Abstract

We present results of high average power mid-infrared (mid-IR) generation employing synchronized nanosecond pulsed ytterbium and erbium fiber amplifier systems using periodically poled lithium niobate. We generate greater than 6 W of mid-IR radiation tunable in wavelength between 3.31–3.48 μm, at power conversion efficiencies exceeding 75%, with near diffraction limited beam quality (M2 = 1.4). Numerical modeling is used to verify the experimental results in differing pump depletion regimes.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article

Corrections

27 March 2017: A correction was made to the title.


OSA Recommended Articles
Green-pumped, picosecond MgO:PPLN optical parametric oscillator

Florian Kienle, Dejiao Lin, Shaif-ul Alam, Hazel S. S. Hung, Corin B. E. Gawith, Huw E. Major, David J. Richardson, and David P. Shepherd
J. Opt. Soc. Am. B 29(1) 144-152 (2012)

Multiple-wavelength quasi-phase-matching for efficient idler generation in MgO:LiNbO3 based nanosecond optical parametric oscillator

Om Prakash Naraniya, M. R. Shenoy, and K. Thyagarajan
Appl. Opt. 51(9) 1312-1317 (2012)

References

  • View by:
  • |
  • |
  • |

  1. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm,” Opt. Lett. 34, 1330–1332 (2009).
    [Crossref] [PubMed]
  2. L. Xu, H.-Y. Chan, S.-U. Alam, D. J. Richardson, and D. P. Shepherd, “Fiber-laser-pumped, high-energy, mid-IR, picosecond optical parametric oscillator with a high-harmonic cavity,” Opt. Lett. 40, 3288–3291 (2015).
    [Crossref] [PubMed]
  3. M. Ebrahim-Zadeh and S. Chaitanya Kumar, “Yb-fiber-laser-pumped ultrafast frequency conversion sources from the mid-infrared to the ultraviolet,” IEEE J. Sel. Top. Quantum Electron. 20, 624–642 (2014).
    [Crossref]
  4. P. Belden, D. Chen, and F. D. Teodoro, “Watt-level, gigahertz-linewidth difference-frequency generation in PPLN pumped by an nanosecond-pulse fiber laser source,” Opt. Lett. 40, 958–961 (2015).
    [Crossref] [PubMed]
  5. L. Xu, H.-Y. Chan, S.-U. Alam, D. J. Richardson, and D. P. Shepherd, “High-energy, near-and mid-IR picosecond pulses generated by a fiber-MOPA-pumped optical parametric generator and amplifier,” Opt. Express 23, 12613–12618 (2015).
    [Crossref] [PubMed]
  6. D. J. Armstrong and A. V. Smith, “90% pump depletion and good beam quality in a pulse-injection-seeded nanosecond optical parametric oscillator,” Opt. Lett. 31, 380–382 (2006).
    [Crossref] [PubMed]
  7. R. T. Murray, T. H. Runcorn, E. J. R. Kelleher, and J. R. Taylor, “Highly efficient mid-infrared difference-frequency generation using synchronously pulsed fiber lasers,” Opt. Lett. 41, 2446–2449 (2016).
    [Crossref] [PubMed]
  8. R. T. Murray, T. H. Runcorn, E. J. R. Kelleher, S. Guha, and J. R. Taylor, “Mid-infrared difference frequency-generation with synchronized fiber lasers,” in Lasers Congress 2016 (ASSL, LSC, LAC), (Optical Society of America, 2016), paper AW1A.3.
    [Crossref]
  9. S. Guha and L. Gonzalez, Laser Beam Propagation in Nonlinear Optical Media (CRC, 2013).
  10. S. Guha, J. O. Barnes, and L. P. Gonzalez, “Multiwatt-level continuous-wave midwave infrared generation using difference frequency mixing in periodically poled MgO-doped lithium niobate,” Opt. Lett. 39, 5018–5021 (2014).
    [Crossref] [PubMed]
  11. Y. Peng, X. Wei, X. Luo, Z. Nie, J. Peng, Y. Wang, and D. Shen, “High-power and widely tunable mid-infrared optical parametric amplification based on PPMgLN,” Opt. Lett. 41, 49–51 (2016).
    [Crossref]
  12. G. Arisholm, R. Paschotta, and T. Südmeyer, “Limits to the power scalability of high-gain optical parametric amplifiers,” J. Opt. Soc. Am. B 21, 578–590 (2004).
    [Crossref]
  13. A. Smith, SNLO software package, www.as-photonics.com (2008).
  14. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
    [Crossref]
  15. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
    [Crossref]

2016 (2)

2015 (3)

2014 (2)

M. Ebrahim-Zadeh and S. Chaitanya Kumar, “Yb-fiber-laser-pumped ultrafast frequency conversion sources from the mid-infrared to the ultraviolet,” IEEE J. Sel. Top. Quantum Electron. 20, 624–642 (2014).
[Crossref]

S. Guha, J. O. Barnes, and L. P. Gonzalez, “Multiwatt-level continuous-wave midwave infrared generation using difference frequency mixing in periodically poled MgO-doped lithium niobate,” Opt. Lett. 39, 5018–5021 (2014).
[Crossref] [PubMed]

2009 (1)

2008 (1)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

2006 (1)

2004 (1)

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

Adler, F.

Alam, S.-U.

Arie, A.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Arisholm, G.

Armstrong, D. J.

Barnes, J. O.

Belden, P.

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

Chaitanya Kumar, S.

M. Ebrahim-Zadeh and S. Chaitanya Kumar, “Yb-fiber-laser-pumped ultrafast frequency conversion sources from the mid-infrared to the ultraviolet,” IEEE J. Sel. Top. Quantum Electron. 20, 624–642 (2014).
[Crossref]

Chan, H.-Y.

Chen, D.

Cossel, K. C.

Ebrahim-Zadeh, M.

M. Ebrahim-Zadeh and S. Chaitanya Kumar, “Yb-fiber-laser-pumped ultrafast frequency conversion sources from the mid-infrared to the ultraviolet,” IEEE J. Sel. Top. Quantum Electron. 20, 624–642 (2014).
[Crossref]

Fermann, M. E.

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Gonzalez, L.

S. Guha and L. Gonzalez, Laser Beam Propagation in Nonlinear Optical Media (CRC, 2013).

Gonzalez, L. P.

Guha, S.

S. Guha, J. O. Barnes, and L. P. Gonzalez, “Multiwatt-level continuous-wave midwave infrared generation using difference frequency mixing in periodically poled MgO-doped lithium niobate,” Opt. Lett. 39, 5018–5021 (2014).
[Crossref] [PubMed]

R. T. Murray, T. H. Runcorn, E. J. R. Kelleher, S. Guha, and J. R. Taylor, “Mid-infrared difference frequency-generation with synchronized fiber lasers,” in Lasers Congress 2016 (ASSL, LSC, LAC), (Optical Society of America, 2016), paper AW1A.3.
[Crossref]

S. Guha and L. Gonzalez, Laser Beam Propagation in Nonlinear Optical Media (CRC, 2013).

Hartl, I.

Kelleher, E. J. R.

R. T. Murray, T. H. Runcorn, E. J. R. Kelleher, and J. R. Taylor, “Highly efficient mid-infrared difference-frequency generation using synchronously pulsed fiber lasers,” Opt. Lett. 41, 2446–2449 (2016).
[Crossref] [PubMed]

R. T. Murray, T. H. Runcorn, E. J. R. Kelleher, S. Guha, and J. R. Taylor, “Mid-infrared difference frequency-generation with synchronized fiber lasers,” in Lasers Congress 2016 (ASSL, LSC, LAC), (Optical Society of America, 2016), paper AW1A.3.
[Crossref]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

Luo, X.

Murray, R. T.

R. T. Murray, T. H. Runcorn, E. J. R. Kelleher, and J. R. Taylor, “Highly efficient mid-infrared difference-frequency generation using synchronously pulsed fiber lasers,” Opt. Lett. 41, 2446–2449 (2016).
[Crossref] [PubMed]

R. T. Murray, T. H. Runcorn, E. J. R. Kelleher, S. Guha, and J. R. Taylor, “Mid-infrared difference frequency-generation with synchronized fiber lasers,” in Lasers Congress 2016 (ASSL, LSC, LAC), (Optical Society of America, 2016), paper AW1A.3.
[Crossref]

Nie, Z.

Paschotta, R.

Peng, J.

Peng, Y.

Richardson, D. J.

Runcorn, T. H.

R. T. Murray, T. H. Runcorn, E. J. R. Kelleher, and J. R. Taylor, “Highly efficient mid-infrared difference-frequency generation using synchronously pulsed fiber lasers,” Opt. Lett. 41, 2446–2449 (2016).
[Crossref] [PubMed]

R. T. Murray, T. H. Runcorn, E. J. R. Kelleher, S. Guha, and J. R. Taylor, “Mid-infrared difference frequency-generation with synchronized fiber lasers,” in Lasers Congress 2016 (ASSL, LSC, LAC), (Optical Society of America, 2016), paper AW1A.3.
[Crossref]

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Shen, D.

Shepherd, D. P.

Smith, A.

A. Smith, SNLO software package, www.as-photonics.com (2008).

Smith, A. V.

Südmeyer, T.

Taylor, J. R.

R. T. Murray, T. H. Runcorn, E. J. R. Kelleher, and J. R. Taylor, “Highly efficient mid-infrared difference-frequency generation using synchronously pulsed fiber lasers,” Opt. Lett. 41, 2446–2449 (2016).
[Crossref] [PubMed]

R. T. Murray, T. H. Runcorn, E. J. R. Kelleher, S. Guha, and J. R. Taylor, “Mid-infrared difference frequency-generation with synchronized fiber lasers,” in Lasers Congress 2016 (ASSL, LSC, LAC), (Optical Society of America, 2016), paper AW1A.3.
[Crossref]

Teodoro, F. D.

Thorpe, M. J.

Wang, Y.

Wei, X.

Xu, L.

Ye, J.

Appl. Phys. B (1)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Ebrahim-Zadeh and S. Chaitanya Kumar, “Yb-fiber-laser-pumped ultrafast frequency conversion sources from the mid-infrared to the ultraviolet,” IEEE J. Sel. Top. Quantum Electron. 20, 624–642 (2014).
[Crossref]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (7)

L. Xu, H.-Y. Chan, S.-U. Alam, D. J. Richardson, and D. P. Shepherd, “Fiber-laser-pumped, high-energy, mid-IR, picosecond optical parametric oscillator with a high-harmonic cavity,” Opt. Lett. 40, 3288–3291 (2015).
[Crossref] [PubMed]

Y. Peng, X. Wei, X. Luo, Z. Nie, J. Peng, Y. Wang, and D. Shen, “High-power and widely tunable mid-infrared optical parametric amplification based on PPMgLN,” Opt. Lett. 41, 49–51 (2016).
[Crossref]

R. T. Murray, T. H. Runcorn, E. J. R. Kelleher, and J. R. Taylor, “Highly efficient mid-infrared difference-frequency generation using synchronously pulsed fiber lasers,” Opt. Lett. 41, 2446–2449 (2016).
[Crossref] [PubMed]

D. J. Armstrong and A. V. Smith, “90% pump depletion and good beam quality in a pulse-injection-seeded nanosecond optical parametric oscillator,” Opt. Lett. 31, 380–382 (2006).
[Crossref] [PubMed]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm,” Opt. Lett. 34, 1330–1332 (2009).
[Crossref] [PubMed]

S. Guha, J. O. Barnes, and L. P. Gonzalez, “Multiwatt-level continuous-wave midwave infrared generation using difference frequency mixing in periodically poled MgO-doped lithium niobate,” Opt. Lett. 39, 5018–5021 (2014).
[Crossref] [PubMed]

P. Belden, D. Chen, and F. D. Teodoro, “Watt-level, gigahertz-linewidth difference-frequency generation in PPLN pumped by an nanosecond-pulse fiber laser source,” Opt. Lett. 40, 958–961 (2015).
[Crossref] [PubMed]

Other (3)

R. T. Murray, T. H. Runcorn, E. J. R. Kelleher, S. Guha, and J. R. Taylor, “Mid-infrared difference frequency-generation with synchronized fiber lasers,” in Lasers Congress 2016 (ASSL, LSC, LAC), (Optical Society of America, 2016), paper AW1A.3.
[Crossref]

S. Guha and L. Gonzalez, Laser Beam Propagation in Nonlinear Optical Media (CRC, 2013).

A. Smith, SNLO software package, www.as-photonics.com (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Master oscillator power amplifiers (MOPAs) used for mid-infrared (mid-IR) generation, component acronyms are described in the body of the main text. (b)/(d) Example spectral and (c)/(e) temporal outputs of the Yb/Er:fiber MOPAs. Labels show the full-width half maxima (FWHM) in wavelength, frequency and time domains respectively. MOPA output characteristics presented here represent those for optimal high average power mid-IR generation. (f) Mid-IR parametric conversion stage. The two MOPA outputs were combined in a 40 mm long MgO-doped periodically poled lithium niobate (MgO-PPLN) crystal. (g) Measured pump and signal beam caustics in air, at the focal position of crystal.

Fig. 2
Fig. 2

(a) Idler spectral tuning - note that the full tuning range is not shown due to the measurement range of the optical spectrum analyzer (OSA). (b) Example idler spectrum plotted on linear scale, with full-width half maximum spectral widths (wavelength and frequency) indicated, resolution limit of OSA was 0.1 nm.

Fig. 3
Fig. 3

(a) Example amplified signal (green), generated idler (red) and combined (blue) powers produced during parametric conversion. (b) Typical pump conversion to the signal, idler and combined wavelengths.

Fig. 4
Fig. 4

Measured beam diameter (D4σ widths) of the idler in the horizontal and vertical beam axis through the focus of a lens, with a Gaussian fit to the beam caustic. Taken at full power and measured using a pyroelectric scanning slit beam profiler.

Fig. 5
Fig. 5

Sampling optical oscilloscope traces of signal and pump for increasing levels of pump conversion, from 0% to 75%, after undergoing parametric conversion in PPLN. Signal pulses shown on top row in green, with corresponding pump pulses on the bottom row in blue. All pulse amplitudes are normalized.

Fig. 6
Fig. 6

Experimentally measured amplified signal (a) and generated idler (b) powers (green and red crosses respectively) with corresponding numerically calculated powers for deff = 11 pm/V.

Fig. 7
Fig. 7

Measured temperature bandwidth curves for different pump power levels of 5 W, (a), and 25.5 W, (b). Plotted on both is the simulated data as well. (c) Normalized temperature bandwidth curves of the generated idler power, for the high and low conversion regime.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P 1 ( ) = P 2 ( 0 ) P 3 ( 0 ) P DF h 1
P DF = c 0 n 3 2 λ 1 λ 2 2 32 π 2 d eff 2
h 1 = n 1 n 3 P DF π P 2 ( 0 ) + | u 1 ( x 1 , y 1 , 1 ) | 2 d x 1 d y 1
P 2 ( ) = P 2 ( 0 ) h 2
h 2 = n 2 P 3 ( 0 ) n 3 P 2 ( 0 ) 1 π + | u 2 ( x 1 , y 1 , 1 ) | 2 d x 1 d y 1
P 3 ( ) = P 3 ( 0 ) h 3
h 3 = 1 π + | u 3 ( x 1 , y 1 , 1 ) | 2 d x 1 d y 1
σ = 2 π ( n 3 λ 3 n 2 λ 2 n 1 λ 1 1 Λ )

Metrics