Abstract

In this work the performance of two yttrium calcium oxyborate (YCOB) crystals made by Czochralski and Bridgman growth process was measured. By using high peak power, passively Q-switched Nd3+:YAG/Cr4+:YAG microlaser, high conversion second harmonic generation efficiency were obtained. Laser pulses at 532 nm with 1.14 mJ energy and 223 ps duration were obtained with a 15-mm long YCOB crystal that was grown by Bridgman method. The conversion efficiency was 70.2%, comparable with the conversion efficiency of 72.8% that was achieved with 10-mm long lithium triborate (LBO) nonlinear crystal. Also, for the first time, experimental data on temperature tuning in type I YCOB crystal was measured with linear slope in 200°C temperature range equal to −0.057%/°C and −0.064%/°C for the Czochralski and Bridgman grown crystals, respectively. Such YCOB nonlinear crystal can become a serious option for developing laser sources with high-peak power at high repetition rate that can operate in harsh environment.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

16 June 2017: Typographical corrections were made to paragraph 1 of Section 1; the section heading of Section 2; paragraph 2 of Section 2; paragraph 1 of Section 3; paragraph 2 of Section 3; paragraphs 1–3 of Section 4.1; paragraph 2 of Section 4.2; paragraph 1 of Section 4.3; the figure caption of Figs. 1, 4, and 5; Table 1; Eq. (2); Ref. 13; and the funding section. Minor corrections were made to Figs. 3 and 5. Content corrections were made to references 13–16.


OSA Recommended Articles
Ultra-broadband high conversion efficiency optical parametric chirped-pulse amplification based on YCOB crystals

Shunhua Yang, Xiao Liang, Xinglong Xie, Qingwei Yang, Xiaoniu Tu, Yanqing Zheng, Xiaoqi Zhang, Yan Zhang, Ailin Guo, Ping Zhu, Jun Kang, Meizhi Sun, and Jianqiang Zhu
Opt. Express 28(8) 11645-11651 (2020)

Type-II second-harmonic-generation properties of YCOB and GdCOB single crystals

Yanqing Liu, Hongwei Qi, Qingming Lu, Fapeng Yu, Zhengping Wang, Xinguang Xu, and Xian Zhao
Opt. Express 23(3) 2163-2173 (2015)

High peak-power near-MW laser pulses by third harmonic generation at 355 nm in Ca5(BO3)3F nonlinear single crystals

Florent Cassouret, Arvydas Kausas, Vincent Yahia, Gérard Aka, Pascal Loiseau, and Takunori Taira
Opt. Express 28(7) 10524-10530 (2020)

References

  • View by:
  • |
  • |
  • |

  1. H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
    [Crossref] [PubMed]
  2. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q -switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
    [Crossref]
  3. R. Bhandari and T. Taira, “> 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser,” Opt. Express 19(20), 19135–19141 (2011).
    [Crossref] [PubMed]
  4. R. Bhandari and T. Taira, “Palm-top size megawatt peak power ultraviolet microlaser,” Opt. Eng. 52(7), 076102 (2013).
    [Crossref]
  5. R. Möckel, C. Reuther, and J. Gotze, “REECOB: 20 years of rare earth element calcium oxoborates crystal growth research,” J. Cryst. Growth 371, 70–76 (2013).
    [Crossref]
  6. Z. M. Liao, I. Jovanovic, C. A. Ebbers, Y. Fei, and B. Chai, “Energy and average power scalable optical parametric chirped-pulse amplification in yttrium calcium oxyborate,” Opt. Lett. 31(9), 1277–1279 (2006).
    [Crossref] [PubMed]
  7. Y. Fei, B. Chai, C. A. Ebbers, Z. M. Liao, K. I. Schaffers, and P. Thelin, “Large-aperture YCOB crystal growth for frequency conversion in the high average power laser system,” J. Cryst. Growth 290(1), 301–306 (2006).
    [Crossref]
  8. Q. Ye and B. Chai, “Crystals growth of YCa4O(BO3)3 and its orientation,” J. Cryst. Growth 197(1-2), 228–235 (1999).
    [Crossref]
  9. A. Wu, J. Xu, Y. Zheng, and X. Liang, “Crystal growth and application of large size YCOB crystal for high power laser,” Opt. Mater. 36(12), 2000–2003 (2014).
    [Crossref]
  10. N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, M. Yoshimura, Y. Mori, and T. Sasaki, “Temperature-Insensitive Second-Harmonic Generation at 0.5321 µm in YCa4O(BO3)3,” Jpn. J. Appl. Phys. 42(8), 5040–5042 (2003).
    [Crossref]
  11. G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. P. Damelet, “Linear and nonlinear optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3 (GdCOB),” J. Opt. Soc. Am. B 14(9), 2238–2247 (1997).
    [Crossref]
  12. P. Loiseau, T. Taira, and G. Aka, “Review and evaluation of the nonlinear capabilities of RECOB (RE = Y, Gd) oxyborate crystals for SHG,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuB8.
  13. D. N. Nikogosyan, Nonlinear Optics Crystals: A complete Survey (springer-Verlag New York, 2005).
  14. D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: A plea for standardization of nomenclature and convetions,” IEEE J. Quantum Electron. 28(10), 2057–2074 (1992).
    [Crossref]
  15. P. Segonds, B. Boulanger, J. P. Fève, B. Ménaert, J. Zaccaro, G. Aka, and D. Pellenc, “Linear and nonlinear optical properties of the monoclinic Ca4YO(BO3) crystal,” J. Opt. Soc. Am. B 21(4), 765–769 (2004).
    [Crossref]
  16. M. V. Pack, D. J. Armstrong, A. V. Smith, G. Aka, B. Ferrand, and D. Pelenc, “Measurement of the chi(2) tensor of GdCa4O(BO3)3 and YCa4O(BO3)3 crystals,” J. Opt. Soc. Am. B 22(2), 417–425 (2005).
    [Crossref]

2014 (1)

A. Wu, J. Xu, Y. Zheng, and X. Liang, “Crystal growth and application of large size YCOB crystal for high power laser,” Opt. Mater. 36(12), 2000–2003 (2014).
[Crossref]

2013 (2)

R. Bhandari and T. Taira, “Palm-top size megawatt peak power ultraviolet microlaser,” Opt. Eng. 52(7), 076102 (2013).
[Crossref]

R. Möckel, C. Reuther, and J. Gotze, “REECOB: 20 years of rare earth element calcium oxoborates crystal growth research,” J. Cryst. Growth 371, 70–76 (2013).
[Crossref]

2011 (1)

2010 (1)

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q -switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

2008 (1)

2006 (2)

Z. M. Liao, I. Jovanovic, C. A. Ebbers, Y. Fei, and B. Chai, “Energy and average power scalable optical parametric chirped-pulse amplification in yttrium calcium oxyborate,” Opt. Lett. 31(9), 1277–1279 (2006).
[Crossref] [PubMed]

Y. Fei, B. Chai, C. A. Ebbers, Z. M. Liao, K. I. Schaffers, and P. Thelin, “Large-aperture YCOB crystal growth for frequency conversion in the high average power laser system,” J. Cryst. Growth 290(1), 301–306 (2006).
[Crossref]

2005 (1)

2004 (1)

2003 (1)

N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, M. Yoshimura, Y. Mori, and T. Sasaki, “Temperature-Insensitive Second-Harmonic Generation at 0.5321 µm in YCa4O(BO3)3,” Jpn. J. Appl. Phys. 42(8), 5040–5042 (2003).
[Crossref]

1999 (1)

Q. Ye and B. Chai, “Crystals growth of YCa4O(BO3)3 and its orientation,” J. Cryst. Growth 197(1-2), 228–235 (1999).
[Crossref]

1997 (1)

1992 (1)

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: A plea for standardization of nomenclature and convetions,” IEEE J. Quantum Electron. 28(10), 2057–2074 (1992).
[Crossref]

Aka, G.

Ando, A.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q -switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Ando, M.

N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, M. Yoshimura, Y. Mori, and T. Sasaki, “Temperature-Insensitive Second-Harmonic Generation at 0.5321 µm in YCa4O(BO3)3,” Jpn. J. Appl. Phys. 42(8), 5040–5042 (2003).
[Crossref]

Armstrong, D. J.

Bhandari, R.

Boulanger, B.

Chai, B.

Z. M. Liao, I. Jovanovic, C. A. Ebbers, Y. Fei, and B. Chai, “Energy and average power scalable optical parametric chirped-pulse amplification in yttrium calcium oxyborate,” Opt. Lett. 31(9), 1277–1279 (2006).
[Crossref] [PubMed]

Y. Fei, B. Chai, C. A. Ebbers, Z. M. Liao, K. I. Schaffers, and P. Thelin, “Large-aperture YCOB crystal growth for frequency conversion in the high average power laser system,” J. Cryst. Growth 290(1), 301–306 (2006).
[Crossref]

Q. Ye and B. Chai, “Crystals growth of YCa4O(BO3)3 and its orientation,” J. Cryst. Growth 197(1-2), 228–235 (1999).
[Crossref]

Colin, P.

Coquelin, P.

Damelet, J. P.

Ebbers, C. A.

Z. M. Liao, I. Jovanovic, C. A. Ebbers, Y. Fei, and B. Chai, “Energy and average power scalable optical parametric chirped-pulse amplification in yttrium calcium oxyborate,” Opt. Lett. 31(9), 1277–1279 (2006).
[Crossref] [PubMed]

Y. Fei, B. Chai, C. A. Ebbers, Z. M. Liao, K. I. Schaffers, and P. Thelin, “Large-aperture YCOB crystal growth for frequency conversion in the high average power laser system,” J. Cryst. Growth 290(1), 301–306 (2006).
[Crossref]

Fei, Y.

Y. Fei, B. Chai, C. A. Ebbers, Z. M. Liao, K. I. Schaffers, and P. Thelin, “Large-aperture YCOB crystal growth for frequency conversion in the high average power laser system,” J. Cryst. Growth 290(1), 301–306 (2006).
[Crossref]

Z. M. Liao, I. Jovanovic, C. A. Ebbers, Y. Fei, and B. Chai, “Energy and average power scalable optical parametric chirped-pulse amplification in yttrium calcium oxyborate,” Opt. Lett. 31(9), 1277–1279 (2006).
[Crossref] [PubMed]

Ferrand, B.

Fève, J. P.

Gotze, J.

R. Möckel, C. Reuther, and J. Gotze, “REECOB: 20 years of rare earth element calcium oxoborates crystal growth research,” J. Cryst. Growth 371, 70–76 (2013).
[Crossref]

Inohara, T.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q -switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Jovanovic, I.

Kahn-Harari, A.

Kan, H.

Kanehara, K.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q -switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Kato, K.

N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, M. Yoshimura, Y. Mori, and T. Sasaki, “Temperature-Insensitive Second-Harmonic Generation at 0.5321 µm in YCa4O(BO3)3,” Jpn. J. Appl. Phys. 42(8), 5040–5042 (2003).
[Crossref]

Kido, N.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q -switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Liang, X.

A. Wu, J. Xu, Y. Zheng, and X. Liang, “Crystal growth and application of large size YCOB crystal for high power laser,” Opt. Mater. 36(12), 2000–2003 (2014).
[Crossref]

Liao, Z. M.

Y. Fei, B. Chai, C. A. Ebbers, Z. M. Liao, K. I. Schaffers, and P. Thelin, “Large-aperture YCOB crystal growth for frequency conversion in the high average power laser system,” J. Cryst. Growth 290(1), 301–306 (2006).
[Crossref]

Z. M. Liao, I. Jovanovic, C. A. Ebbers, Y. Fei, and B. Chai, “Energy and average power scalable optical parametric chirped-pulse amplification in yttrium calcium oxyborate,” Opt. Lett. 31(9), 1277–1279 (2006).
[Crossref] [PubMed]

Ménaert, B.

Möckel, R.

R. Möckel, C. Reuther, and J. Gotze, “REECOB: 20 years of rare earth element calcium oxoborates crystal growth research,” J. Cryst. Growth 371, 70–76 (2013).
[Crossref]

Mori, Y.

N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, M. Yoshimura, Y. Mori, and T. Sasaki, “Temperature-Insensitive Second-Harmonic Generation at 0.5321 µm in YCa4O(BO3)3,” Jpn. J. Appl. Phys. 42(8), 5040–5042 (2003).
[Crossref]

Mougel, F.

Pack, M. V.

Pelenc, D.

Pellenc, D.

Reuther, C.

R. Möckel, C. Reuther, and J. Gotze, “REECOB: 20 years of rare earth element calcium oxoborates crystal growth research,” J. Cryst. Growth 371, 70–76 (2013).
[Crossref]

Roberts, D. A.

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: A plea for standardization of nomenclature and convetions,” IEEE J. Quantum Electron. 28(10), 2057–2074 (1992).
[Crossref]

Sakai, H.

Salin, F.

Sasaki, T.

N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, M. Yoshimura, Y. Mori, and T. Sasaki, “Temperature-Insensitive Second-Harmonic Generation at 0.5321 µm in YCa4O(BO3)3,” Jpn. J. Appl. Phys. 42(8), 5040–5042 (2003).
[Crossref]

Schaffers, K. I.

Y. Fei, B. Chai, C. A. Ebbers, Z. M. Liao, K. I. Schaffers, and P. Thelin, “Large-aperture YCOB crystal growth for frequency conversion in the high average power laser system,” J. Cryst. Growth 290(1), 301–306 (2006).
[Crossref]

Segonds, P.

Smith, A. V.

Suzuki, K.

N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, M. Yoshimura, Y. Mori, and T. Sasaki, “Temperature-Insensitive Second-Harmonic Generation at 0.5321 µm in YCa4O(BO3)3,” Jpn. J. Appl. Phys. 42(8), 5040–5042 (2003).
[Crossref]

Taira, T.

R. Bhandari and T. Taira, “Palm-top size megawatt peak power ultraviolet microlaser,” Opt. Eng. 52(7), 076102 (2013).
[Crossref]

R. Bhandari and T. Taira, “> 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser,” Opt. Express 19(20), 19135–19141 (2011).
[Crossref] [PubMed]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q -switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
[Crossref] [PubMed]

Takaoka, E.

N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, M. Yoshimura, Y. Mori, and T. Sasaki, “Temperature-Insensitive Second-Harmonic Generation at 0.5321 µm in YCa4O(BO3)3,” Jpn. J. Appl. Phys. 42(8), 5040–5042 (2003).
[Crossref]

Thelin, P.

Y. Fei, B. Chai, C. A. Ebbers, Z. M. Liao, K. I. Schaffers, and P. Thelin, “Large-aperture YCOB crystal growth for frequency conversion in the high average power laser system,” J. Cryst. Growth 290(1), 301–306 (2006).
[Crossref]

Tsunekane, M.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q -switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Umemura, N.

N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, M. Yoshimura, Y. Mori, and T. Sasaki, “Temperature-Insensitive Second-Harmonic Generation at 0.5321 µm in YCa4O(BO3)3,” Jpn. J. Appl. Phys. 42(8), 5040–5042 (2003).
[Crossref]

Vivien, D.

Wu, A.

A. Wu, J. Xu, Y. Zheng, and X. Liang, “Crystal growth and application of large size YCOB crystal for high power laser,” Opt. Mater. 36(12), 2000–2003 (2014).
[Crossref]

Xu, J.

A. Wu, J. Xu, Y. Zheng, and X. Liang, “Crystal growth and application of large size YCOB crystal for high power laser,” Opt. Mater. 36(12), 2000–2003 (2014).
[Crossref]

Ye, Q.

Q. Ye and B. Chai, “Crystals growth of YCa4O(BO3)3 and its orientation,” J. Cryst. Growth 197(1-2), 228–235 (1999).
[Crossref]

Yoshimura, M.

N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, M. Yoshimura, Y. Mori, and T. Sasaki, “Temperature-Insensitive Second-Harmonic Generation at 0.5321 µm in YCa4O(BO3)3,” Jpn. J. Appl. Phys. 42(8), 5040–5042 (2003).
[Crossref]

Zaccaro, J.

Zheng, Y.

A. Wu, J. Xu, Y. Zheng, and X. Liang, “Crystal growth and application of large size YCOB crystal for high power laser,” Opt. Mater. 36(12), 2000–2003 (2014).
[Crossref]

IEEE J. Quantum Electron. (2)

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q -switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: A plea for standardization of nomenclature and convetions,” IEEE J. Quantum Electron. 28(10), 2057–2074 (1992).
[Crossref]

J. Cryst. Growth (3)

R. Möckel, C. Reuther, and J. Gotze, “REECOB: 20 years of rare earth element calcium oxoborates crystal growth research,” J. Cryst. Growth 371, 70–76 (2013).
[Crossref]

Y. Fei, B. Chai, C. A. Ebbers, Z. M. Liao, K. I. Schaffers, and P. Thelin, “Large-aperture YCOB crystal growth for frequency conversion in the high average power laser system,” J. Cryst. Growth 290(1), 301–306 (2006).
[Crossref]

Q. Ye and B. Chai, “Crystals growth of YCa4O(BO3)3 and its orientation,” J. Cryst. Growth 197(1-2), 228–235 (1999).
[Crossref]

J. Opt. Soc. Am. B (3)

Jpn. J. Appl. Phys. (1)

N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, M. Yoshimura, Y. Mori, and T. Sasaki, “Temperature-Insensitive Second-Harmonic Generation at 0.5321 µm in YCa4O(BO3)3,” Jpn. J. Appl. Phys. 42(8), 5040–5042 (2003).
[Crossref]

Opt. Eng. (1)

R. Bhandari and T. Taira, “Palm-top size megawatt peak power ultraviolet microlaser,” Opt. Eng. 52(7), 076102 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. (1)

A. Wu, J. Xu, Y. Zheng, and X. Liang, “Crystal growth and application of large size YCOB crystal for high power laser,” Opt. Mater. 36(12), 2000–2003 (2014).
[Crossref]

Other (2)

P. Loiseau, T. Taira, and G. Aka, “Review and evaluation of the nonlinear capabilities of RECOB (RE = Y, Gd) oxyborate crystals for SHG,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuB8.

D. N. Nikogosyan, Nonlinear Optics Crystals: A complete Survey (springer-Verlag New York, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup for SHG experiment: microlaser to produce fundamental light; power control to regulate the incident peak power; focusing lenses and nonlinear crystal. Here, small x, y, z are laboratory axes; E is a polaization of second harmonic electric field.
Fig. 2
Fig. 2 Experimental data on second harmonic generation for different focusing condition in LBO crystal (a), YCOB crystals grown by Czochralski (b) and Bridgman (c) processes.
Fig. 3
Fig. 3 Conversion efficiency and output power for best focusing condition in LBO crystal (a), YCOB crystals grown by Czochralski (b) and Bridgman (c) processes. Small dot line represents calculation for ideal case for a plane wave with no phase match and walk-off effects using Eq. (2).
Fig. 4
Fig. 4 YCOB crystal scanning with fundamental beam to measure second harmonic generation efficiency and plot its homogeneity. Both crystals were scanned in horizontal and vertical directions to obtain surface plot. (a) Czochralski grown crystal with clear aperture of 3.5 mm. The scanning step was 0.5 mm. The spot with lower conversion efficiency in the middle of the crystal had optical damage from previous experiments. (b) Bridgman grown crystal with clear aperture of 14 mm. The scanning step was 1 mm. The white triangle on the left side is a missing data point.
Fig. 5
Fig. 5 YCOB crystal tuning graph with linear slope for the whole range of operational temperature. Different range for YCOB crystals was due to the limited power of the heater. For bigger size Bridgman grown crystal the heating power was not sufficient to reach over 160°C. Inset shows temperature tuning in LBO crystal. The maximum conversion was set at 40°C. In this case the temperature bandwidth was 5.2°C.

Tables (1)

Tables Icon

Table 1 Nonlinear crystals parameters used in this work.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ T l = λ Δ θ e x t l 2.25 Δ θ e x t l [ δ n 1 y δ T δ n 2 z x ( θ ) δ T ] + λ δ α e x t δ T
η = P 2 ω P ω = tan h 2 [ 8 π 2 l 2 ε 0 c λ 2 n 3 d e f f ( P ω A ) 1 2 ] ,

Metrics