on-Si photodiode with black silicon boosted responsivity,” Appl. Phys. Lett. 107, 051103 (2015).
    [Crossref]
  6. M. Reid, I. Cravetchi, R. Fedosejevs, I. Tiginyanu, and L. Sirbu, “Enhanced terahertz emission from porous InP (111) membranes,” Appl. Phys. Lett. 86, 021904 (2005).
    [Crossref]
  7. D. Seletskiy, M. Hasselbeck, M. Sheik-Bahae, J. Cederberg, and A. Talin, “THz emission from coherent plasmons in InAs nanowires,” Proc. SPIE 7214, 72140Y (2009).
    [Crossref]
  8. P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett. 93, 091106 (2008).
    [Crossref]
  9. G. B. Jung, Y. J. Cho, Y. Myung, H. S. Kim, Y. S. Seo, J. Park, and C. Kang, “Geometry-dependent terahertz emission of silicon nanowires,” Opt. Express 18(16), 16353–16359 (2010).
    [Crossref] [PubMed]
  10. W.-J. Lee, J. W. Ma, J. M. Bae, K.-S. Jeong, M.-H. Cho, C. Kang, and J.-S. Wi, “Strongly enhanced THz emission caused by localized surface charges in semiconducting germanium nanowires,” Sci. Rep. 3, 1984 (2013).
    [Crossref] [PubMed]
  11. V. N. Trukhin, A. D. Bouravleuv, I. A. Mustafin, J. P. Kakko, T. Huhtio, G. E. Cirlin, and H. Lipsanen, “Generation of terahertz radiation in ordered arrays of GaAs nanowires,” Appl. Phys. Lett. 106, 252104 (2015).
    [Crossref]
  12. V. Lehmann and S. Ronnebeck, “The physics of macropore formation in low-doped p-type silicon,” J. Electrochem. Soc. 146(8), 2968–2975 (1999).
    [Crossref]
  13. Z. Huang, N. Geyer, P. Werner, J. De Boor, and U. Gösele, “Metal-assisted chemical etching of silicon: a review,” Adv. Mater. 23(2), 285–308 (2011).
    [Crossref]
  14. R. Smith and S. Collins, “Porous silicon formation mechanisms,” J. Appl. Phys. 71, R1 (1992).
    [Crossref]
  15. R. Dussart, X. Mellhaoui, T. Tillocher, P. Lefaucheux, M. Volatier, C. Socquet-Clerc, P. Brault, and P. Ranson, “Silicon columnar microstructures induced by an SF6/O2 plasma,” J. Phys. D: Appl. Phys. 38, 3395 (2005).
    [Crossref]
  16. T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. A 70(4), 383–385 (2000).
    [Crossref]
  17. J. Westwater, D. Gosain, S. Tomiya, S. Usui, and H. Ruda, “Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction,” J. Vac. Sci. Technol. B 15(3), 554–557 (1997).
    [Crossref]
  18. R. Ulbricht, R. Kurstjens, and M. Bonn, “Assessing charge carrier trapping in silicon nanowires using picosecond conductivity measurements,” Nano Lett. 12(7), 3821–3827 (2012).
    [Crossref] [PubMed]
  19. H. P. Porte, D. Turchinovich, S. Persheyev, Y. Fan, M. J. Rose, and P. U. Jepsen, “On ultrafast photoconductivity dynamics and crystallinity of black silicon,” IEEE Trans. Terahertz Sci. Technol. 3(3), 331–341 (2013).
    [Crossref]
  20. J. Knab, X. Lu, F. A. Vallejo, G. Kumar, T. E. Murphy, and L. M. Hayden, “Ultrafast carrier dynamics and optical properties of nanoporous silicon at terahertz frequencies,” Opt. Mater. Express 4(2), 300–307 (2014).
    [Crossref]
  21. J. Yoo, I. Parm, U. Gangopadhyay, K. Kim, S. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energ. Mat. Sol. Cells 90(18), 3085–3093 (2006).
    [Crossref]
  22. M. Steglich, T. Käsebier, I. Höger, K. Füchsel, A. Tünnermann, and E.-B. Kley, “Black silicon nanostructures on silicon thin films prepared by reactive ion etching,” Chin. Opt. Lett 11, S10502 (2013).
  23. M. Heintze, A. Hauser, R. Moller, H. Wanka, E. Lòpez, I. Dani, V. Hopfe, J. Muller, and A. Huwe, “In-line plasma etching at atmospheric pressue for edge isolation in crystalline Si solar cells,” in Proceedings of IEEE Conference on Photovoltaic energy conversion (IEEE, 2006), pp. 1119–1121.
  24. S. Schaefer and R. Lüdemann, “Low damage reactive ion etching for photovoltaic applications,” J. Vac. Sci. Technol. A 17(3), 749–754 (1999).
    [Crossref]
  25. M. Otto, M. Kroll, T. Käsebier, R. Salzer, A. Tünnermann, and R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100, 191603 (2012).
    [Crossref]
  26. K. Füchsel, U. Schulz, N. Kaiser, T. Käsebier, E.-B. Kley, and A. Tünnermann, “Nanostructured SIS solar cells,” Proc. SPIE 7725, 772502 (2010).
    [Crossref]
  27. H. Jansen, M. de Boer, R. Legtenberg, and M. Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” J. Micromech. Microeng. 5, 115 (1995).
    [Crossref]
  28. R. Dussart, T. Tillocher, P. Lefaucheux, and M. Boufnichel, “Plasma cryogenic etching of silicon: from the early days to today’s advanced technologies,” J. Phys. D: Appl. Phys. 47, 123001 (2014).
    [Crossref]
  29. M. Steglich, T. Käsebier, M. Zilk, T. Pertsch, E.-B. Kley, and A. Tünnermann, “The structural and optical properties of black silicon by inductively coupled plasma reactive ion etching,” J. Appl. Phys. 116, 173503 (2014).
    [Crossref]
  30. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [Crossref]
  31. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
    [Crossref]
  32. H. Hempel, Helmholtz Center Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109 Berlin, Germany, T. Unold, and R. Eichberger, are preparing a manuscript to be called: “Measurement of charge carrier mobilities in thin films on metal substrates by reflection time resolved THz spectroscopy.”
  33. R. Inoue, K. Takayama, and M. Tonouchi, “Angular dependence of terahertz emission from semiconductor surfaces photoexcited by femtosecond optical pulses,” J. Opt. Soc. Am. B 26(9), A14–A22 (2009).
    [Crossref]
  34. G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Microlens coupled interdigital photoconductive switch,” Appl. Phys. Lett. 93, 091110 (2008).
    [Crossref]
  35. J. Pezoldt, T. Kups, M. Stubenrauch, and M. Fischer, “Black luminescent silicon,” Phys. Status Solidi C 8(3), 1021–1026 (2011).
    [Crossref]
  36. M. Kroll, T. Käsebier, M. Otto, R. Salzer, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Optical modeling of needle like silicon surfaces produced by an ICP-RIE process,” Proc. SPIE 7725, 772505 (2010).
    [Crossref]
  37. J. Schmidt and A. G. Aberle, “Accurate method for the determination of bulk minority-carrier lifetimes of mono-and multicrystalline silicon wafers,” J. Appl. Phys. 81(9), 6186–6199 (1997).
    [Crossref]
  38. J. Ziegler, J. Haschke, T. Käsebier, L. Korte, A. N. Sprafke, and R. B. Wehrspohn, “Influence of black silicon surfaces on the performance of back-contacted back silicon heterojunction solar cells,” Opt. Express 22(S6), A1469–A1476 (2014).
    [Crossref]
  39. R. Prasankumar, S. Choi, S. Trugman, S. Picraux, and A. Taylor, “Ultrafast electron and hole dynamics in germanium nanowires,” Nano Lett. 8(6), 1619–1624 (2008).
    [Crossref] [PubMed]
  40. H. Němec, P. Kužel, and V. Sundström, “Charge transport in nanostructured materials for solar energy conversion studied by time-resolved terahertz spectroscopy,” J. Photochem. Photobiol. A 215, (2), 123–139 (2010).
    [Crossref]
  41. C. Strothkämper, A. Bartelt, R. Eichberger, C. Kaufmann, and T. Unold, “Microscopic mobilities and cooling dynamics of photoexcited carriers in polycrystalline CuInSe2,” Phys. Rev. B 89, 115204 (2014).
    [Crossref]
  42. H. Tang, L.-G. Zhu, L. Zhao, X. Zhang, J. Shan, and S.-T. Lee, “Carrier dynamics in Si nanowires fabricated by metal-assisted chemical etching,” ACS Nano 6(9), 7814–7819 (2012).
    [Crossref] [PubMed]
  43. P. Parkinson, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Transient terahertz conductivity of GaAs nanowires,” Nano Lett. 7(7), 2162–2165 (2007).
    [Crossref]
  44. M. Otto, M. Kroll, T. Käsebier, S.-M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal transparent conducting oxides on black silicon,” Adv. Mater. 22(44), 5035–5038 (2010).
    [Crossref] [PubMed]
  45. A. Esser, W. Kütt, M. Strahnen, G. Maidorn, and H. Kurz, “Femtosecond transient reflectivity measurements as a probe for process-induced defects in silicon,” Appl. Surf. Sci. 46(1), 446–450 (1990).
    [Crossref]
  46. P. Stolk, F. Saris, A. Berntsen, W. Van der Weg, L. Sealy, R. Barklie, G. Krötz, and G. Müller, “Contribution of defects to electronic, structural, and thermodynamic properties of amorphous silicon,” J. Appl. Phys. 75(11), 7266–7286 (1994).
    [Crossref]
  47. U. Blumröder, Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Albert-Einstein-Straße 15, 07745 Jena, Germany, K. Füchsel, H. Hempel, P. Hoyer, A. Bingel, R. Eichberger, T. Unold, and S. Nolte, are preparing a manuscript to be called: “Investigating subsurface damages in SIS solar cells with THz spectroscopy.”
  48. P. Pikna, V. Skoromets, C. Becker, A. Fejfar, and P. Kužel, “Thin film polycrystalline Si solar cells studied in transient regime by optical pump-terahertz probe spectroscopy,” Appl. Phys. Lett. 107, 233901 (2015).
    [Crossref]
  49. H. Takahashi, A. Quema, M. Goto, S. Ono, and N. Sarukura, “Terahertz radiation mechanism from Femtosecond-Laser-Irradiated InAs (100)-Surface,” Jpn. J. Appl. Phys. 42, 1259 (2003).
    [Crossref]
  50. R. A. Lewis, M. L. Smith, R. Mendis, and R. E. M. Vickers, “THz generation in InAs,” Physica B 376, 618 (2006).
    [Crossref]
  51. D. V. Seletskiy, M. P. Hasselbeck, J. G. Cederberg, A. Katzenmeyer, M. E. Toimil-Molares, F. Léonard, A. A. Talin, and M. Sheik-Bahae, “Efficient terahertz emission from InAs nanowires,” Phys. Rev. B 84, 115421 (2011).
    [Crossref]
  52. M. Reid and R. Fedosejevs, “Terahertz emission from (100) InAs surfaces at high excitation fluences,” Appl. Phys. Lett. 86, 011906 (2005).
    [Crossref]
  53. X.-C. Zhang, J. Darrow, B. Hu, D. Auston, M. Schmidt, P. Tham, and E. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 56(22), 2228–2230 (1990).
    [Crossref]
  54. M. Johnston, D. Whittaker, A. Corchia, A. Davies, and E. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
    [Crossref]
  55. K. Liu, J. Xu, T. Yuan, and X.-C. Zhang, “Terahertz radiation from InAs induced by carrier diffusion and drift,” Phys. Rev. B 73, 155330 (2006).
    [Crossref]
  56. D. Auston, K. Cheung, and P. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45(3), 284–286 (1984).
    [Crossref]
  57. J. Lloyd-Hughes, E. Castro-Camus, M. Fraser, C. Jagadish, and M. Johnston, “Carrier dynamics in ion-implanted GaAs studied by simulation and observation of terahertz emission,” Phys. Rev. B 70, 235330 (2004).
    [Crossref]
  58. Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39, 96 (2000).
    [Crossref]
  59. J. Heyman, N. Coates, A. Reinhardt, and G. Strasser, “Diffusion and drift in terahertz emission at GaAs surfaces,” Appl. Phys. Lett. 83(26), 5476–5478 (2003).
    [Crossref]
  60. K. Sakai, M. Tani, and K. Sakai, Terahertz Optoelectronics (Springer-VerlagBerlin Heidelberg, 2005).
    [Crossref]
  61. P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91(9), 5533–5537 (2002).
    [Crossref]
  62. W. Füssel, M. Schmidt, H. Angermann, G. Mende, and H. Flietner, “Defects at the Si/SiO2 interface: their nature and behaviour in technological processes and stress,” Nucl. Instr. Meth. Phys. Res. A 377(2), 177–183 (1996).
    [Crossref]
  63. U. Blumröder, M. Steglich, F. Schrempel, P. Hoyer, and S. Nolte, “THz emission from argon implanted silicon surfaces,” Phys. Status Solidi B 252(1), 105–111 (2015).
    [Crossref]
  64. P. Hoyer, G. Matthäus, U. Blumröder, K. Füchsel, and S. Nolte, “Induced terahertz emission as a probe for semiconductor devices,” Appl. Phys. Lett. 99, 221112 (2011).
    [Crossref]
  65. H. Angermann, “Characterization of wet-chemically treated silicon interfaces by surface photovoltage measurements,” Anal. Bioanal. Chem. 374(4), 676–680 (2002).
    [Crossref] [PubMed]
  66. E. Gornik and R. Kersting, “Coherent THz emission in semiconductors,” Ultrafast Physical Processes in Semiconductors 67, 389–440 (2001).
    [Crossref]
  67. D. Whittaker and I. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610 (1999).
    [Crossref]

2015 (5)

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

M. Steglich, M. Oehme, T. Käsebier, M. Zilk, K. Kostecki, E.-B. Kley, J. Schulze, and A. Tünnermann, “Ge-on-Si photodiode with black silicon boosted responsivity,” Appl. Phys. Lett. 107, 051103 (2015).
[Crossref]

V. N. Trukhin, A. D. Bouravleuv, I. A. Mustafin, J. P. Kakko, T. Huhtio, G. E. Cirlin, and H. Lipsanen, “Generation of terahertz radiation in ordered arrays of GaAs nanowires,” Appl. Phys. Lett. 106, 252104 (2015).
[Crossref]

P. Pikna, V. Skoromets, C. Becker, A. Fejfar, and P. Kužel, “Thin film polycrystalline Si solar cells studied in transient regime by optical pump-terahertz probe spectroscopy,” Appl. Phys. Lett. 107, 233901 (2015).
[Crossref]

U. Blumröder, M. Steglich, F. Schrempel, P. Hoyer, and S. Nolte, “THz emission from argon implanted silicon surfaces,” Phys. Status Solidi B 252(1), 105–111 (2015).
[Crossref]

2014 (6)

C. Strothkämper, A. Bartelt, R. Eichberger, C. Kaufmann, and T. Unold, “Microscopic mobilities and cooling dynamics of photoexcited carriers in polycrystalline CuInSe2,” Phys. Rev. B 89, 115204 (2014).
[Crossref]

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

J. Knab, X. Lu, F. A. Vallejo, G. Kumar, T. E. Murphy, and L. M. Hayden, “Ultrafast carrier dynamics and optical properties of nanoporous silicon at terahertz frequencies,” Opt. Mater. Express 4(2), 300–307 (2014).
[Crossref]

R. Dussart, T. Tillocher, P. Lefaucheux, and M. Boufnichel, “Plasma cryogenic etching of silicon: from the early days to today’s advanced technologies,” J. Phys. D: Appl. Phys. 47, 123001 (2014).
[Crossref]

M. Steglich, T. Käsebier, M. Zilk, T. Pertsch, E.-B. Kley, and A. Tünnermann, “The structural and optical properties of black silicon by inductively coupled plasma reactive ion etching,” J. Appl. Phys. 116, 173503 (2014).
[Crossref]

J. Ziegler, J. Haschke, T. Käsebier, L. Korte, A. N. Sprafke, and R. B. Wehrspohn, “Influence of black silicon surfaces on the performance of back-contacted back silicon heterojunction solar cells,” Opt. Express 22(S6), A1469–A1476 (2014).
[Crossref]

2013 (3)

M. Steglich, T. Käsebier, I. Höger, K. Füchsel, A. Tünnermann, and E.-B. Kley, “Black silicon nanostructures on silicon thin films prepared by reactive ion etching,” Chin. Opt. Lett 11, S10502 (2013).

W.-J. Lee, J. W. Ma, J. M. Bae, K.-S. Jeong, M.-H. Cho, C. Kang, and J.-S. Wi, “Strongly enhanced THz emission caused by localized surface charges in semiconducting germanium nanowires,” Sci. Rep. 3, 1984 (2013).
[Crossref] [PubMed]

H. P. Porte, D. Turchinovich, S. Persheyev, Y. Fan, M. J. Rose, and P. U. Jepsen, “On ultrafast photoconductivity dynamics and crystallinity of black silicon,” IEEE Trans. Terahertz Sci. Technol. 3(3), 331–341 (2013).
[Crossref]

2012 (3)

H. Tang, L.-G. Zhu, L. Zhao, X. Zhang, J. Shan, and S.-T. Lee, “Carrier dynamics in Si nanowires fabricated by metal-assisted chemical etching,” ACS Nano 6(9), 7814–7819 (2012).
[Crossref] [PubMed]

R. Ulbricht, R. Kurstjens, and M. Bonn, “Assessing charge carrier trapping in silicon nanowires using picosecond conductivity measurements,” Nano Lett. 12(7), 3821–3827 (2012).
[Crossref] [PubMed]

M. Otto, M. Kroll, T. Käsebier, R. Salzer, A. Tünnermann, and R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100, 191603 (2012).
[Crossref]

2011 (4)

J. Pezoldt, T. Kups, M. Stubenrauch, and M. Fischer, “Black luminescent silicon,” Phys. Status Solidi C 8(3), 1021–1026 (2011).
[Crossref]

Z. Huang, N. Geyer, P. Werner, J. De Boor, and U. Gösele, “Metal-assisted chemical etching of silicon: a review,” Adv. Mater. 23(2), 285–308 (2011).
[Crossref]

D. V. Seletskiy, M. P. Hasselbeck, J. G. Cederberg, A. Katzenmeyer, M. E. Toimil-Molares, F. Léonard, A. A. Talin, and M. Sheik-Bahae, “Efficient terahertz emission from InAs nanowires,” Phys. Rev. B 84, 115421 (2011).
[Crossref]

P. Hoyer, G. Matthäus, U. Blumröder, K. Füchsel, and S. Nolte, “Induced terahertz emission as a probe for semiconductor devices,” Appl. Phys. Lett. 99, 221112 (2011).
[Crossref]

2010 (6)

H. Němec, P. Kužel, and V. Sundström, “Charge transport in nanostructured materials for solar energy conversion studied by time-resolved terahertz spectroscopy,” J. Photochem. Photobiol. A 215, (2), 123–139 (2010).
[Crossref]

M. Otto, M. Kroll, T. Käsebier, S.-M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal transparent conducting oxides on black silicon,” Adv. Mater. 22(44), 5035–5038 (2010).
[Crossref] [PubMed]

G. B. Jung, Y. J. Cho, Y. Myung, H. S. Kim, Y. S. Seo, J. Park, and C. Kang, “Geometry-dependent terahertz emission of silicon nanowires,” Opt. Express 18(16), 16353–16359 (2010).
[Crossref] [PubMed]

M. Kroll, T. Käsebier, M. Otto, R. Salzer, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Optical modeling of needle like silicon surfaces produced by an ICP-RIE process,” Proc. SPIE 7725, 772505 (2010).
[Crossref]

K. Füchsel, U. Schulz, N. Kaiser, T. Käsebier, E.-B. Kley, and A. Tünnermann, “Nanostructured SIS solar cells,” Proc. SPIE 7725, 772502 (2010).
[Crossref]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

2009 (3)

R. Inoue, K. Takayama, and M. Tonouchi, “Angular dependence of terahertz emission from semiconductor surfaces photoexcited by femtosecond optical pulses,” J. Opt. Soc. Am. B 26(9), A14–A22 (2009).
[Crossref]

D. Seletskiy, M. Hasselbeck, M. Sheik-Bahae, J. Cederberg, and A. Talin, “THz emission from coherent plasmons in InAs nanowires,” Proc. SPIE 7214, 72140Y (2009).
[Crossref]

J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
[Crossref]

2008 (4)

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19, 305201 (2008).
[Crossref] [PubMed]

P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett. 93, 091106 (2008).
[Crossref]

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Microlens coupled interdigital photoconductive switch,” Appl. Phys. Lett. 93, 091110 (2008).
[Crossref]

R. Prasankumar, S. Choi, S. Trugman, S. Picraux, and A. Taylor, “Ultrafast electron and hole dynamics in germanium nanowires,” Nano Lett. 8(6), 1619–1624 (2008).
[Crossref] [PubMed]

2007 (1)

P. Parkinson, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Transient terahertz conductivity of GaAs nanowires,” Nano Lett. 7(7), 2162–2165 (2007).
[Crossref]

2006 (3)

R. A. Lewis, M. L. Smith, R. Mendis, and R. E. M. Vickers, “THz generation in InAs,” Physica B 376, 618 (2006).
[Crossref]

K. Liu, J. Xu, T. Yuan, and X.-C. Zhang, “Terahertz radiation from InAs induced by carrier diffusion and drift,” Phys. Rev. B 73, 155330 (2006).
[Crossref]

J. Yoo, I. Parm, U. Gangopadhyay, K. Kim, S. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energ. Mat. Sol. Cells 90(18), 3085–3093 (2006).
[Crossref]

2005 (3)

M. Reid, I. Cravetchi, R. Fedosejevs, I. Tiginyanu, and L. Sirbu, “Enhanced terahertz emission from porous InP (111) membranes,” Appl. Phys. Lett. 86, 021904 (2005).
[Crossref]

R. Dussart, X. Mellhaoui, T. Tillocher, P. Lefaucheux, M. Volatier, C. Socquet-Clerc, P. Brault, and P. Ranson, “Silicon columnar microstructures induced by an SF6/O2 plasma,” J. Phys. D: Appl. Phys. 38, 3395 (2005).
[Crossref]

M. Reid and R. Fedosejevs, “Terahertz emission from (100) InAs surfaces at high excitation fluences,” Appl. Phys. Lett. 86, 011906 (2005).
[Crossref]

2004 (1)

J. Lloyd-Hughes, E. Castro-Camus, M. Fraser, C. Jagadish, and M. Johnston, “Carrier dynamics in ion-implanted GaAs studied by simulation and observation of terahertz emission,” Phys. Rev. B 70, 235330 (2004).
[Crossref]

2003 (2)

H. Takahashi, A. Quema, M. Goto, S. Ono, and N. Sarukura, “Terahertz radiation mechanism from Femtosecond-Laser-Irradiated InAs (100)-Surface,” Jpn. J. Appl. Phys. 42, 1259 (2003).
[Crossref]

J. Heyman, N. Coates, A. Reinhardt, and G. Strasser, “Diffusion and drift in terahertz emission at GaAs surfaces,” Appl. Phys. Lett. 83(26), 5476–5478 (2003).
[Crossref]

2002 (3)

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91(9), 5533–5537 (2002).
[Crossref]

M. Johnston, D. Whittaker, A. Corchia, A. Davies, and E. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[Crossref]

H. Angermann, “Characterization of wet-chemically treated silicon interfaces by surface photovoltage measurements,” Anal. Bioanal. Chem. 374(4), 676–680 (2002).
[Crossref] [PubMed]

2001 (1)

E. Gornik and R. Kersting, “Coherent THz emission in semiconductors,” Ultrafast Physical Processes in Semiconductors 67, 389–440 (2001).
[Crossref]

2000 (2)

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39, 96 (2000).
[Crossref]

T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. A 70(4), 383–385 (2000).
[Crossref]

1999 (3)

V. Lehmann and S. Ronnebeck, “The physics of macropore formation in low-doped p-type silicon,” J. Electrochem. Soc. 146(8), 2968–2975 (1999).
[Crossref]

S. Schaefer and R. Lüdemann, “Low damage reactive ion etching for photovoltaic applications,” J. Vac. Sci. Technol. A 17(3), 749–754 (1999).
[Crossref]

D. Whittaker and I. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610 (1999).
[Crossref]

1997 (2)

J. Schmidt and A. G. Aberle, “Accurate method for the determination of bulk minority-carrier lifetimes of mono-and multicrystalline silicon wafers,” J. Appl. Phys. 81(9), 6186–6199 (1997).
[Crossref]

J. Westwater, D. Gosain, S. Tomiya, S. Usui, and H. Ruda, “Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction,” J. Vac. Sci. Technol. B 15(3), 554–557 (1997).
[Crossref]

1996 (2)

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[Crossref]

W. Füssel, M. Schmidt, H. Angermann, G. Mende, and H. Flietner, “Defects at the Si/SiO2 interface: their nature and behaviour in technological processes and stress,” Nucl. Instr. Meth. Phys. Res. A 377(2), 177–183 (1996).
[Crossref]

1995 (1)

H. Jansen, M. de Boer, R. Legtenberg, and M. Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” J. Micromech. Microeng. 5, 115 (1995).
[Crossref]

1994 (1)

P. Stolk, F. Saris, A. Berntsen, W. Van der Weg, L. Sealy, R. Barklie, G. Krötz, and G. Müller, “Contribution of defects to electronic, structural, and thermodynamic properties of amorphous silicon,” J. Appl. Phys. 75(11), 7266–7286 (1994).
[Crossref]

1992 (1)

R. Smith and S. Collins, “Porous silicon formation mechanisms,” J. Appl. Phys. 71, R1 (1992).
[Crossref]

1990 (2)

X.-C. Zhang, J. Darrow, B. Hu, D. Auston, M. Schmidt, P. Tham, and E. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 56(22), 2228–2230 (1990).
[Crossref]

A. Esser, W. Kütt, M. Strahnen, G. Maidorn, and H. Kurz, “Femtosecond transient reflectivity measurements as a probe for process-induced defects in silicon,” Appl. Surf. Sci. 46(1), 446–450 (1990).
[Crossref]

1984 (1)

D. Auston, K. Cheung, and P. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45(3), 284–286 (1984).
[Crossref]

Aberle, A. G.

J. Schmidt and A. G. Aberle, “Accurate method for the determination of bulk minority-carrier lifetimes of mono-and multicrystalline silicon wafers,” J. Appl. Phys. 81(9), 6186–6199 (1997).
[Crossref]

Alcubilla, R.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Angermann, H.

H. Angermann, “Characterization of wet-chemically treated silicon interfaces by surface photovoltage measurements,” Anal. Bioanal. Chem. 374(4), 676–680 (2002).
[Crossref] [PubMed]

W. Füssel, M. Schmidt, H. Angermann, G. Mende, and H. Flietner, “Defects at the Si/SiO2 interface: their nature and behaviour in technological processes and stress,” Nucl. Instr. Meth. Phys. Res. A 377(2), 177–183 (1996).
[Crossref]

Auston, D.

X.-C. Zhang, J. Darrow, B. Hu, D. Auston, M. Schmidt, P. Tham, and E. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 56(22), 2228–2230 (1990).
[Crossref]

D. Auston, K. Cheung, and P. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45(3), 284–286 (1984).
[Crossref]

Bae, J. M.

W.-J. Lee, J. W. Ma, J. M. Bae, K.-S. Jeong, M.-H. Cho, C. Kang, and J.-S. Wi, “Strongly enhanced THz emission caused by localized surface charges in semiconducting germanium nanowires,” Sci. Rep. 3, 1984 (2013).
[Crossref] [PubMed]

Barklie, R.

P. Stolk, F. Saris, A. Berntsen, W. Van der Weg, L. Sealy, R. Barklie, G. Krötz, and G. Müller, “Contribution of defects to electronic, structural, and thermodynamic properties of amorphous silicon,” J. Appl. Phys. 75(11), 7266–7286 (1994).
[Crossref]

Bartelt, A.

C. Strothkämper, A. Bartelt, R. Eichberger, C. Kaufmann, and T. Unold, “Microscopic mobilities and cooling dynamics of photoexcited carriers in polycrystalline CuInSe2,” Phys. Rev. B 89, 115204 (2014).
[Crossref]

Becker, C.

P. Pikna, V. Skoromets, C. Becker, A. Fejfar, and P. Kužel, “Thin film polycrystalline Si solar cells studied in transient regime by optical pump-terahertz probe spectroscopy,” Appl. Phys. Lett. 107, 233901 (2015).
[Crossref]

Beigang, R.

P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett. 93, 091106 (2008).
[Crossref]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Berntsen, A.

P. Stolk, F. Saris, A. Berntsen, W. Van der Weg, L. Sealy, R. Barklie, G. Krötz, and G. Müller, “Contribution of defects to electronic, structural, and thermodynamic properties of amorphous silicon,” J. Appl. Phys. 75(11), 7266–7286 (1994).
[Crossref]

Blumröder, U.

U. Blumröder, M. Steglich, F. Schrempel, P. Hoyer, and S. Nolte, “THz emission from argon implanted silicon surfaces,” Phys. Status Solidi B 252(1), 105–111 (2015).
[Crossref]

P. Hoyer, G. Matthäus, U. Blumröder, K. Füchsel, and S. Nolte, “Induced terahertz emission as a probe for semiconductor devices,” Appl. Phys. Lett. 99, 221112 (2011).
[Crossref]

Bonn, M.

R. Ulbricht, R. Kurstjens, and M. Bonn, “Assessing charge carrier trapping in silicon nanowires using picosecond conductivity measurements,” Nano Lett. 12(7), 3821–3827 (2012).
[Crossref] [PubMed]

Boufnichel, M.

R. Dussart, T. Tillocher, P. Lefaucheux, and M. Boufnichel, “Plasma cryogenic etching of silicon: from the early days to today’s advanced technologies,” J. Phys. D: Appl. Phys. 47, 123001 (2014).
[Crossref]

Bouravleuv, A. D.

V. N. Trukhin, A. D. Bouravleuv, I. A. Mustafin, J. P. Kakko, T. Huhtio, G. E. Cirlin, and H. Lipsanen, “Generation of terahertz radiation in ordered arrays of GaAs nanowires,” Appl. Phys. Lett. 106, 252104 (2015).
[Crossref]

Brault, P.

R. Dussart, X. Mellhaoui, T. Tillocher, P. Lefaucheux, M. Volatier, C. Socquet-Clerc, P. Brault, and P. Ranson, “Silicon columnar microstructures induced by an SF6/O2 plasma,” J. Phys. D: Appl. Phys. 38, 3395 (2005).
[Crossref]

Brongersma, M. L.

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

Calle, E.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Castro-Camus, E.

J. Lloyd-Hughes, E. Castro-Camus, M. Fraser, C. Jagadish, and M. Johnston, “Carrier dynamics in ion-implanted GaAs studied by simulation and observation of terahertz emission,” Phys. Rev. B 70, 235330 (2004).
[Crossref]

Cederberg, J.

D. Seletskiy, M. Hasselbeck, M. Sheik-Bahae, J. Cederberg, and A. Talin, “THz emission from coherent plasmons in InAs nanowires,” Proc. SPIE 7214, 72140Y (2009).
[Crossref]

Cederberg, J. G.

D. V. Seletskiy, M. P. Hasselbeck, J. G. Cederberg, A. Katzenmeyer, M. E. Toimil-Molares, F. Léonard, A. A. Talin, and M. Sheik-Bahae, “Efficient terahertz emission from InAs nanowires,” Phys. Rev. B 84, 115421 (2011).
[Crossref]

Cheung, K.

D. Auston, K. Cheung, and P. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45(3), 284–286 (1984).
[Crossref]

Cho, M.-H.

W.-J. Lee, J. W. Ma, J. M. Bae, K.-S. Jeong, M.-H. Cho, C. Kang, and J.-S. Wi, “Strongly enhanced THz emission caused by localized surface charges in semiconducting germanium nanowires,” Sci. Rep. 3, 1984 (2013).
[Crossref] [PubMed]

Cho, Y. J.

Choi, S.

R. Prasankumar, S. Choi, S. Trugman, S. Picraux, and A. Taylor, “Ultrafast electron and hole dynamics in germanium nanowires,” Nano Lett. 8(6), 1619–1624 (2008).
[Crossref] [PubMed]

Cirlin, G. E.

V. N. Trukhin, A. D. Bouravleuv, I. A. Mustafin, J. P. Kakko, T. Huhtio, G. E. Cirlin, and H. Lipsanen, “Generation of terahertz radiation in ordered arrays of GaAs nanowires,” Appl. Phys. Lett. 106, 252104 (2015).
[Crossref]

Coates, N.

J. Heyman, N. Coates, A. Reinhardt, and G. Strasser, “Diffusion and drift in terahertz emission at GaAs surfaces,” Appl. Phys. Lett. 83(26), 5476–5478 (2003).
[Crossref]

Collins, S.

R. Smith and S. Collins, “Porous silicon formation mechanisms,” J. Appl. Phys. 71, R1 (1992).
[Crossref]

Corchia, A.

M. Johnston, D. Whittaker, A. Corchia, A. Davies, and E. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[Crossref]

Cravetchi, I.

M. Reid, I. Cravetchi, R. Fedosejevs, I. Tiginyanu, and L. Sirbu, “Enhanced terahertz emission from porous InP (111) membranes,” Appl. Phys. Lett. 86, 021904 (2005).
[Crossref]

Cui, Y.

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

Culshaw, I.

D. Whittaker and I. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610 (1999).
[Crossref]

Dani, I.

M. Heintze, A. Hauser, R. Moller, H. Wanka, E. Lòpez, I. Dani, V. Hopfe, J. Muller, and A. Huwe, “In-line plasma etching at atmospheric pressue for edge isolation in crystalline Si solar cells,” in Proceedings of IEEE Conference on Photovoltaic energy conversion (IEEE, 2006), pp. 1119–1121.

Darrow, J.

X.-C. Zhang, J. Darrow, B. Hu, D. Auston, M. Schmidt, P. Tham, and E. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 56(22), 2228–2230 (1990).
[Crossref]

David, A.

J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
[Crossref]

Davies, A.

M. Johnston, D. Whittaker, A. Corchia, A. Davies, and E. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[Crossref]

de Boer, M.

H. Jansen, M. de Boer, R. Legtenberg, and M. Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” J. Micromech. Microeng. 5, 115 (1995).
[Crossref]

De Boor, J.

Z. Huang, N. Geyer, P. Werner, J. De Boor, and U. Gösele, “Metal-assisted chemical etching of silicon: a review,” Adv. Mater. 23(2), 285–308 (2011).
[Crossref]

Dhungel, S.

J. Yoo, I. Parm, U. Gangopadhyay, K. Kim, S. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energ. Mat. Sol. Cells 90(18), 3085–3093 (2006).
[Crossref]

Dussart, R.

R. Dussart, T. Tillocher, P. Lefaucheux, and M. Boufnichel, “Plasma cryogenic etching of silicon: from the early days to today’s advanced technologies,” J. Phys. D: Appl. Phys. 47, 123001 (2014).
[Crossref]

R. Dussart, X. Mellhaoui, T. Tillocher, P. Lefaucheux, M. Volatier, C. Socquet-Clerc, P. Brault, and P. Ranson, “Silicon columnar microstructures induced by an SF6/O2 plasma,” J. Phys. D: Appl. Phys. 38, 3395 (2005).
[Crossref]

Eichberger, R.

C. Strothkämper, A. Bartelt, R. Eichberger, C. Kaufmann, and T. Unold, “Microscopic mobilities and cooling dynamics of photoexcited carriers in polycrystalline CuInSe2,” Phys. Rev. B 89, 115204 (2014).
[Crossref]

Elwenspoek, M.

H. Jansen, M. de Boer, R. Legtenberg, and M. Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” J. Micromech. Microeng. 5, 115 (1995).
[Crossref]

Esser, A.

A. Esser, W. Kütt, M. Strahnen, G. Maidorn, and H. Kurz, “Femtosecond transient reflectivity measurements as a probe for process-induced defects in silicon,” Appl. Surf. Sci. 46(1), 446–450 (1990).
[Crossref]

Fan, S.

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

Fan, Y.

H. P. Porte, D. Turchinovich, S. Persheyev, Y. Fan, M. J. Rose, and P. U. Jepsen, “On ultrafast photoconductivity dynamics and crystallinity of black silicon,” IEEE Trans. Terahertz Sci. Technol. 3(3), 331–341 (2013).
[Crossref]

Fedosejevs, R.

M. Reid, I. Cravetchi, R. Fedosejevs, I. Tiginyanu, and L. Sirbu, “Enhanced terahertz emission from porous InP (111) membranes,” Appl. Phys. Lett. 86, 021904 (2005).
[Crossref]

M. Reid and R. Fedosejevs, “Terahertz emission from (100) InAs surfaces at high excitation fluences,” Appl. Phys. Lett. 86, 011906 (2005).
[Crossref]

Fejfar, A.

P. Pikna, V. Skoromets, C. Becker, A. Fejfar, and P. Kužel, “Thin film polycrystalline Si solar cells studied in transient regime by optical pump-terahertz probe spectroscopy,” Appl. Phys. Lett. 107, 233901 (2015).
[Crossref]

Finlay, R. J.

T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. A 70(4), 383–385 (2000).
[Crossref]

Fischer, M.

J. Pezoldt, T. Kups, M. Stubenrauch, and M. Fischer, “Black luminescent silicon,” Phys. Status Solidi C 8(3), 1021–1026 (2011).
[Crossref]

Flietner, H.

W. Füssel, M. Schmidt, H. Angermann, G. Mende, and H. Flietner, “Defects at the Si/SiO2 interface: their nature and behaviour in technological processes and stress,” Nucl. Instr. Meth. Phys. Res. A 377(2), 177–183 (1996).
[Crossref]

Fraser, M.

J. Lloyd-Hughes, E. Castro-Camus, M. Fraser, C. Jagadish, and M. Johnston, “Carrier dynamics in ion-implanted GaAs studied by simulation and observation of terahertz emission,” Phys. Rev. B 70, 235330 (2004).
[Crossref]

Füchsel, K.

M. Steglich, T. Käsebier, I. Höger, K. Füchsel, A. Tünnermann, and E.-B. Kley, “Black silicon nanostructures on silicon thin films prepared by reactive ion etching,” Chin. Opt. Lett 11, S10502 (2013).

P. Hoyer, G. Matthäus, U. Blumröder, K. Füchsel, and S. Nolte, “Induced terahertz emission as a probe for semiconductor devices,” Appl. Phys. Lett. 99, 221112 (2011).
[Crossref]

K. Füchsel, U. Schulz, N. Kaiser, T. Käsebier, E.-B. Kley, and A. Tünnermann, “Nanostructured SIS solar cells,” Proc. SPIE 7725, 772502 (2010).
[Crossref]

Füssel, W.

W. Füssel, M. Schmidt, H. Angermann, G. Mende, and H. Flietner, “Defects at the Si/SiO2 interface: their nature and behaviour in technological processes and stress,” Nucl. Instr. Meth. Phys. Res. A 377(2), 177–183 (1996).
[Crossref]

Gangopadhyay, U.

J. Yoo, I. Parm, U. Gangopadhyay, K. Kim, S. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energ. Mat. Sol. Cells 90(18), 3085–3093 (2006).
[Crossref]

Gao, Q.

P. Parkinson, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Transient terahertz conductivity of GaAs nanowires,” Nano Lett. 7(7), 2162–2165 (2007).
[Crossref]

Garín, M.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Geyer, N.

Z. Huang, N. Geyer, P. Werner, J. De Boor, and U. Gösele, “Metal-assisted chemical etching of silicon: a review,” Adv. Mater. 23(2), 285–308 (2011).
[Crossref]

Gornik, E.

E. Gornik and R. Kersting, “Coherent THz emission in semiconductors,” Ultrafast Physical Processes in Semiconductors 67, 389–440 (2001).
[Crossref]

Gosain, D.

J. Westwater, D. Gosain, S. Tomiya, S. Usui, and H. Ruda, “Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction,” J. Vac. Sci. Technol. B 15(3), 554–557 (1997).
[Crossref]

Gösele, U.

Z. Huang, N. Geyer, P. Werner, J. De Boor, and U. Gösele, “Metal-assisted chemical etching of silicon: a review,” Adv. Mater. 23(2), 285–308 (2011).
[Crossref]

Goto, M.

H. Takahashi, A. Quema, M. Goto, S. Ono, and N. Sarukura, “Terahertz radiation mechanism from Femtosecond-Laser-Irradiated InAs (100)-Surface,” Jpn. J. Appl. Phys. 42, 1259 (2003).
[Crossref]

Gu, P.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91(9), 5533–5537 (2002).
[Crossref]

Haschke, J.

Hasselbeck, M.

D. Seletskiy, M. Hasselbeck, M. Sheik-Bahae, J. Cederberg, and A. Talin, “THz emission from coherent plasmons in InAs nanowires,” Proc. SPIE 7214, 72140Y (2009).
[Crossref]

Hasselbeck, M. P.

D. V. Seletskiy, M. P. Hasselbeck, J. G. Cederberg, A. Katzenmeyer, M. E. Toimil-Molares, F. Léonard, A. A. Talin, and M. Sheik-Bahae, “Efficient terahertz emission from InAs nanowires,” Phys. Rev. B 84, 115421 (2011).
[Crossref]

Hauser, A.

M. Heintze, A. Hauser, R. Moller, H. Wanka, E. Lòpez, I. Dani, V. Hopfe, J. Muller, and A. Huwe, “In-line plasma etching at atmospheric pressue for edge isolation in crystalline Si solar cells,” in Proceedings of IEEE Conference on Photovoltaic energy conversion (IEEE, 2006), pp. 1119–1121.

Hayden, L. M.

Heintze, M.

M. Heintze, A. Hauser, R. Moller, H. Wanka, E. Lòpez, I. Dani, V. Hopfe, J. Muller, and A. Huwe, “In-line plasma etching at atmospheric pressue for edge isolation in crystalline Si solar cells,” in Proceedings of IEEE Conference on Photovoltaic energy conversion (IEEE, 2006), pp. 1119–1121.

Heinz, T. F.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[Crossref]

Her, T.-H.

T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. A 70(4), 383–385 (2000).
[Crossref]

Herz, L. M.

P. Parkinson, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Transient terahertz conductivity of GaAs nanowires,” Nano Lett. 7(7), 2162–2165 (2007).
[Crossref]

Hessman, D.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19, 305201 (2008).
[Crossref] [PubMed]

Heyman, J.

J. Heyman, N. Coates, A. Reinhardt, and G. Strasser, “Diffusion and drift in terahertz emission at GaAs surfaces,” Appl. Phys. Lett. 83(26), 5476–5478 (2003).
[Crossref]

Höger, I.

M. Steglich, T. Käsebier, I. Höger, K. Füchsel, A. Tünnermann, and E.-B. Kley, “Black silicon nanostructures on silicon thin films prepared by reactive ion etching,” Chin. Opt. Lett 11, S10502 (2013).

Hohmuth, R.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Microlens coupled interdigital photoconductive switch,” Appl. Phys. Lett. 93, 091110 (2008).
[Crossref]

Hopfe, V.

M. Heintze, A. Hauser, R. Moller, H. Wanka, E. Lòpez, I. Dani, V. Hopfe, J. Muller, and A. Huwe, “In-line plasma etching at atmospheric pressue for edge isolation in crystalline Si solar cells,” in Proceedings of IEEE Conference on Photovoltaic energy conversion (IEEE, 2006), pp. 1119–1121.

Hoyer, P.

U. Blumröder, M. Steglich, F. Schrempel, P. Hoyer, and S. Nolte, “THz emission from argon implanted silicon surfaces,” Phys. Status Solidi B 252(1), 105–111 (2015).
[Crossref]

P. Hoyer, G. Matthäus, U. Blumröder, K. Füchsel, and S. Nolte, “Induced terahertz emission as a probe for semiconductor devices,” Appl. Phys. Lett. 99, 221112 (2011).
[Crossref]

P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett. 93, 091106 (2008).
[Crossref]

Hu, B.

X.-C. Zhang, J. Darrow, B. Hu, D. Auston, M. Schmidt, P. Tham, and E. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 56(22), 2228–2230 (1990).
[Crossref]

Huang, Z.

Z. Huang, N. Geyer, P. Werner, J. De Boor, and U. Gösele, “Metal-assisted chemical etching of silicon: a review,” Adv. Mater. 23(2), 285–308 (2011).
[Crossref]

Huhtio, T.

V. N. Trukhin, A. D. Bouravleuv, I. A. Mustafin, J. P. Kakko, T. Huhtio, G. E. Cirlin, and H. Lipsanen, “Generation of terahertz radiation in ordered arrays of GaAs nanowires,” Appl. Phys. Lett. 106, 252104 (2015).
[Crossref]

Huwe, A.

M. Heintze, A. Hauser, R. Moller, H. Wanka, E. Lòpez, I. Dani, V. Hopfe, J. Muller, and A. Huwe, “In-line plasma etching at atmospheric pressue for edge isolation in crystalline Si solar cells,” in Proceedings of IEEE Conference on Photovoltaic energy conversion (IEEE, 2006), pp. 1119–1121.

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Inoue, R.

Jagadish, C.

P. Parkinson, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Transient terahertz conductivity of GaAs nanowires,” Nano Lett. 7(7), 2162–2165 (2007).
[Crossref]

J. Lloyd-Hughes, E. Castro-Camus, M. Fraser, C. Jagadish, and M. Johnston, “Carrier dynamics in ion-implanted GaAs studied by simulation and observation of terahertz emission,” Phys. Rev. B 70, 235330 (2004).
[Crossref]

Jansen, H.

H. Jansen, M. de Boer, R. Legtenberg, and M. Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” J. Micromech. Microeng. 5, 115 (1995).
[Crossref]

Jeong, K.-S.

W.-J. Lee, J. W. Ma, J. M. Bae, K.-S. Jeong, M.-H. Cho, C. Kang, and J.-S. Wi, “Strongly enhanced THz emission caused by localized surface charges in semiconducting germanium nanowires,” Sci. Rep. 3, 1984 (2013).
[Crossref] [PubMed]

Jepsen, P. U.

H. P. Porte, D. Turchinovich, S. Persheyev, Y. Fan, M. J. Rose, and P. U. Jepsen, “On ultrafast photoconductivity dynamics and crystallinity of black silicon,” IEEE Trans. Terahertz Sci. Technol. 3(3), 331–341 (2013).
[Crossref]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Johnston, M.

J. Lloyd-Hughes, E. Castro-Camus, M. Fraser, C. Jagadish, and M. Johnston, “Carrier dynamics in ion-implanted GaAs studied by simulation and observation of terahertz emission,” Phys. Rev. B 70, 235330 (2004).
[Crossref]

M. Johnston, D. Whittaker, A. Corchia, A. Davies, and E. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[Crossref]

Johnston, M. B.

P. Parkinson, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Transient terahertz conductivity of GaAs nanowires,” Nano Lett. 7(7), 2162–2165 (2007).
[Crossref]

Jung, G. B.

Kaiser, N.

K. Füchsel, U. Schulz, N. Kaiser, T. Käsebier, E.-B. Kley, and A. Tünnermann, “Nanostructured SIS solar cells,” Proc. SPIE 7725, 772502 (2010).
[Crossref]

Kakko, J. P.

V. N. Trukhin, A. D. Bouravleuv, I. A. Mustafin, J. P. Kakko, T. Huhtio, G. E. Cirlin, and H. Lipsanen, “Generation of terahertz radiation in ordered arrays of GaAs nanowires,” Appl. Phys. Lett. 106, 252104 (2015).
[Crossref]

Kang, C.

W.-J. Lee, J. W. Ma, J. M. Bae, K.-S. Jeong, M.-H. Cho, C. Kang, and J.-S. Wi, “Strongly enhanced THz emission caused by localized surface charges in semiconducting germanium nanowires,” Sci. Rep. 3, 1984 (2013).
[Crossref] [PubMed]

G. B. Jung, Y. J. Cho, Y. Myung, H. S. Kim, Y. S. Seo, J. Park, and C. Kang, “Geometry-dependent terahertz emission of silicon nanowires,” Opt. Express 18(16), 16353–16359 (2010).
[Crossref] [PubMed]

Käsebier, T.

M. Steglich, M. Oehme, T. Käsebier, M. Zilk, K. Kostecki, E.-B. Kley, J. Schulze, and A. Tünnermann, “Ge-on-Si photodiode with black silicon boosted responsivity,” Appl. Phys. Lett. 107, 051103 (2015).
[Crossref]

M. Steglich, T. Käsebier, M. Zilk, T. Pertsch, E.-B. Kley, and A. Tünnermann, “The structural and optical properties of black silicon by inductively coupled plasma reactive ion etching,” J. Appl. Phys. 116, 173503 (2014).
[Crossref]

J. Ziegler, J. Haschke, T. Käsebier, L. Korte, A. N. Sprafke, and R. B. Wehrspohn, “Influence of black silicon surfaces on the performance of back-contacted back silicon heterojunction solar cells,” Opt. Express 22(S6), A1469–A1476 (2014).
[Crossref]

M. Steglich, T. Käsebier, I. Höger, K. Füchsel, A. Tünnermann, and E.-B. Kley, “Black silicon nanostructures on silicon thin films prepared by reactive ion etching,” Chin. Opt. Lett 11, S10502 (2013).

M. Otto, M. Kroll, T. Käsebier, R. Salzer, A. Tünnermann, and R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100, 191603 (2012).
[Crossref]

K. Füchsel, U. Schulz, N. Kaiser, T. Käsebier, E.-B. Kley, and A. Tünnermann, “Nanostructured SIS solar cells,” Proc. SPIE 7725, 772502 (2010).
[Crossref]

M. Otto, M. Kroll, T. Käsebier, S.-M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal transparent conducting oxides on black silicon,” Adv. Mater. 22(44), 5035–5038 (2010).
[Crossref] [PubMed]

M. Kroll, T. Käsebier, M. Otto, R. Salzer, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Optical modeling of needle like silicon surfaces produced by an ICP-RIE process,” Proc. SPIE 7725, 772505 (2010).
[Crossref]

Katzenmeyer, A.

D. V. Seletskiy, M. P. Hasselbeck, J. G. Cederberg, A. Katzenmeyer, M. E. Toimil-Molares, F. Léonard, A. A. Talin, and M. Sheik-Bahae, “Efficient terahertz emission from InAs nanowires,” Phys. Rev. B 84, 115421 (2011).
[Crossref]

Kaufmann, C.

C. Strothkämper, A. Bartelt, R. Eichberger, C. Kaufmann, and T. Unold, “Microscopic mobilities and cooling dynamics of photoexcited carriers in polycrystalline CuInSe2,” Phys. Rev. B 89, 115204 (2014).
[Crossref]

Kersting, R.

E. Gornik and R. Kersting, “Coherent THz emission in semiconductors,” Ultrafast Physical Processes in Semiconductors 67, 389–440 (2001).
[Crossref]

Kim, H. S.

Kim, K.

J. Yoo, I. Parm, U. Gangopadhyay, K. Kim, S. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energ. Mat. Sol. Cells 90(18), 3085–3093 (2006).
[Crossref]

Kley, E.-B.

M. Steglich, M. Oehme, T. Käsebier, M. Zilk, K. Kostecki, E.-B. Kley, J. Schulze, and A. Tünnermann, “Ge-on-Si photodiode with black silicon boosted responsivity,” Appl. Phys. Lett. 107, 051103 (2015).
[Crossref]

M. Steglich, T. Käsebier, M. Zilk, T. Pertsch, E.-B. Kley, and A. Tünnermann, “The structural and optical properties of black silicon by inductively coupled plasma reactive ion etching,” J. Appl. Phys. 116, 173503 (2014).
[Crossref]

M. Steglich, T. Käsebier, I. Höger, K. Füchsel, A. Tünnermann, and E.-B. Kley, “Black silicon nanostructures on silicon thin films prepared by reactive ion etching,” Chin. Opt. Lett 11, S10502 (2013).

K. Füchsel, U. Schulz, N. Kaiser, T. Käsebier, E.-B. Kley, and A. Tünnermann, “Nanostructured SIS solar cells,” Proc. SPIE 7725, 772502 (2010).
[Crossref]

M. Kroll, T. Käsebier, M. Otto, R. Salzer, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Optical modeling of needle like silicon surfaces produced by an ICP-RIE process,” Proc. SPIE 7725, 772505 (2010).
[Crossref]

P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett. 93, 091106 (2008).
[Crossref]

Knab, J.

Kono, S.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91(9), 5533–5537 (2002).
[Crossref]

Korte, L.

Kostecki, K.

M. Steglich, M. Oehme, T. Käsebier, M. Zilk, K. Kostecki, E.-B. Kley, J. Schulze, and A. Tünnermann, “Ge-on-Si photodiode with black silicon boosted responsivity,” Appl. Phys. Lett. 107, 051103 (2015).
[Crossref]

Kroll, M.

M. Otto, M. Kroll, T. Käsebier, R. Salzer, A. Tünnermann, and R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100, 191603 (2012).
[Crossref]

M. Otto, M. Kroll, T. Käsebier, S.-M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal transparent conducting oxides on black silicon,” Adv. Mater. 22(44), 5035–5038 (2010).
[Crossref] [PubMed]

M. Kroll, T. Käsebier, M. Otto, R. Salzer, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Optical modeling of needle like silicon surfaces produced by an ICP-RIE process,” Proc. SPIE 7725, 772505 (2010).
[Crossref]

Krötz, G.

P. Stolk, F. Saris, A. Berntsen, W. Van der Weg, L. Sealy, R. Barklie, G. Krötz, and G. Müller, “Contribution of defects to electronic, structural, and thermodynamic properties of amorphous silicon,” J. Appl. Phys. 75(11), 7266–7286 (1994).
[Crossref]

Kumar, G.

Kups, T.

J. Pezoldt, T. Kups, M. Stubenrauch, and M. Fischer, “Black luminescent silicon,” Phys. Status Solidi C 8(3), 1021–1026 (2011).
[Crossref]

Kurstjens, R.

R. Ulbricht, R. Kurstjens, and M. Bonn, “Assessing charge carrier trapping in silicon nanowires using picosecond conductivity measurements,” Nano Lett. 12(7), 3821–3827 (2012).
[Crossref] [PubMed]

Kurz, H.

A. Esser, W. Kütt, M. Strahnen, G. Maidorn, and H. Kurz, “Femtosecond transient reflectivity measurements as a probe for process-induced defects in silicon,” Appl. Surf. Sci. 46(1), 446–450 (1990).
[Crossref]

Kütt, W.

A. Esser, W. Kütt, M. Strahnen, G. Maidorn, and H. Kurz, “Femtosecond transient reflectivity measurements as a probe for process-induced defects in silicon,” Appl. Surf. Sci. 46(1), 446–450 (1990).
[Crossref]

Kužel, P.

P. Pikna, V. Skoromets, C. Becker, A. Fejfar, and P. Kužel, “Thin film polycrystalline Si solar cells studied in transient regime by optical pump-terahertz probe spectroscopy,” Appl. Phys. Lett. 107, 233901 (2015).
[Crossref]

H. Němec, P. Kužel, and V. Sundström, “Charge transport in nanostructured materials for solar energy conversion studied by time-resolved terahertz spectroscopy,” J. Photochem. Photobiol. A 215, (2), 123–139 (2010).
[Crossref]

Larsson, C.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19, 305201 (2008).
[Crossref] [PubMed]

Lee, S.-M.

M. Otto, M. Kroll, T. Käsebier, S.-M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal transparent conducting oxides on black silicon,” Adv. Mater. 22(44), 5035–5038 (2010).
[Crossref] [PubMed]

Lee, S.-T.

H. Tang, L.-G. Zhu, L. Zhao, X. Zhang, J. Shan, and S.-T. Lee, “Carrier dynamics in Si nanowires fabricated by metal-assisted chemical etching,” ACS Nano 6(9), 7814–7819 (2012).
[Crossref] [PubMed]

Lee, W.-J.

W.-J. Lee, J. W. Ma, J. M. Bae, K.-S. Jeong, M.-H. Cho, C. Kang, and J.-S. Wi, “Strongly enhanced THz emission caused by localized surface charges in semiconducting germanium nanowires,” Sci. Rep. 3, 1984 (2013).
[Crossref] [PubMed]

Lefaucheux, P.

R. Dussart, T. Tillocher, P. Lefaucheux, and M. Boufnichel, “Plasma cryogenic etching of silicon: from the early days to today’s advanced technologies,” J. Phys. D: Appl. Phys. 47, 123001 (2014).
[Crossref]

R. Dussart, X. Mellhaoui, T. Tillocher, P. Lefaucheux, M. Volatier, C. Socquet-Clerc, P. Brault, and P. Ranson, “Silicon columnar microstructures induced by an SF6/O2 plasma,” J. Phys. D: Appl. Phys. 38, 3395 (2005).
[Crossref]

Legtenberg, R.

H. Jansen, M. de Boer, R. Legtenberg, and M. Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” J. Micromech. Microeng. 5, 115 (1995).
[Crossref]

Lehmann, V.

V. Lehmann and S. Ronnebeck, “The physics of macropore formation in low-doped p-type silicon,” J. Electrochem. Soc. 146(8), 2968–2975 (1999).
[Crossref]

Léonard, F.

D. V. Seletskiy, M. P. Hasselbeck, J. G. Cederberg, A. Katzenmeyer, M. E. Toimil-Molares, F. Léonard, A. A. Talin, and M. Sheik-Bahae, “Efficient terahertz emission from InAs nanowires,” Phys. Rev. B 84, 115421 (2011).
[Crossref]

Lewis, R. A.

R. A. Lewis, M. L. Smith, R. Mendis, and R. E. M. Vickers, “THz generation in InAs,” Physica B 376, 618 (2006).
[Crossref]

Linfield, E.

M. Johnston, D. Whittaker, A. Corchia, A. Davies, and E. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[Crossref]

Lipsanen, H.

V. N. Trukhin, A. D. Bouravleuv, I. A. Mustafin, J. P. Kakko, T. Huhtio, G. E. Cirlin, and H. Lipsanen, “Generation of terahertz radiation in ordered arrays of GaAs nanowires,” Appl. Phys. Lett. 106, 252104 (2015).
[Crossref]

Liu, K.

K. Liu, J. Xu, T. Yuan, and X.-C. Zhang, “Terahertz radiation from InAs induced by carrier diffusion and drift,” Phys. Rev. B 73, 155330 (2006).
[Crossref]

Lloyd-Hughes, J.

P. Parkinson, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Transient terahertz conductivity of GaAs nanowires,” Nano Lett. 7(7), 2162–2165 (2007).
[Crossref]

J. Lloyd-Hughes, E. Castro-Camus, M. Fraser, C. Jagadish, and M. Johnston, “Carrier dynamics in ion-implanted GaAs studied by simulation and observation of terahertz emission,” Phys. Rev. B 70, 235330 (2004).
[Crossref]

Lòpez, E.

M. Heintze, A. Hauser, R. Moller, H. Wanka, E. Lòpez, I. Dani, V. Hopfe, J. Muller, and A. Huwe, “In-line plasma etching at atmospheric pressue for edge isolation in crystalline Si solar cells,” in Proceedings of IEEE Conference on Photovoltaic energy conversion (IEEE, 2006), pp. 1119–1121.

Lu, X.

Lüdemann, R.

S. Schaefer and R. Lüdemann, “Low damage reactive ion etching for photovoltaic applications,” J. Vac. Sci. Technol. A 17(3), 749–754 (1999).
[Crossref]

Ma, J. W.

W.-J. Lee, J. W. Ma, J. M. Bae, K.-S. Jeong, M.-H. Cho, C. Kang, and J.-S. Wi, “Strongly enhanced THz emission caused by localized surface charges in semiconducting germanium nanowires,” Sci. Rep. 3, 1984 (2013).
[Crossref] [PubMed]

Maidorn, G.

A. Esser, W. Kütt, M. Strahnen, G. Maidorn, and H. Kurz, “Femtosecond transient reflectivity measurements as a probe for process-induced defects in silicon,” Appl. Surf. Sci. 46(1), 446–450 (1990).
[Crossref]

Mangalaraj, D.

J. Yoo, I. Parm, U. Gangopadhyay, K. Kim, S. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energ. Mat. Sol. Cells 90(18), 3085–3093 (2006).
[Crossref]

Mårtensson, T.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19, 305201 (2008).
[Crossref] [PubMed]

Matthäus, G.

P. Hoyer, G. Matthäus, U. Blumröder, K. Füchsel, and S. Nolte, “Induced terahertz emission as a probe for semiconductor devices,” Appl. Phys. Lett. 99, 221112 (2011).
[Crossref]

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Microlens coupled interdigital photoconductive switch,” Appl. Phys. Lett. 93, 091110 (2008).
[Crossref]

Mazur, E.

T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. A 70(4), 383–385 (2000).
[Crossref]

Megens, M. M.

J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
[Crossref]

Mellhaoui, X.

R. Dussart, X. Mellhaoui, T. Tillocher, P. Lefaucheux, M. Volatier, C. Socquet-Clerc, P. Brault, and P. Ranson, “Silicon columnar microstructures induced by an SF6/O2 plasma,” J. Phys. D: Appl. Phys. 38, 3395 (2005).
[Crossref]

Mende, G.

W. Füssel, M. Schmidt, H. Angermann, G. Mende, and H. Flietner, “Defects at the Si/SiO2 interface: their nature and behaviour in technological processes and stress,” Nucl. Instr. Meth. Phys. Res. A 377(2), 177–183 (1996).
[Crossref]

Mendis, R.

R. A. Lewis, M. L. Smith, R. Mendis, and R. E. M. Vickers, “THz generation in InAs,” Physica B 376, 618 (2006).
[Crossref]

Miclea, P. T.

M. Otto, M. Kroll, T. Käsebier, S.-M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal transparent conducting oxides on black silicon,” Adv. Mater. 22(44), 5035–5038 (2010).
[Crossref] [PubMed]

Moller, R.

M. Heintze, A. Hauser, R. Moller, H. Wanka, E. Lòpez, I. Dani, V. Hopfe, J. Muller, and A. Huwe, “In-line plasma etching at atmospheric pressue for edge isolation in crystalline Si solar cells,” in Proceedings of IEEE Conference on Photovoltaic energy conversion (IEEE, 2006), pp. 1119–1121.

Muller, J.

M. Heintze, A. Hauser, R. Moller, H. Wanka, E. Lòpez, I. Dani, V. Hopfe, J. Muller, and A. Huwe, “In-line plasma etching at atmospheric pressue for edge isolation in crystalline Si solar cells,” in Proceedings of IEEE Conference on Photovoltaic energy conversion (IEEE, 2006), pp. 1119–1121.

Müller, G.

P. Stolk, F. Saris, A. Berntsen, W. Van der Weg, L. Sealy, R. Barklie, G. Krötz, and G. Müller, “Contribution of defects to electronic, structural, and thermodynamic properties of amorphous silicon,” J. Appl. Phys. 75(11), 7266–7286 (1994).
[Crossref]

Murphy, T. E.

Mustafin, I. A.

V. N. Trukhin, A. D. Bouravleuv, I. A. Mustafin, J. P. Kakko, T. Huhtio, G. E. Cirlin, and H. Lipsanen, “Generation of terahertz radiation in ordered arrays of GaAs nanowires,” Appl. Phys. Lett. 106, 252104 (2015).
[Crossref]

Myung, Y.

Nahata, A.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[Crossref]

Nemec, H.

H. Němec, P. Kužel, and V. Sundström, “Charge transport in nanostructured materials for solar energy conversion studied by time-resolved terahertz spectroscopy,” J. Photochem. Photobiol. A 215, (2), 123–139 (2010).
[Crossref]

Nolte, S.

U. Blumröder, M. Steglich, F. Schrempel, P. Hoyer, and S. Nolte, “THz emission from argon implanted silicon surfaces,” Phys. Status Solidi B 252(1), 105–111 (2015).
[Crossref]

P. Hoyer, G. Matthäus, U. Blumröder, K. Füchsel, and S. Nolte, “Induced terahertz emission as a probe for semiconductor devices,” Appl. Phys. Lett. 99, 221112 (2011).
[Crossref]

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Microlens coupled interdigital photoconductive switch,” Appl. Phys. Lett. 93, 091110 (2008).
[Crossref]

Notni, G.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Microlens coupled interdigital photoconductive switch,” Appl. Phys. Lett. 93, 091110 (2008).
[Crossref]

Oehme, M.

M. Steglich, M. Oehme, T. Käsebier, M. Zilk, K. Kostecki, E.-B. Kley, J. Schulze, and A. Tünnermann, “Ge-on-Si photodiode with black silicon boosted responsivity,” Appl. Phys. Lett. 107, 051103 (2015).
[Crossref]

Ohlsson, J.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19, 305201 (2008).
[Crossref] [PubMed]

Ono, S.

H. Takahashi, A. Quema, M. Goto, S. Ono, and N. Sarukura, “Terahertz radiation mechanism from Femtosecond-Laser-Irradiated InAs (100)-Surface,” Jpn. J. Appl. Phys. 42, 1259 (2003).
[Crossref]

Ortega, P.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Otto, M.

M. Otto, M. Kroll, T. Käsebier, R. Salzer, A. Tünnermann, and R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100, 191603 (2012).
[Crossref]

M. Otto, M. Kroll, T. Käsebier, S.-M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal transparent conducting oxides on black silicon,” Adv. Mater. 22(44), 5035–5038 (2010).
[Crossref] [PubMed]

M. Kroll, T. Käsebier, M. Otto, R. Salzer, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Optical modeling of needle like silicon surfaces produced by an ICP-RIE process,” Proc. SPIE 7725, 772505 (2010).
[Crossref]

Park, J.

Parkinson, P.

P. Parkinson, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Transient terahertz conductivity of GaAs nanowires,” Nano Lett. 7(7), 2162–2165 (2007).
[Crossref]

Parm, I.

J. Yoo, I. Parm, U. Gangopadhyay, K. Kim, S. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energ. Mat. Sol. Cells 90(18), 3085–3093 (2006).
[Crossref]

Persheyev, S.

H. P. Porte, D. Turchinovich, S. Persheyev, Y. Fan, M. J. Rose, and P. U. Jepsen, “On ultrafast photoconductivity dynamics and crystallinity of black silicon,” IEEE Trans. Terahertz Sci. Technol. 3(3), 331–341 (2013).
[Crossref]

Pertsch, T.

M. Steglich, T. Käsebier, M. Zilk, T. Pertsch, E.-B. Kley, and A. Tünnermann, “The structural and optical properties of black silicon by inductively coupled plasma reactive ion etching,” J. Appl. Phys. 116, 173503 (2014).
[Crossref]

M. Kroll, T. Käsebier, M. Otto, R. Salzer, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Optical modeling of needle like silicon surfaces produced by an ICP-RIE process,” Proc. SPIE 7725, 772505 (2010).
[Crossref]

Pezoldt, J.

J. Pezoldt, T. Kups, M. Stubenrauch, and M. Fischer, “Black luminescent silicon,” Phys. Status Solidi C 8(3), 1021–1026 (2011).
[Crossref]

Piao, Z.

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39, 96 (2000).
[Crossref]

Picraux, S.

R. Prasankumar, S. Choi, S. Trugman, S. Picraux, and A. Taylor, “Ultrafast electron and hole dynamics in germanium nanowires,” Nano Lett. 8(6), 1619–1624 (2008).
[Crossref] [PubMed]

Pikna, P.

P. Pikna, V. Skoromets, C. Becker, A. Fejfar, and P. Kužel, “Thin film polycrystalline Si solar cells studied in transient regime by optical pump-terahertz probe spectroscopy,” Appl. Phys. Lett. 107, 233901 (2015).
[Crossref]

Porte, H. P.

H. P. Porte, D. Turchinovich, S. Persheyev, Y. Fan, M. J. Rose, and P. U. Jepsen, “On ultrafast photoconductivity dynamics and crystallinity of black silicon,” IEEE Trans. Terahertz Sci. Technol. 3(3), 331–341 (2013).
[Crossref]

Pradarutti, B.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Microlens coupled interdigital photoconductive switch,” Appl. Phys. Lett. 93, 091110 (2008).
[Crossref]

Prasankumar, R.

R. Prasankumar, S. Choi, S. Trugman, S. Picraux, and A. Taylor, “Ultrafast electron and hole dynamics in germanium nanowires,” Nano Lett. 8(6), 1619–1624 (2008).
[Crossref] [PubMed]

Putkonen, M.

M. Otto, M. Kroll, T. Käsebier, S.-M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal transparent conducting oxides on black silicon,” Adv. Mater. 22(44), 5035–5038 (2010).
[Crossref] [PubMed]

Quema, A.

H. Takahashi, A. Quema, M. Goto, S. Ono, and N. Sarukura, “Terahertz radiation mechanism from Femtosecond-Laser-Irradiated InAs (100)-Surface,” Jpn. J. Appl. Phys. 42, 1259 (2003).
[Crossref]

Ranson, P.

R. Dussart, X. Mellhaoui, T. Tillocher, P. Lefaucheux, M. Volatier, C. Socquet-Clerc, P. Brault, and P. Ranson, “Silicon columnar microstructures induced by an SF6/O2 plasma,” J. Phys. D: Appl. Phys. 38, 3395 (2005).
[Crossref]

Rask, M.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19, 305201 (2008).
[Crossref] [PubMed]

Reid, M.

M. Reid, I. Cravetchi, R. Fedosejevs, I. Tiginyanu, and L. Sirbu, “Enhanced terahertz emission from porous InP (111) membranes,” Appl. Phys. Lett. 86, 021904 (2005).
[Crossref]

M. Reid and R. Fedosejevs, “Terahertz emission from (100) InAs surfaces at high excitation fluences,” Appl. Phys. Lett. 86, 011906 (2005).
[Crossref]

Reinhardt, A.

J. Heyman, N. Coates, A. Reinhardt, and G. Strasser, “Diffusion and drift in terahertz emission at GaAs surfaces,” Appl. Phys. Lett. 83(26), 5476–5478 (2003).
[Crossref]

Repo, P.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Richter, W.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Microlens coupled interdigital photoconductive switch,” Appl. Phys. Lett. 93, 091110 (2008).
[Crossref]

Riehemann, S.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Microlens coupled interdigital photoconductive switch,” Appl. Phys. Lett. 93, 091110 (2008).
[Crossref]

Ronnebeck, S.

V. Lehmann and S. Ronnebeck, “The physics of macropore formation in low-doped p-type silicon,” J. Electrochem. Soc. 146(8), 2968–2975 (1999).
[Crossref]

Rose, M. J.

H. P. Porte, D. Turchinovich, S. Persheyev, Y. Fan, M. J. Rose, and P. U. Jepsen, “On ultrafast photoconductivity dynamics and crystallinity of black silicon,” IEEE Trans. Terahertz Sci. Technol. 3(3), 331–341 (2013).
[Crossref]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Ruda, H.

J. Westwater, D. Gosain, S. Tomiya, S. Usui, and H. Ruda, “Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction,” J. Vac. Sci. Technol. B 15(3), 554–557 (1997).
[Crossref]

Sakai, K.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91(9), 5533–5537 (2002).
[Crossref]

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39, 96 (2000).
[Crossref]

K. Sakai, M. Tani, and K. Sakai, Terahertz Optoelectronics (Springer-VerlagBerlin Heidelberg, 2005).
[Crossref]

K. Sakai, M. Tani, and K. Sakai, Terahertz Optoelectronics (Springer-VerlagBerlin Heidelberg, 2005).
[Crossref]

Salzer, R.

M. Otto, M. Kroll, T. Käsebier, R. Salzer, A. Tünnermann, and R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100, 191603 (2012).
[Crossref]

M. Otto, M. Kroll, T. Käsebier, S.-M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal transparent conducting oxides on black silicon,” Adv. Mater. 22(44), 5035–5038 (2010).
[Crossref] [PubMed]

M. Kroll, T. Käsebier, M. Otto, R. Salzer, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Optical modeling of needle like silicon surfaces produced by an ICP-RIE process,” Proc. SPIE 7725, 772505 (2010).
[Crossref]

Samuelson, L.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19, 305201 (2008).
[Crossref] [PubMed]

Saris, F.

P. Stolk, F. Saris, A. Berntsen, W. Van der Weg, L. Sealy, R. Barklie, G. Krötz, and G. Müller, “Contribution of defects to electronic, structural, and thermodynamic properties of amorphous silicon,” J. Appl. Phys. 75(11), 7266–7286 (1994).
[Crossref]

Sarukura, N.

H. Takahashi, A. Quema, M. Goto, S. Ono, and N. Sarukura, “Terahertz radiation mechanism from Femtosecond-Laser-Irradiated InAs (100)-Surface,” Jpn. J. Appl. Phys. 42, 1259 (2003).
[Crossref]

Savin, H.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Schaefer, S.

S. Schaefer and R. Lüdemann, “Low damage reactive ion etching for photovoltaic applications,” J. Vac. Sci. Technol. A 17(3), 749–754 (1999).
[Crossref]

Schmidt, J.

J. Schmidt and A. G. Aberle, “Accurate method for the determination of bulk minority-carrier lifetimes of mono-and multicrystalline silicon wafers,” J. Appl. Phys. 81(9), 6186–6199 (1997).
[Crossref]

Schmidt, M.

W. Füssel, M. Schmidt, H. Angermann, G. Mende, and H. Flietner, “Defects at the Si/SiO2 interface: their nature and behaviour in technological processes and stress,” Nucl. Instr. Meth. Phys. Res. A 377(2), 177–183 (1996).
[Crossref]

X.-C. Zhang, J. Darrow, B. Hu, D. Auston, M. Schmidt, P. Tham, and E. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 56(22), 2228–2230 (1990).
[Crossref]

Schrempel, F.

U. Blumröder, M. Steglich, F. Schrempel, P. Hoyer, and S. Nolte, “THz emission from argon implanted silicon surfaces,” Phys. Status Solidi B 252(1), 105–111 (2015).
[Crossref]

Schulz, U.

K. Füchsel, U. Schulz, N. Kaiser, T. Käsebier, E.-B. Kley, and A. Tünnermann, “Nanostructured SIS solar cells,” Proc. SPIE 7725, 772502 (2010).
[Crossref]

Schulze, J.

M. Steglich, M. Oehme, T. Käsebier, M. Zilk, K. Kostecki, E.-B. Kley, J. Schulze, and A. Tünnermann, “Ge-on-Si photodiode with black silicon boosted responsivity,” Appl. Phys. Lett. 107, 051103 (2015).
[Crossref]

Sealy, L.

P. Stolk, F. Saris, A. Berntsen, W. Van der Weg, L. Sealy, R. Barklie, G. Krötz, and G. Müller, “Contribution of defects to electronic, structural, and thermodynamic properties of amorphous silicon,” J. Appl. Phys. 75(11), 7266–7286 (1994).
[Crossref]

Seletskiy, D.

D. Seletskiy, M. Hasselbeck, M. Sheik-Bahae, J. Cederberg, and A. Talin, “THz emission from coherent plasmons in InAs nanowires,” Proc. SPIE 7214, 72140Y (2009).
[Crossref]

Seletskiy, D. V.

D. V. Seletskiy, M. P. Hasselbeck, J. G. Cederberg, A. Katzenmeyer, M. E. Toimil-Molares, F. Léonard, A. A. Talin, and M. Sheik-Bahae, “Efficient terahertz emission from InAs nanowires,” Phys. Rev. B 84, 115421 (2011).
[Crossref]

Seo, Y. S.

Shan, J.

H. Tang, L.-G. Zhu, L. Zhao, X. Zhang, J. Shan, and S.-T. Lee, “Carrier dynamics in Si nanowires fabricated by metal-assisted chemical etching,” ACS Nano 6(9), 7814–7819 (2012).
[Crossref] [PubMed]

Sheik-Bahae, M.

D. V. Seletskiy, M. P. Hasselbeck, J. G. Cederberg, A. Katzenmeyer, M. E. Toimil-Molares, F. Léonard, A. A. Talin, and M. Sheik-Bahae, “Efficient terahertz emission from InAs nanowires,” Phys. Rev. B 84, 115421 (2011).
[Crossref]

D. Seletskiy, M. Hasselbeck, M. Sheik-Bahae, J. Cederberg, and A. Talin, “THz emission from coherent plasmons in InAs nanowires,” Proc. SPIE 7214, 72140Y (2009).
[Crossref]

Sirbu, L.

M. Reid, I. Cravetchi, R. Fedosejevs, I. Tiginyanu, and L. Sirbu, “Enhanced terahertz emission from porous InP (111) membranes,” Appl. Phys. Lett. 86, 021904 (2005).
[Crossref]

Skoromets, V.

P. Pikna, V. Skoromets, C. Becker, A. Fejfar, and P. Kužel, “Thin film polycrystalline Si solar cells studied in transient regime by optical pump-terahertz probe spectroscopy,” Appl. Phys. Lett. 107, 233901 (2015).
[Crossref]

Smith, M. L.

R. A. Lewis, M. L. Smith, R. Mendis, and R. E. M. Vickers, “THz generation in InAs,” Physica B 376, 618 (2006).
[Crossref]

Smith, P.

D. Auston, K. Cheung, and P. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45(3), 284–286 (1984).
[Crossref]

Smith, R.

R. Smith and S. Collins, “Porous silicon formation mechanisms,” J. Appl. Phys. 71, R1 (1992).
[Crossref]

Socquet-Clerc, C.

R. Dussart, X. Mellhaoui, T. Tillocher, P. Lefaucheux, M. Volatier, C. Socquet-Clerc, P. Brault, and P. Ranson, “Silicon columnar microstructures induced by an SF6/O2 plasma,” J. Phys. D: Appl. Phys. 38, 3395 (2005).
[Crossref]

Sprafke, A. N.

Steglich, M.

M. Steglich, M. Oehme, T. Käsebier, M. Zilk, K. Kostecki, E.-B. Kley, J. Schulze, and A. Tünnermann, “Ge-on-Si photodiode with black silicon boosted responsivity,” Appl. Phys. Lett. 107, 051103 (2015).
[Crossref]

U. Blumröder, M. Steglich, F. Schrempel, P. Hoyer, and S. Nolte, “THz emission from argon implanted silicon surfaces,” Phys. Status Solidi B 252(1), 105–111 (2015).
[Crossref]

M. Steglich, T. Käsebier, M. Zilk, T. Pertsch, E.-B. Kley, and A. Tünnermann, “The structural and optical properties of black silicon by inductively coupled plasma reactive ion etching,” J. Appl. Phys. 116, 173503 (2014).
[Crossref]

M. Steglich, T. Käsebier, I. Höger, K. Füchsel, A. Tünnermann, and E.-B. Kley, “Black silicon nanostructures on silicon thin films prepared by reactive ion etching,” Chin. Opt. Lett 11, S10502 (2013).

Stolk, P.

P. Stolk, F. Saris, A. Berntsen, W. Van der Weg, L. Sealy, R. Barklie, G. Krötz, and G. Müller, “Contribution of defects to electronic, structural, and thermodynamic properties of amorphous silicon,” J. Appl. Phys. 75(11), 7266–7286 (1994).
[Crossref]

Strahnen, M.

A. Esser, W. Kütt, M. Strahnen, G. Maidorn, and H. Kurz, “Femtosecond transient reflectivity measurements as a probe for process-induced defects in silicon,” Appl. Surf. Sci. 46(1), 446–450 (1990).
[Crossref]

Strasser, G.

J. Heyman, N. Coates, A. Reinhardt, and G. Strasser, “Diffusion and drift in terahertz emission at GaAs surfaces,” Appl. Phys. Lett. 83(26), 5476–5478 (2003).
[Crossref]

Strothkämper, C.

C. Strothkämper, A. Bartelt, R. Eichberger, C. Kaufmann, and T. Unold, “Microscopic mobilities and cooling dynamics of photoexcited carriers in polycrystalline CuInSe2,” Phys. Rev. B 89, 115204 (2014).
[Crossref]

Stubenrauch, M.

J. Pezoldt, T. Kups, M. Stubenrauch, and M. Fischer, “Black luminescent silicon,” Phys. Status Solidi C 8(3), 1021–1026 (2011).
[Crossref]

Sundström, V.

H. Němec, P. Kužel, and V. Sundström, “Charge transport in nanostructured materials for solar energy conversion studied by time-resolved terahertz spectroscopy,” J. Photochem. Photobiol. A 215, (2), 123–139 (2010).
[Crossref]

Svensson, C. P. T.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19, 305201 (2008).
[Crossref] [PubMed]

Takahashi, H.

H. Takahashi, A. Quema, M. Goto, S. Ono, and N. Sarukura, “Terahertz radiation mechanism from Femtosecond-Laser-Irradiated InAs (100)-Surface,” Jpn. J. Appl. Phys. 42, 1259 (2003).
[Crossref]

Takayama, K.

Talin, A.

D. Seletskiy, M. Hasselbeck, M. Sheik-Bahae, J. Cederberg, and A. Talin, “THz emission from coherent plasmons in InAs nanowires,” Proc. SPIE 7214, 72140Y (2009).
[Crossref]

Talin, A. A.

D. V. Seletskiy, M. P. Hasselbeck, J. G. Cederberg, A. Katzenmeyer, M. E. Toimil-Molares, F. Léonard, A. A. Talin, and M. Sheik-Bahae, “Efficient terahertz emission from InAs nanowires,” Phys. Rev. B 84, 115421 (2011).
[Crossref]

Tan, H. H.

P. Parkinson, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Transient terahertz conductivity of GaAs nanowires,” Nano Lett. 7(7), 2162–2165 (2007).
[Crossref]

Tang, H.

H. Tang, L.-G. Zhu, L. Zhao, X. Zhang, J. Shan, and S.-T. Lee, “Carrier dynamics in Si nanowires fabricated by metal-assisted chemical etching,” ACS Nano 6(9), 7814–7819 (2012).
[Crossref] [PubMed]

Tani, M.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91(9), 5533–5537 (2002).
[Crossref]

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39, 96 (2000).
[Crossref]

K. Sakai, M. Tani, and K. Sakai, Terahertz Optoelectronics (Springer-VerlagBerlin Heidelberg, 2005).
[Crossref]

Taylor, A.

R. Prasankumar, S. Choi, S. Trugman, S. Picraux, and A. Taylor, “Ultrafast electron and hole dynamics in germanium nanowires,” Nano Lett. 8(6), 1619–1624 (2008).
[Crossref] [PubMed]

Tham, P.

X.-C. Zhang, J. Darrow, B. Hu, D. Auston, M. Schmidt, P. Tham, and E. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 56(22), 2228–2230 (1990).
[Crossref]

Theuer, M.

P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett. 93, 091106 (2008).
[Crossref]

Tiginyanu, I.

M. Reid, I. Cravetchi, R. Fedosejevs, I. Tiginyanu, and L. Sirbu, “Enhanced terahertz emission from porous InP (111) membranes,” Appl. Phys. Lett. 86, 021904 (2005).
[Crossref]

Tillocher, T.

R. Dussart, T. Tillocher, P. Lefaucheux, and M. Boufnichel, “Plasma cryogenic etching of silicon: from the early days to today’s advanced technologies,” J. Phys. D: Appl. Phys. 47, 123001 (2014).
[Crossref]

R. Dussart, X. Mellhaoui, T. Tillocher, P. Lefaucheux, M. Volatier, C. Socquet-Clerc, P. Brault, and P. Ranson, “Silicon columnar microstructures induced by an SF6/O2 plasma,” J. Phys. D: Appl. Phys. 38, 3395 (2005).
[Crossref]

Toimil-Molares, M. E.

D. V. Seletskiy, M. P. Hasselbeck, J. G. Cederberg, A. Katzenmeyer, M. E. Toimil-Molares, F. Léonard, A. A. Talin, and M. Sheik-Bahae, “Efficient terahertz emission from InAs nanowires,” Phys. Rev. B 84, 115421 (2011).
[Crossref]

Tomiya, S.

J. Westwater, D. Gosain, S. Tomiya, S. Usui, and H. Ruda, “Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction,” J. Vac. Sci. Technol. B 15(3), 554–557 (1997).
[Crossref]

Tonouchi, M.

Trägårdh, J.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19, 305201 (2008).
[Crossref] [PubMed]

Trugman, S.

R. Prasankumar, S. Choi, S. Trugman, S. Picraux, and A. Taylor, “Ultrafast electron and hole dynamics in germanium nanowires,” Nano Lett. 8(6), 1619–1624 (2008).
[Crossref] [PubMed]

Trukhin, V. N.

V. N. Trukhin, A. D. Bouravleuv, I. A. Mustafin, J. P. Kakko, T. Huhtio, G. E. Cirlin, and H. Lipsanen, “Generation of terahertz radiation in ordered arrays of GaAs nanowires,” Appl. Phys. Lett. 106, 252104 (2015).
[Crossref]

Tünnermann, A.

M. Steglich, M. Oehme, T. Käsebier, M. Zilk, K. Kostecki, E.-B. Kley, J. Schulze, and A. Tünnermann, “Ge-on-Si photodiode with black silicon boosted responsivity,” Appl. Phys. Lett. 107, 051103 (2015).
[Crossref]

M. Steglich, T. Käsebier, M. Zilk, T. Pertsch, E.-B. Kley, and A. Tünnermann, “The structural and optical properties of black silicon by inductively coupled plasma reactive ion etching,” J. Appl. Phys. 116, 173503 (2014).
[Crossref]

M. Steglich, T. Käsebier, I. Höger, K. Füchsel, A. Tünnermann, and E.-B. Kley, “Black silicon nanostructures on silicon thin films prepared by reactive ion etching,” Chin. Opt. Lett 11, S10502 (2013).

M. Otto, M. Kroll, T. Käsebier, R. Salzer, A. Tünnermann, and R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100, 191603 (2012).
[Crossref]

K. Füchsel, U. Schulz, N. Kaiser, T. Käsebier, E.-B. Kley, and A. Tünnermann, “Nanostructured SIS solar cells,” Proc. SPIE 7725, 772502 (2010).
[Crossref]

M. Kroll, T. Käsebier, M. Otto, R. Salzer, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Optical modeling of needle like silicon surfaces produced by an ICP-RIE process,” Proc. SPIE 7725, 772505 (2010).
[Crossref]

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Microlens coupled interdigital photoconductive switch,” Appl. Phys. Lett. 93, 091110 (2008).
[Crossref]

Turchinovich, D.

H. P. Porte, D. Turchinovich, S. Persheyev, Y. Fan, M. J. Rose, and P. U. Jepsen, “On ultrafast photoconductivity dynamics and crystallinity of black silicon,” IEEE Trans. Terahertz Sci. Technol. 3(3), 331–341 (2013).
[Crossref]

Ulbricht, R.

R. Ulbricht, R. Kurstjens, and M. Bonn, “Assessing charge carrier trapping in silicon nanowires using picosecond conductivity measurements,” Nano Lett. 12(7), 3821–3827 (2012).
[Crossref] [PubMed]

Unold, T.

C. Strothkämper, A. Bartelt, R. Eichberger, C. Kaufmann, and T. Unold, “Microscopic mobilities and cooling dynamics of photoexcited carriers in polycrystalline CuInSe2,” Phys. Rev. B 89, 115204 (2014).
[Crossref]

Usui, S.

J. Westwater, D. Gosain, S. Tomiya, S. Usui, and H. Ruda, “Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction,” J. Vac. Sci. Technol. B 15(3), 554–557 (1997).
[Crossref]

Vallejo, F. A.

Van der Weg, W.

P. Stolk, F. Saris, A. Berntsen, W. Van der Weg, L. Sealy, R. Barklie, G. Krötz, and G. Müller, “Contribution of defects to electronic, structural, and thermodynamic properties of amorphous silicon,” J. Appl. Phys. 75(11), 7266–7286 (1994).
[Crossref]

Vickers, R. E. M.

R. A. Lewis, M. L. Smith, R. Mendis, and R. E. M. Vickers, “THz generation in InAs,” Physica B 376, 618 (2006).
[Crossref]

Voitsch, M.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Microlens coupled interdigital photoconductive switch,” Appl. Phys. Lett. 93, 091110 (2008).
[Crossref]

Volatier, M.

R. Dussart, X. Mellhaoui, T. Tillocher, P. Lefaucheux, M. Volatier, C. Socquet-Clerc, P. Brault, and P. Ranson, “Silicon columnar microstructures induced by an SF6/O2 plasma,” J. Phys. D: Appl. Phys. 38, 3395 (2005).
[Crossref]

von Gastrow, G.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Wanka, H.

M. Heintze, A. Hauser, R. Moller, H. Wanka, E. Lòpez, I. Dani, V. Hopfe, J. Muller, and A. Huwe, “In-line plasma etching at atmospheric pressue for edge isolation in crystalline Si solar cells,” in Proceedings of IEEE Conference on Photovoltaic energy conversion (IEEE, 2006), pp. 1119–1121.

Wehrspohn, R.

M. Kroll, T. Käsebier, M. Otto, R. Salzer, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Optical modeling of needle like silicon surfaces produced by an ICP-RIE process,” Proc. SPIE 7725, 772505 (2010).
[Crossref]

Wehrspohn, R. B.

J. Ziegler, J. Haschke, T. Käsebier, L. Korte, A. N. Sprafke, and R. B. Wehrspohn, “Influence of black silicon surfaces on the performance of back-contacted back silicon heterojunction solar cells,” Opt. Express 22(S6), A1469–A1476 (2014).
[Crossref]

M. Otto, M. Kroll, T. Käsebier, R. Salzer, A. Tünnermann, and R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100, 191603 (2012).
[Crossref]

M. Otto, M. Kroll, T. Käsebier, S.-M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal transparent conducting oxides on black silicon,” Adv. Mater. 22(44), 5035–5038 (2010).
[Crossref] [PubMed]

Weling, A. S.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[Crossref]

Werner, P.

Z. Huang, N. Geyer, P. Werner, J. De Boor, and U. Gösele, “Metal-assisted chemical etching of silicon: a review,” Adv. Mater. 23(2), 285–308 (2011).
[Crossref]

Westwater, J.

J. Westwater, D. Gosain, S. Tomiya, S. Usui, and H. Ruda, “Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction,” J. Vac. Sci. Technol. B 15(3), 554–557 (1997).
[Crossref]

Whittaker, D.

M. Johnston, D. Whittaker, A. Corchia, A. Davies, and E. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[Crossref]

D. Whittaker and I. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610 (1999).
[Crossref]

Wi, J.-S.

W.-J. Lee, J. W. Ma, J. M. Bae, K.-S. Jeong, M.-H. Cho, C. Kang, and J.-S. Wi, “Strongly enhanced THz emission caused by localized surface charges in semiconducting germanium nanowires,” Sci. Rep. 3, 1984 (2013).
[Crossref] [PubMed]

Wierer, J. J.

J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
[Crossref]

Wu, C.

T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. A 70(4), 383–385 (2000).
[Crossref]

Xu, J.

K. Liu, J. Xu, T. Yuan, and X.-C. Zhang, “Terahertz radiation from InAs induced by carrier diffusion and drift,” Phys. Rev. B 73, 155330 (2006).
[Crossref]

Yang, E.

X.-C. Zhang, J. Darrow, B. Hu, D. Auston, M. Schmidt, P. Tham, and E. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 56(22), 2228–2230 (1990).
[Crossref]

Yi, J.

J. Yoo, I. Parm, U. Gangopadhyay, K. Kim, S. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energ. Mat. Sol. Cells 90(18), 3085–3093 (2006).
[Crossref]

Yoo, J.

J. Yoo, I. Parm, U. Gangopadhyay, K. Kim, S. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energ. Mat. Sol. Cells 90(18), 3085–3093 (2006).
[Crossref]

Yuan, T.

K. Liu, J. Xu, T. Yuan, and X.-C. Zhang, “Terahertz radiation from InAs induced by carrier diffusion and drift,” Phys. Rev. B 73, 155330 (2006).
[Crossref]

Zhang, X.

H. Tang, L.-G. Zhu, L. Zhao, X. Zhang, J. Shan, and S.-T. Lee, “Carrier dynamics in Si nanowires fabricated by metal-assisted chemical etching,” ACS Nano 6(9), 7814–7819 (2012).
[Crossref] [PubMed]

Zhang, X.-C.

K. Liu, J. Xu, T. Yuan, and X.-C. Zhang, “Terahertz radiation from InAs induced by carrier diffusion and drift,” Phys. Rev. B 73, 155330 (2006).
[Crossref]

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91(9), 5533–5537 (2002).
[Crossref]

X.-C. Zhang, J. Darrow, B. Hu, D. Auston, M. Schmidt, P. Tham, and E. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 56(22), 2228–2230 (1990).
[Crossref]

Zhao, L.

H. Tang, L.-G. Zhu, L. Zhao, X. Zhang, J. Shan, and S.-T. Lee, “Carrier dynamics in Si nanowires fabricated by metal-assisted chemical etching,” ACS Nano 6(9), 7814–7819 (2012).
[Crossref] [PubMed]

Zhu, L.-G.

H. Tang, L.-G. Zhu, L. Zhao, X. Zhang, J. Shan, and S.-T. Lee, “Carrier dynamics in Si nanowires fabricated by metal-assisted chemical etching,” ACS Nano 6(9), 7814–7819 (2012).
[Crossref] [PubMed]

Ziegler, J.

Zilk, M.

M. Steglich, M. Oehme, T. Käsebier, M. Zilk, K. Kostecki, E.-B. Kley, J. Schulze, and A. Tünnermann, “Ge-on-Si photodiode with black silicon boosted responsivity,” Appl. Phys. Lett. 107, 051103 (2015).
[Crossref]

M. Steglich, T. Käsebier, M. Zilk, T. Pertsch, E.-B. Kley, and A. Tünnermann, “The structural and optical properties of black silicon by inductively coupled plasma reactive ion etching,” J. Appl. Phys. 116, 173503 (2014).
[Crossref]

ACS Nano (1)

H. Tang, L.-G. Zhu, L. Zhao, X. Zhang, J. Shan, and S.-T. Lee, “Carrier dynamics in Si nanowires fabricated by metal-assisted chemical etching,” ACS Nano 6(9), 7814–7819 (2012).
[Crossref] [PubMed]

Adv. Mater. (2)

M. Otto, M. Kroll, T. Käsebier, S.-M. Lee, M. Putkonen, R. Salzer, P. T. Miclea, and R. B. Wehrspohn, “Conformal transparent conducting oxides on black silicon,” Adv. Mater. 22(44), 5035–5038 (2010).
[Crossref] [PubMed]

Z. Huang, N. Geyer, P. Werner, J. De Boor, and U. Gösele, “Metal-assisted chemical etching of silicon: a review,” Adv. Mater. 23(2), 285–308 (2011).
[Crossref]

Anal. Bioanal. Chem. (1)

H. Angermann, “Characterization of wet-chemically treated silicon interfaces by surface photovoltage measurements,” Anal. Bioanal. Chem. 374(4), 676–680 (2002).
[Crossref] [PubMed]

Appl. Phys. A (1)

T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. A 70(4), 383–385 (2000).
[Crossref]

Appl. Phys. Lett. (13)

M. Steglich, M. Oehme, T. Käsebier, M. Zilk, K. Kostecki, E.-B. Kley, J. Schulze, and A. Tünnermann, “Ge-on-Si photodiode with black silicon boosted responsivity,” Appl. Phys. Lett. 107, 051103 (2015).
[Crossref]

M. Reid, I. Cravetchi, R. Fedosejevs, I. Tiginyanu, and L. Sirbu, “Enhanced terahertz emission from porous InP (111) membranes,” Appl. Phys. Lett. 86, 021904 (2005).
[Crossref]

P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett. 93, 091106 (2008).
[Crossref]

V. N. Trukhin, A. D. Bouravleuv, I. A. Mustafin, J. P. Kakko, T. Huhtio, G. E. Cirlin, and H. Lipsanen, “Generation of terahertz radiation in ordered arrays of GaAs nanowires,” Appl. Phys. Lett. 106, 252104 (2015).
[Crossref]

M. Otto, M. Kroll, T. Käsebier, R. Salzer, A. Tünnermann, and R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100, 191603 (2012).
[Crossref]

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[Crossref]

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Microlens coupled interdigital photoconductive switch,” Appl. Phys. Lett. 93, 091110 (2008).
[Crossref]

J. Heyman, N. Coates, A. Reinhardt, and G. Strasser, “Diffusion and drift in terahertz emission at GaAs surfaces,” Appl. Phys. Lett. 83(26), 5476–5478 (2003).
[Crossref]

P. Hoyer, G. Matthäus, U. Blumröder, K. Füchsel, and S. Nolte, “Induced terahertz emission as a probe for semiconductor devices,” Appl. Phys. Lett. 99, 221112 (2011).
[Crossref]

M. Reid and R. Fedosejevs, “Terahertz emission from (100) InAs surfaces at high excitation fluences,” Appl. Phys. Lett. 86, 011906 (2005).
[Crossref]

X.-C. Zhang, J. Darrow, B. Hu, D. Auston, M. Schmidt, P. Tham, and E. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 56(22), 2228–2230 (1990).
[Crossref]

P. Pikna, V. Skoromets, C. Becker, A. Fejfar, and P. Kužel, “Thin film polycrystalline Si solar cells studied in transient regime by optical pump-terahertz probe spectroscopy,” Appl. Phys. Lett. 107, 233901 (2015).
[Crossref]

D. Auston, K. Cheung, and P. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45(3), 284–286 (1984).
[Crossref]

Appl. Surf. Sci. (1)

A. Esser, W. Kütt, M. Strahnen, G. Maidorn, and H. Kurz, “Femtosecond transient reflectivity measurements as a probe for process-induced defects in silicon,” Appl. Surf. Sci. 46(1), 446–450 (1990).
[Crossref]

Chin. Opt. Lett (1)

M. Steglich, T. Käsebier, I. Höger, K. Füchsel, A. Tünnermann, and E.-B. Kley, “Black silicon nanostructures on silicon thin films prepared by reactive ion etching,” Chin. Opt. Lett 11, S10502 (2013).

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

H. P. Porte, D. Turchinovich, S. Persheyev, Y. Fan, M. J. Rose, and P. U. Jepsen, “On ultrafast photoconductivity dynamics and crystallinity of black silicon,” IEEE Trans. Terahertz Sci. Technol. 3(3), 331–341 (2013).
[Crossref]

J. Appl. Phys. (5)

R. Smith and S. Collins, “Porous silicon formation mechanisms,” J. Appl. Phys. 71, R1 (1992).
[Crossref]

M. Steglich, T. Käsebier, M. Zilk, T. Pertsch, E.-B. Kley, and A. Tünnermann, “The structural and optical properties of black silicon by inductively coupled plasma reactive ion etching,” J. Appl. Phys. 116, 173503 (2014).
[Crossref]

J. Schmidt and A. G. Aberle, “Accurate method for the determination of bulk minority-carrier lifetimes of mono-and multicrystalline silicon wafers,” J. Appl. Phys. 81(9), 6186–6199 (1997).
[Crossref]

P. Stolk, F. Saris, A. Berntsen, W. Van der Weg, L. Sealy, R. Barklie, G. Krötz, and G. Müller, “Contribution of defects to electronic, structural, and thermodynamic properties of amorphous silicon,” J. Appl. Phys. 75(11), 7266–7286 (1994).
[Crossref]

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91(9), 5533–5537 (2002).
[Crossref]

J. Electrochem. Soc. (1)

V. Lehmann and S. Ronnebeck, “The physics of macropore formation in low-doped p-type silicon,” J. Electrochem. Soc. 146(8), 2968–2975 (1999).
[Crossref]

J. Micromech. Microeng. (1)

H. Jansen, M. de Boer, R. Legtenberg, and M. Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” J. Micromech. Microeng. 5, 115 (1995).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Photochem. Photobiol. A (1)

H. Němec, P. Kužel, and V. Sundström, “Charge transport in nanostructured materials for solar energy conversion studied by time-resolved terahertz spectroscopy,” J. Photochem. Photobiol. A 215, (2), 123–139 (2010).
[Crossref]

J. Phys. D: Appl. Phys. (2)

R. Dussart, T. Tillocher, P. Lefaucheux, and M. Boufnichel, “Plasma cryogenic etching of silicon: from the early days to today’s advanced technologies,” J. Phys. D: Appl. Phys. 47, 123001 (2014).
[Crossref]

R. Dussart, X. Mellhaoui, T. Tillocher, P. Lefaucheux, M. Volatier, C. Socquet-Clerc, P. Brault, and P. Ranson, “Silicon columnar microstructures induced by an SF6/O2 plasma,” J. Phys. D: Appl. Phys. 38, 3395 (2005).
[Crossref]

J. Vac. Sci. Technol. A (1)

S. Schaefer and R. Lüdemann, “Low damage reactive ion etching for photovoltaic applications,” J. Vac. Sci. Technol. A 17(3), 749–754 (1999).
[Crossref]

J. Vac. Sci. Technol. B (1)

J. Westwater, D. Gosain, S. Tomiya, S. Usui, and H. Ruda, “Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction,” J. Vac. Sci. Technol. B 15(3), 554–557 (1997).
[Crossref]

Jpn. J. Appl. Phys. (2)

H. Takahashi, A. Quema, M. Goto, S. Ono, and N. Sarukura, “Terahertz radiation mechanism from Femtosecond-Laser-Irradiated InAs (100)-Surface,” Jpn. J. Appl. Phys. 42, 1259 (2003).
[Crossref]

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39, 96 (2000).
[Crossref]

Nano Lett. (3)

P. Parkinson, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Transient terahertz conductivity of GaAs nanowires,” Nano Lett. 7(7), 2162–2165 (2007).
[Crossref]

R. Ulbricht, R. Kurstjens, and M. Bonn, “Assessing charge carrier trapping in silicon nanowires using picosecond conductivity measurements,” Nano Lett. 12(7), 3821–3827 (2012).
[Crossref] [PubMed]

R. Prasankumar, S. Choi, S. Trugman, S. Picraux, and A. Taylor, “Ultrafast electron and hole dynamics in germanium nanowires,” Nano Lett. 8(6), 1619–1624 (2008).
[Crossref] [PubMed]

Nanotechnology (1)

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19, 305201 (2008).
[Crossref] [PubMed]

Nat. Mater. (1)

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
[Crossref]

Nucl. Instr. Meth. Phys. Res. A (1)

W. Füssel, M. Schmidt, H. Angermann, G. Mende, and H. Flietner, “Defects at the Si/SiO2 interface: their nature and behaviour in technological processes and stress,” Nucl. Instr. Meth. Phys. Res. A 377(2), 177–183 (1996).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (1)

Phys. Rev. B (6)

D. V. Seletskiy, M. P. Hasselbeck, J. G. Cederberg, A. Katzenmeyer, M. E. Toimil-Molares, F. Léonard, A. A. Talin, and M. Sheik-Bahae, “Efficient terahertz emission from InAs nanowires,” Phys. Rev. B 84, 115421 (2011).
[Crossref]

D. Whittaker and I. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610 (1999).
[Crossref]

C. Strothkämper, A. Bartelt, R. Eichberger, C. Kaufmann, and T. Unold, “Microscopic mobilities and cooling dynamics of photoexcited carriers in polycrystalline CuInSe2,” Phys. Rev. B 89, 115204 (2014).
[Crossref]

J. Lloyd-Hughes, E. Castro-Camus, M. Fraser, C. Jagadish, and M. Johnston, “Carrier dynamics in ion-implanted GaAs studied by simulation and observation of terahertz emission,” Phys. Rev. B 70, 235330 (2004).
[Crossref]

M. Johnston, D. Whittaker, A. Corchia, A. Davies, and E. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[Crossref]

K. Liu, J. Xu, T. Yuan, and X.-C. Zhang, “Terahertz radiation from InAs induced by carrier diffusion and drift,” Phys. Rev. B 73, 155330 (2006).
[Crossref]

Phys. Status Solidi B (1)

U. Blumröder, M. Steglich, F. Schrempel, P. Hoyer, and S. Nolte, “THz emission from argon implanted silicon surfaces,” Phys. Status Solidi B 252(1), 105–111 (2015).
[Crossref]

Phys. Status Solidi C (1)

J. Pezoldt, T. Kups, M. Stubenrauch, and M. Fischer, “Black luminescent silicon,” Phys. Status Solidi C 8(3), 1021–1026 (2011).
[Crossref]

Physica B (1)

R. A. Lewis, M. L. Smith, R. Mendis, and R. E. M. Vickers, “THz generation in InAs,” Physica B 376, 618 (2006).
[Crossref]

Proc. SPIE (3)

M. Kroll, T. Käsebier, M. Otto, R. Salzer, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Optical modeling of needle like silicon surfaces produced by an ICP-RIE process,” Proc. SPIE 7725, 772505 (2010).
[Crossref]

K. Füchsel, U. Schulz, N. Kaiser, T. Käsebier, E.-B. Kley, and A. Tünnermann, “Nanostructured SIS solar cells,” Proc. SPIE 7725, 772502 (2010).
[Crossref]

D. Seletskiy, M. Hasselbeck, M. Sheik-Bahae, J. Cederberg, and A. Talin, “THz emission from coherent plasmons in InAs nanowires,” Proc. SPIE 7214, 72140Y (2009).
[Crossref]

Sci. Rep. (1)

W.-J. Lee, J. W. Ma, J. M. Bae, K.-S. Jeong, M.-H. Cho, C. Kang, and J.-S. Wi, “Strongly enhanced THz emission caused by localized surface charges in semiconducting germanium nanowires,” Sci. Rep. 3, 1984 (2013).
[Crossref] [PubMed]

Sol. Energ. Mat. Sol. Cells (1)

J. Yoo, I. Parm, U. Gangopadhyay, K. Kim, S. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energ. Mat. Sol. Cells 90(18), 3085–3093 (2006).
[Crossref]

Ultrafast Physical Processes in Semiconductors (1)

E. Gornik and R. Kersting, “Coherent THz emission in semiconductors,” Ultrafast Physical Processes in Semiconductors 67, 389–440 (2001).
[Crossref]

Other (4)

K. Sakai, M. Tani, and K. Sakai, Terahertz Optoelectronics (Springer-VerlagBerlin Heidelberg, 2005).
[Crossref]

U. Blumröder, Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Albert-Einstein-Straße 15, 07745 Jena, Germany, K. Füchsel, H. Hempel, P. Hoyer, A. Bingel, R. Eichberger, T. Unold, and S. Nolte, are preparing a manuscript to be called: “Investigating subsurface damages in SIS solar cells with THz spectroscopy.”

M. Heintze, A. Hauser, R. Moller, H. Wanka, E. Lòpez, I. Dani, V. Hopfe, J. Muller, and A. Huwe, “In-line plasma etching at atmospheric pressue for edge isolation in crystalline Si solar cells,” in Proceedings of IEEE Conference on Photovoltaic energy conversion (IEEE, 2006), pp. 1119–1121.

H. Hempel, Helmholtz Center Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109 Berlin, Germany, T. Unold, and R. Eichberger, are preparing a manuscript to be called: “Measurement of charge carrier mobilities in thin films on metal substrates by reflection time resolved THz spectroscopy.”

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Top view and cross-sectional SEM images of structure type A and B.
Fig. 2
Fig. 2 THz time domain spectrometers for a) the OPTP study, after [32] and b) the measurement of the emitted THz emission. The abbreviations denominate the following elements: TD: delay line, OC: optical chopper, BD: beam splitter, M: mirror and BBO: crystal for second harmonic generation of the pump pulse.
Fig. 3
Fig. 3 Hemispherical reflectance a) and absorptance b) spectra of the nanostructured silicon wafers.
Fig. 4
Fig. 4 Absorption properties of structure type A and B simulated with the FDTD method: a) Depth dependent absorption rates of structure type A and B. The light blue and magenta lines indicate the absorption rates corrected by the silicon volume fraction, whereas the red and blue lines are averaged over the whole volume therefore including the air between the silicon needles. The depth dependent silicon volume fraction is plotted in light grey. The position d = 0 refers to the tip of the highest needle. For comparison the plots contain the theoretical absorption rate for a planar silicon surface (black curve) and a surface with a perfect antireflection coating (ARC) (black, dashed curve). b) Depth resolved absorption enhancement of the structured samples and a planar reference with and without a perfect ARC.
Fig. 5
Fig. 5 Dynamics of the pump-induced absolute change ΔE/E in reflection for structure type A and B in comparison to a planar reference sample. The change was temporally scanned at the maximum amplitude of the THz waveform; a) Excitation with 800 nm, b) Excitation with 400 nm. Each of the the data sets is normalized to its maximum value.
Fig. 6
Fig. 6 Study of THz emission from nanostructured silicon surfaces; a) Time domain THz signals of planar and nanostructured silicon. To demonstrate the signal enhancement due to nanostructuring the signals were normalized to the highest signal amplitude; b) Normalized Peak-to-Peak amplitude of sample B for increasing excitation power; c) Resulting frequency spectra on logarithmic and d) linear scale (normalized to the highest spectr. amplitude).
Fig. 7
Fig. 7 Illustration of the emission enhancement of a dipole located in the middle of an effective medium with refractive index neff <nSi; a) Geometry used for the calculation of the dipole radiation; b) Ratio of the power Pfront(neff)/Pfront(nSi) emitted through the front side of a medium with neff to the planar surface with nSi.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Q avg ( z ) = 1 P in z S z ( r ) d x d y
S z ( r ) = 1 2 Re { E x ( r ) H y * ( r ) E y ( r ) H x * ( r ) } .
η Q ( z ) = Q avg ( z ) Q avg planar ( z ) 1 .
Δ E E Δ σ = e ( μ e + μ h ) Δ N .

Metrics