Abstract

Compact optically pumped passively modelocked semiconductor disk lasers (SDLs) based on active quantum wells (QWs) such as vertical external-cavity surface-emitting lasers (VECSELs) or modelocked integrated external-cavity surface-emitting lasers (MIXSELs) are wavelength-versatile sources that offer a unique combination of gigahertz pulse repetition rates and short pulse durations. In this paper, we present record-short pulses of 184 fs from a gigahertz MIXSEL emitting at a center wavelength of 1048 nm. This result comes at the expense of low optical-to-optical pump efficiency (<1%) and average output power limited to 115 mW. We experimentally observe that shorter pulses significantly reduce the macroscopic gain saturation fluence and develop a QW model based on rate equations to reproduce the gain saturation behavior and quantitatively explain the VECSEL and MIXSEL modelocking performances. We identify spectral hole burning as the main cause of the reduced gain at shorter pulse durations, which in combination with the short lifetime of the excited carriers strongly reduces the optical pump efficiency. Our better understanding will help to address these limitations in future ultrafast SDL designs.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Pulse repetition rate scaling from 5 to 100 GHz with a high-power semiconductor disk laser

Mario Mangold, Christian A. Zaugg, Sandro M. Link, Matthias Golling, Bauke W. Tilma, and Ursula Keller
Opt. Express 22(5) 6099-6107 (2014)

Dual-comb modelocked laser

Sandro M. Link, Alexander Klenner, Mario Mangold, Christian A. Zaugg, Matthias Golling, Bauke W. Tilma, and Ursula Keller
Opt. Express 23(5) 5521-5531 (2015)

Femtosecond pulses from a modelocked integrated external-cavity surface emitting laser (MIXSEL)

Mario Mangold, Valentin J. Wittwer, Christian A. Zaugg, Sandro M. Link, 
Matthias Golling, Bauke W. Tilma, and Ursula Keller
Opt. Express 21(21) 24904-24911 (2013)

References

  • View by:
  • |
  • |
  • |

  1. U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429(2), 67–120 (2006).
    [Crossref]
  2. B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4(7), e310 (2015).
    [Crossref]
  3. M. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
    [Crossref]
  4. S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photonics Technol. Lett. 12(9), 1135–1137 (2000).
    [Crossref]
  5. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
    [Crossref]
  6. S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83(11), 2121–2123 (2003).
    [Crossref]
  7. M. Guina, A. Härkönen, V.-M. Korpijärvi, T. Leinonen, and S. Suomalainen, “Semiconductor Disk Lasers: Recent Advances in Generation of Yellow-Orange and Mid-IR Radiation,” Adv. Opt. Technol. 2012(19), 265010 (2012).
  8. R.-I. Arash, “Recent advances in VECSELs,” J. Optics-UK 18(9), 093003 (2016).
    [Crossref]
  9. B. Rudin, A. Rutz, M. Hoffmann, D. J. H. C. Maas, A.-R. Bellancourt, E. Gini, T. Südmeyer, and U. Keller, “Highly efficient optically pumped vertical-emitting semiconductor laser with more than 20 W average output power in a fundamental transverse mode,” Opt. Lett. 33(22), 2719–2721 (2008).
    [Crossref] [PubMed]
  10. B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
    [Crossref]
  11. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
    [Crossref]
  12. D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100 fs semiconductor disk lasers,” Optica 3(8), 844–852 (2016).
    [Crossref]
  13. D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Appl. Phys. B 88(4), 493–497 (2007).
    [Crossref]
  14. B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power,” Opt. Express 18(26), 27582–27588 (2010).
    [Crossref] [PubMed]
  15. M. Mangold, M. Golling, E. Gini, B. W. Tilma, and U. Keller, “Sub-300-femtosecond operation from a MIXSEL,” Opt. Express 23(17), 22043–22059 (2015).
    [Crossref] [PubMed]
  16. M. Mangold, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, and U. Keller, “Pulse repetition rate scaling from 5 to 100 GHz with a high-power semiconductor disk laser,” Opt. Express 22(5), 6099–6107 (2014).
    [Crossref] [PubMed]
  17. S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23(5), 5521–5531 (2015).
    [Crossref] [PubMed]
  18. S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, Submitted to Science (January 2017).
  19. O. D. Sieber, M. Hoffmann, V. J. Wittwer, M. Mangold, M. Golling, B. W. Tilma, T. Südmeyer, and U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113(1), 133–145 (2013).
    [Crossref]
  20. K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
    [Crossref]
  21. R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express 2(4), 739–747 (2011).
    [Crossref] [PubMed]
  22. C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, and U. Keller, “Gigahertz self-referenceable frequency comb from a semiconductor disk laser,” Opt. Express 22(13), 16445–16455 (2014).
    [Crossref] [PubMed]
  23. A. H. Quarterman, L. E. Hooper, P. J. Mosley, and K. G. Wilcox, “Gigahertz pulse source by compression of mode-locked VECSEL pulses coherently broadened in the normal dispersion regime,” Opt. Express 22(10), 12096–12101 (2014).
    [Crossref] [PubMed]
  24. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
    [Crossref]
  25. A. Klenner, A. S. Mayer, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides,” Opt. Express 24(10), 11043–11053 (2016).
    [Crossref] [PubMed]
  26. A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides,” Opt. Express 23(12), 15440–15451 (2015).
    [Crossref] [PubMed]
  27. J. V. Moloney, I. Kilen, A. Bäumner, M. Scheller, and S. W. Koch, “Nonequilibrium and thermal effects in mode-locked VECSELs,” Opt. Express 22(6), 6422–6427 (2014).
    [Crossref] [PubMed]
  28. I. Kilen, J. Hader, J. V. Moloney, and S. W. Koch, “Ultrafast nonequilibrium carrier dynamics in semiconductor laser mode locking,” Optica 1(4), 192–197 (2014).
    [Crossref]
  29. J. Hader, M. Scheller, A. Laurain, I. Kilen, C. Baker, J. V. Moloney, and S. W. Koch, “Ultrafast non-equilibrium carrier dynamics in semiconductor laser mode-locking,” Semicond. Sci. Technol. 32(1), 013002 (2017).
    [Crossref]
  30. I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney, “Fully microscopic modeling of mode locking in microcavity lasers,” J. Opt. Soc. Am. B 33(1), 75–80 (2016).
    [Crossref]
  31. N. Tessler and G. Eisenstein, “Modelling carrier dynamics and small-signal modulation response in quantum-well lasers,” Opt. Quantum Electron. 26(7), S767–S787 (1994).
    [Crossref]
  32. N. Tessler and G. Eistenstein, “On carrier injection and gain dynamics in quantum well lasers,” IEEE J. Quantum Electron. 29(6), 1586–1595 (1993).
    [Crossref]
  33. H. Dery, B. Tromborg, and G. Eisenstein, “Carrier-carrier relaxation kinetics in quantum well semiconductor structures with nonparabolic energy bands,” Phys. Rev. B 68(16), 165323 (2003).
    [Crossref]
  34. C. G. E. Alfieri, A. Diebold, F. Emaury, E. Gini, C. J. Saraceno, and U. Keller, “Improved SESAMs for femtosecond pulse generation approaching the kW average power regime,” Opt. Express 24(24), 27587–27599 (2016).
    [Crossref] [PubMed]
  35. T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70(S1Suppl.), S41–S49 (2000).
    [Crossref]
  36. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
    [Crossref]
  37. N. Tessler, R. Nagar, and G. Eisenstein, “Structure dependent modulation responses in quantum-well lasers,” IEEE J. Quantum Electron. 28(10), 2242–2250 (1992).
    [Crossref]
  38. H. Toktamiş, B. Gönül, and M. Oduncuoğlu, “Comparative study of the band-offset ratio of conventionally strained and strain-compensated InGaAs/GaAs QW lasers,” Physica E 24(3–4), 183–186 (2004).
    [Crossref]
  39. S. T. Cundiff, A. Knorr, J. Feldmann, S. W. Koch, E. O. Göbel, and H. Nickel, “Rabi flopping in semiconductors,” Phys. Rev. Lett. 73(8), 1178–1181 (1994).
    [Crossref] [PubMed]
  40. J. Hader, J. V. Moloney, and S. W. Koch, “Microscopic analysis of non-equilibrium dynamics in the semiconductor-laser gain medium,” Appl. Phys. Lett. 104(15), 151111 (2014).
    [Crossref]
  41. O. Karni, A. K. Mishra, G. Eisenstein, V. Ivanov, and J. P. Reithmaier, “Coherent control in room-temperature quantum dot semiconductor optical amplifiers using shaped pulses,” Optica 3(6), 570–576 (2016).
    [Crossref]
  42. A. P. Ongstad, D. J. Gallant, and G. C. Dente, “Carrier lifetime saturation in InGaAs single quantum wells,” Appl. Phys. Lett. 66(20), 2730–2732 (1995).
    [Crossref]
  43. C. K. Sun, B. Golubovic, H. K. Choi, C. A. Wang, and J. G. Fujimoto, “Femtosecond investigations of spectral hole burning in semiconductor lasers,” Appl. Phys. Lett. 66(13), 1650–1652 (1995).
    [Crossref]
  44. M. Asada, “Intraband relaxation time in quantum-well lasers,” IEEE J. Quantum Electron. 25(9), 2019–2026 (1989).
    [Crossref]
  45. C. Baker, M. Scheller, S. W. Koch, A. R. Perez, W. Stolz, R. Jason Jones, and J. V. Moloney, “In situ probing of mode-locked vertical-external-cavity-surface-emitting lasers,” Opt. Lett. 40(23), 5459–5462 (2015).
    [Crossref] [PubMed]
  46. M. Mangold, V. J. Wittwer, O. D. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, and U. Keller, “VECSEL gain characterization,” Opt. Express 20(4), 4136–4148 (2012).
    [Crossref] [PubMed]
  47. M. Butkus, E. A. Viktorov, T. Erneux, C. J. Hamilton, G. Maker, G. P. A. Malcolm, and E. U. Rafailov, “85.7 MHz repetition rate mode-locked semiconductor disk laser: fundamental and soliton bound states,” Opt. Express 21(21), 25526–25531 (2013).
    [Crossref] [PubMed]
  48. C. A. Zaugg, A. Klenner, O. D. Sieber, M. Golling, B. W. Tilma, and U. Keller, “Sub-100 MHz Passively Modelocked VECSEL,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), CW1G.6.
  49. A. Klenner, M. Golling, and U. Keller, “High peak power gigahertz Yb:CALGO laser,” Opt. Express 22(10), 11884–11891 (2014).
    [Crossref] [PubMed]
  50. C. G. E. Alfieri, D. Waldburger, S. M. Link, E. Gini, M. Golling, B. W. Tilma, M. Mangold, and U. Keller, “Recent progress in high power ultrafast MIXSELs,” in Proc. SPIE (2016), p. 973407.

2017 (1)

J. Hader, M. Scheller, A. Laurain, I. Kilen, C. Baker, J. V. Moloney, and S. W. Koch, “Ultrafast non-equilibrium carrier dynamics in semiconductor laser mode-locking,” Semicond. Sci. Technol. 32(1), 013002 (2017).
[Crossref]

2016 (7)

2015 (5)

2014 (8)

J. V. Moloney, I. Kilen, A. Bäumner, M. Scheller, and S. W. Koch, “Nonequilibrium and thermal effects in mode-locked VECSELs,” Opt. Express 22(6), 6422–6427 (2014).
[Crossref] [PubMed]

I. Kilen, J. Hader, J. V. Moloney, and S. W. Koch, “Ultrafast nonequilibrium carrier dynamics in semiconductor laser mode locking,” Optica 1(4), 192–197 (2014).
[Crossref]

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, and U. Keller, “Gigahertz self-referenceable frequency comb from a semiconductor disk laser,” Opt. Express 22(13), 16445–16455 (2014).
[Crossref] [PubMed]

A. H. Quarterman, L. E. Hooper, P. J. Mosley, and K. G. Wilcox, “Gigahertz pulse source by compression of mode-locked VECSEL pulses coherently broadened in the normal dispersion regime,” Opt. Express 22(10), 12096–12101 (2014).
[Crossref] [PubMed]

M. Mangold, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, and U. Keller, “Pulse repetition rate scaling from 5 to 100 GHz with a high-power semiconductor disk laser,” Opt. Express 22(5), 6099–6107 (2014).
[Crossref] [PubMed]

J. Hader, J. V. Moloney, and S. W. Koch, “Microscopic analysis of non-equilibrium dynamics in the semiconductor-laser gain medium,” Appl. Phys. Lett. 104(15), 151111 (2014).
[Crossref]

A. Klenner, M. Golling, and U. Keller, “High peak power gigahertz Yb:CALGO laser,” Opt. Express 22(10), 11884–11891 (2014).
[Crossref] [PubMed]

2013 (2)

M. Butkus, E. A. Viktorov, T. Erneux, C. J. Hamilton, G. Maker, G. P. A. Malcolm, and E. U. Rafailov, “85.7 MHz repetition rate mode-locked semiconductor disk laser: fundamental and soliton bound states,” Opt. Express 21(21), 25526–25531 (2013).
[Crossref] [PubMed]

O. D. Sieber, M. Hoffmann, V. J. Wittwer, M. Mangold, M. Golling, B. W. Tilma, T. Südmeyer, and U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113(1), 133–145 (2013).
[Crossref]

2012 (3)

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

M. Guina, A. Härkönen, V.-M. Korpijärvi, T. Leinonen, and S. Suomalainen, “Semiconductor Disk Lasers: Recent Advances in Generation of Yellow-Orange and Mid-IR Radiation,” Adv. Opt. Technol. 2012(19), 265010 (2012).

M. Mangold, V. J. Wittwer, O. D. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, and U. Keller, “VECSEL gain characterization,” Opt. Express 20(4), 4136–4148 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

2008 (1)

2007 (1)

D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Appl. Phys. B 88(4), 493–497 (2007).
[Crossref]

2006 (1)

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429(2), 67–120 (2006).
[Crossref]

2004 (1)

H. Toktamiş, B. Gönül, and M. Oduncuoğlu, “Comparative study of the band-offset ratio of conventionally strained and strain-compensated InGaAs/GaAs QW lasers,” Physica E 24(3–4), 183–186 (2004).
[Crossref]

2003 (2)

H. Dery, B. Tromborg, and G. Eisenstein, “Carrier-carrier relaxation kinetics in quantum well semiconductor structures with nonparabolic energy bands,” Phys. Rev. B 68(16), 165323 (2003).
[Crossref]

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83(11), 2121–2123 (2003).
[Crossref]

2000 (2)

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photonics Technol. Lett. 12(9), 1135–1137 (2000).
[Crossref]

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70(S1Suppl.), S41–S49 (2000).
[Crossref]

1999 (1)

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
[Crossref]

1997 (2)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

1996 (1)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

1995 (2)

A. P. Ongstad, D. J. Gallant, and G. C. Dente, “Carrier lifetime saturation in InGaAs single quantum wells,” Appl. Phys. Lett. 66(20), 2730–2732 (1995).
[Crossref]

C. K. Sun, B. Golubovic, H. K. Choi, C. A. Wang, and J. G. Fujimoto, “Femtosecond investigations of spectral hole burning in semiconductor lasers,” Appl. Phys. Lett. 66(13), 1650–1652 (1995).
[Crossref]

1994 (2)

S. T. Cundiff, A. Knorr, J. Feldmann, S. W. Koch, E. O. Göbel, and H. Nickel, “Rabi flopping in semiconductors,” Phys. Rev. Lett. 73(8), 1178–1181 (1994).
[Crossref] [PubMed]

N. Tessler and G. Eisenstein, “Modelling carrier dynamics and small-signal modulation response in quantum-well lasers,” Opt. Quantum Electron. 26(7), S767–S787 (1994).
[Crossref]

1993 (1)

N. Tessler and G. Eistenstein, “On carrier injection and gain dynamics in quantum well lasers,” IEEE J. Quantum Electron. 29(6), 1586–1595 (1993).
[Crossref]

1992 (1)

N. Tessler, R. Nagar, and G. Eisenstein, “Structure dependent modulation responses in quantum-well lasers,” IEEE J. Quantum Electron. 28(10), 2242–2250 (1992).
[Crossref]

1989 (1)

M. Asada, “Intraband relaxation time in quantum-well lasers,” IEEE J. Quantum Electron. 25(9), 2019–2026 (1989).
[Crossref]

Alfieri, C. G. E.

Arash, R.-I.

R.-I. Arash, “Recent advances in VECSELs,” J. Optics-UK 18(9), 093003 (2016).
[Crossref]

Artigas, D.

Asada, M.

M. Asada, “Intraband relaxation time in quantum-well lasers,” IEEE J. Quantum Electron. 25(9), 2019–2026 (1989).
[Crossref]

Aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Aviles-Espinosa, R.

Baker, C.

J. Hader, M. Scheller, A. Laurain, I. Kilen, C. Baker, J. V. Moloney, and S. W. Koch, “Ultrafast non-equilibrium carrier dynamics in semiconductor laser mode-locking,” Semicond. Sci. Technol. 32(1), 013002 (2017).
[Crossref]

C. Baker, M. Scheller, S. W. Koch, A. R. Perez, W. Stolz, R. Jason Jones, and J. V. Moloney, “In situ probing of mode-locked vertical-external-cavity-surface-emitting lasers,” Opt. Lett. 40(23), 5459–5462 (2015).
[Crossref] [PubMed]

Barbarin, Y.

Bäumner, A.

Bellancourt, A.-R.

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Butkus, M.

Chae, S.

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83(11), 2121–2123 (2003).
[Crossref]

Cheng, Y.

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

Cho, Y. H.

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83(11), 2121–2123 (2003).
[Crossref]

Choi, H. K.

C. K. Sun, B. Golubovic, H. K. Choi, C. A. Wang, and J. G. Fujimoto, “Femtosecond investigations of spectral hole burning in semiconductor lasers,” Appl. Phys. Lett. 66(13), 1650–1652 (1995).
[Crossref]

Cundiff, S. T.

S. T. Cundiff, A. Knorr, J. Feldmann, S. W. Koch, E. O. Göbel, and H. Nickel, “Rabi flopping in semiconductors,” Phys. Rev. Lett. 73(8), 1178–1181 (1994).
[Crossref] [PubMed]

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Dente, G. C.

A. P. Ongstad, D. J. Gallant, and G. C. Dente, “Carrier lifetime saturation in InGaAs single quantum wells,” Appl. Phys. Lett. 66(20), 2730–2732 (1995).
[Crossref]

Dery, H.

H. Dery, B. Tromborg, and G. Eisenstein, “Carrier-carrier relaxation kinetics in quantum well semiconductor structures with nonparabolic energy bands,” Phys. Rev. B 68(16), 165323 (2003).
[Crossref]

Dhanjal, S.

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photonics Technol. Lett. 12(9), 1135–1137 (2000).
[Crossref]

Diebold, A.

Dunlop, A. E.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
[Crossref]

Eisenstein, G.

O. Karni, A. K. Mishra, G. Eisenstein, V. Ivanov, and J. P. Reithmaier, “Coherent control in room-temperature quantum dot semiconductor optical amplifiers using shaped pulses,” Optica 3(6), 570–576 (2016).
[Crossref]

H. Dery, B. Tromborg, and G. Eisenstein, “Carrier-carrier relaxation kinetics in quantum well semiconductor structures with nonparabolic energy bands,” Phys. Rev. B 68(16), 165323 (2003).
[Crossref]

N. Tessler and G. Eisenstein, “Modelling carrier dynamics and small-signal modulation response in quantum-well lasers,” Opt. Quantum Electron. 26(7), S767–S787 (1994).
[Crossref]

N. Tessler, R. Nagar, and G. Eisenstein, “Structure dependent modulation responses in quantum-well lasers,” IEEE J. Quantum Electron. 28(10), 2242–2250 (1992).
[Crossref]

Eistenstein, G.

N. Tessler and G. Eistenstein, “On carrier injection and gain dynamics in quantum well lasers,” IEEE J. Quantum Electron. 29(6), 1586–1595 (1993).
[Crossref]

Emaury, F.

Erneux, T.

Fedorova, K. A.

M. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

Feldmann, J.

S. T. Cundiff, A. Knorr, J. Feldmann, S. W. Koch, E. O. Göbel, and H. Nickel, “Rabi flopping in semiconductors,” Phys. Rev. Lett. 73(8), 1178–1181 (1994).
[Crossref] [PubMed]

Filippidis, G.

Fittinghoff, D. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Fujimoto, J. G.

C. K. Sun, B. Golubovic, H. K. Choi, C. A. Wang, and J. G. Fujimoto, “Femtosecond investigations of spectral hole burning in semiconductor lasers,” Appl. Phys. Lett. 66(13), 1650–1652 (1995).
[Crossref]

Gaafar, M.

M. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

Gaeta, A. L.

Gallant, D. J.

A. P. Ongstad, D. J. Gallant, and G. C. Dente, “Carrier lifetime saturation in InGaAs single quantum wells,” Appl. Phys. Lett. 66(20), 2730–2732 (1995).
[Crossref]

Gini, E.

Göbel, E. O.

S. T. Cundiff, A. Knorr, J. Feldmann, S. W. Koch, E. O. Göbel, and H. Nickel, “Rabi flopping in semiconductors,” Phys. Rev. Lett. 73(8), 1178–1181 (1994).
[Crossref] [PubMed]

Golling, M.

D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100 fs semiconductor disk lasers,” Optica 3(8), 844–852 (2016).
[Crossref]

M. Mangold, M. Golling, E. Gini, B. W. Tilma, and U. Keller, “Sub-300-femtosecond operation from a MIXSEL,” Opt. Express 23(17), 22043–22059 (2015).
[Crossref] [PubMed]

S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23(5), 5521–5531 (2015).
[Crossref] [PubMed]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4(7), e310 (2015).
[Crossref]

C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, and U. Keller, “Gigahertz self-referenceable frequency comb from a semiconductor disk laser,” Opt. Express 22(13), 16445–16455 (2014).
[Crossref] [PubMed]

A. Klenner, M. Golling, and U. Keller, “High peak power gigahertz Yb:CALGO laser,” Opt. Express 22(10), 11884–11891 (2014).
[Crossref] [PubMed]

M. Mangold, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, and U. Keller, “Pulse repetition rate scaling from 5 to 100 GHz with a high-power semiconductor disk laser,” Opt. Express 22(5), 6099–6107 (2014).
[Crossref] [PubMed]

O. D. Sieber, M. Hoffmann, V. J. Wittwer, M. Mangold, M. Golling, B. W. Tilma, T. Südmeyer, and U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113(1), 133–145 (2013).
[Crossref]

M. Mangold, V. J. Wittwer, O. D. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, and U. Keller, “VECSEL gain characterization,” Opt. Express 20(4), 4136–4148 (2012).
[Crossref] [PubMed]

B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power,” Opt. Express 18(26), 27582–27588 (2010).
[Crossref] [PubMed]

D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Appl. Phys. B 88(4), 493–497 (2007).
[Crossref]

Golubovic, B.

C. K. Sun, B. Golubovic, H. K. Choi, C. A. Wang, and J. G. Fujimoto, “Femtosecond investigations of spectral hole burning in semiconductor lasers,” Appl. Phys. Lett. 66(13), 1650–1652 (1995).
[Crossref]

Gönül, B.

H. Toktamiş, B. Gönül, and M. Oduncuoğlu, “Comparative study of the band-offset ratio of conventionally strained and strain-compensated InGaAs/GaAs QW lasers,” Physica E 24(3–4), 183–186 (2004).
[Crossref]

Guina, M.

M. Guina, A. Härkönen, V.-M. Korpijärvi, T. Leinonen, and S. Suomalainen, “Semiconductor Disk Lasers: Recent Advances in Generation of Yellow-Orange and Mid-IR Radiation,” Adv. Opt. Technol. 2012(19), 265010 (2012).

Hader, J.

J. Hader, M. Scheller, A. Laurain, I. Kilen, C. Baker, J. V. Moloney, and S. W. Koch, “Ultrafast non-equilibrium carrier dynamics in semiconductor laser mode-locking,” Semicond. Sci. Technol. 32(1), 013002 (2017).
[Crossref]

I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney, “Fully microscopic modeling of mode locking in microcavity lasers,” J. Opt. Soc. Am. B 33(1), 75–80 (2016).
[Crossref]

I. Kilen, J. Hader, J. V. Moloney, and S. W. Koch, “Ultrafast nonequilibrium carrier dynamics in semiconductor laser mode locking,” Optica 1(4), 192–197 (2014).
[Crossref]

J. Hader, J. V. Moloney, and S. W. Koch, “Microscopic analysis of non-equilibrium dynamics in the semiconductor-laser gain medium,” Appl. Phys. Lett. 104(15), 151111 (2014).
[Crossref]

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

Hakimi, F.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

Hamilton, C.

Hamilton, C. J.

Haring, R.

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photonics Technol. Lett. 12(9), 1135–1137 (2000).
[Crossref]

Härkönen, A.

M. Guina, A. Härkönen, V.-M. Korpijärvi, T. Leinonen, and S. Suomalainen, “Semiconductor Disk Lasers: Recent Advances in Generation of Yellow-Orange and Mid-IR Radiation,” Adv. Opt. Technol. 2012(19), 265010 (2012).

Heinen, B.

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

Hoffmann, M.

Hönninger, C.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Hoogland, S.

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photonics Technol. Lett. 12(9), 1135–1137 (2000).
[Crossref]

Hooper, L. E.

Ippen, E. P.

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70(S1Suppl.), S41–S49 (2000).
[Crossref]

Ivanov, V.

Jason Jones, R.

Jeon, H.

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83(11), 2121–2123 (2003).
[Crossref]

Jeong, C. H.

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83(11), 2121–2123 (2003).
[Crossref]

Johnson, A. R.

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kane, D. J.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Karni, O.

Kärtner, F. X.

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70(S1Suppl.), S41–S49 (2000).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Keller, U.

A. Klenner, A. S. Mayer, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides,” Opt. Express 24(10), 11043–11053 (2016).
[Crossref] [PubMed]

D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100 fs semiconductor disk lasers,” Optica 3(8), 844–852 (2016).
[Crossref]

C. G. E. Alfieri, A. Diebold, F. Emaury, E. Gini, C. J. Saraceno, and U. Keller, “Improved SESAMs for femtosecond pulse generation approaching the kW average power regime,” Opt. Express 24(24), 27587–27599 (2016).
[Crossref] [PubMed]

S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23(5), 5521–5531 (2015).
[Crossref] [PubMed]

M. Mangold, M. Golling, E. Gini, B. W. Tilma, and U. Keller, “Sub-300-femtosecond operation from a MIXSEL,” Opt. Express 23(17), 22043–22059 (2015).
[Crossref] [PubMed]

A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides,” Opt. Express 23(12), 15440–15451 (2015).
[Crossref] [PubMed]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4(7), e310 (2015).
[Crossref]

A. Klenner, M. Golling, and U. Keller, “High peak power gigahertz Yb:CALGO laser,” Opt. Express 22(10), 11884–11891 (2014).
[Crossref] [PubMed]

C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, and U. Keller, “Gigahertz self-referenceable frequency comb from a semiconductor disk laser,” Opt. Express 22(13), 16445–16455 (2014).
[Crossref] [PubMed]

M. Mangold, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, and U. Keller, “Pulse repetition rate scaling from 5 to 100 GHz with a high-power semiconductor disk laser,” Opt. Express 22(5), 6099–6107 (2014).
[Crossref] [PubMed]

O. D. Sieber, M. Hoffmann, V. J. Wittwer, M. Mangold, M. Golling, B. W. Tilma, T. Südmeyer, and U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113(1), 133–145 (2013).
[Crossref]

M. Mangold, V. J. Wittwer, O. D. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, and U. Keller, “VECSEL gain characterization,” Opt. Express 20(4), 4136–4148 (2012).
[Crossref] [PubMed]

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express 2(4), 739–747 (2011).
[Crossref] [PubMed]

B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power,” Opt. Express 18(26), 27582–27588 (2010).
[Crossref] [PubMed]

B. Rudin, A. Rutz, M. Hoffmann, D. J. H. C. Maas, A.-R. Bellancourt, E. Gini, T. Südmeyer, and U. Keller, “Highly efficient optically pumped vertical-emitting semiconductor laser with more than 20 W average output power in a fundamental transverse mode,” Opt. Lett. 33(22), 2719–2721 (2008).
[Crossref] [PubMed]

D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Appl. Phys. B 88(4), 493–497 (2007).
[Crossref]

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429(2), 67–120 (2006).
[Crossref]

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photonics Technol. Lett. 12(9), 1135–1137 (2000).
[Crossref]

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kilen, I.

Kim, J.

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83(11), 2121–2123 (2003).
[Crossref]

Klenner, A.

Knorr, A.

S. T. Cundiff, A. Knorr, J. Feldmann, S. W. Koch, E. O. Göbel, and H. Nickel, “Rabi flopping in semiconductors,” Phys. Rev. Lett. 73(8), 1178–1181 (1994).
[Crossref] [PubMed]

Koch, M.

M. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

Koch, S. W.

J. Hader, M. Scheller, A. Laurain, I. Kilen, C. Baker, J. V. Moloney, and S. W. Koch, “Ultrafast non-equilibrium carrier dynamics in semiconductor laser mode-locking,” Semicond. Sci. Technol. 32(1), 013002 (2017).
[Crossref]

I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney, “Fully microscopic modeling of mode locking in microcavity lasers,” J. Opt. Soc. Am. B 33(1), 75–80 (2016).
[Crossref]

C. Baker, M. Scheller, S. W. Koch, A. R. Perez, W. Stolz, R. Jason Jones, and J. V. Moloney, “In situ probing of mode-locked vertical-external-cavity-surface-emitting lasers,” Opt. Lett. 40(23), 5459–5462 (2015).
[Crossref] [PubMed]

I. Kilen, J. Hader, J. V. Moloney, and S. W. Koch, “Ultrafast nonequilibrium carrier dynamics in semiconductor laser mode locking,” Optica 1(4), 192–197 (2014).
[Crossref]

J. V. Moloney, I. Kilen, A. Bäumner, M. Scheller, and S. W. Koch, “Nonequilibrium and thermal effects in mode-locked VECSELs,” Opt. Express 22(6), 6422–6427 (2014).
[Crossref] [PubMed]

J. Hader, J. V. Moloney, and S. W. Koch, “Microscopic analysis of non-equilibrium dynamics in the semiconductor-laser gain medium,” Appl. Phys. Lett. 104(15), 151111 (2014).
[Crossref]

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

S. T. Cundiff, A. Knorr, J. Feldmann, S. W. Koch, E. O. Göbel, and H. Nickel, “Rabi flopping in semiconductors,” Phys. Rev. Lett. 73(8), 1178–1181 (1994).
[Crossref] [PubMed]

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Korpijärvi, V.-M.

M. Guina, A. Härkönen, V.-M. Korpijärvi, T. Leinonen, and S. Suomalainen, “Semiconductor Disk Lasers: Recent Advances in Generation of Yellow-Orange and Mid-IR Radiation,” Adv. Opt. Technol. 2012(19), 265010 (2012).

Krestnikov, I. L.

Krumbügel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Kunert, B.

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

Kuznetsov, M.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

Lamont, M. R. E.

Laurain, A.

J. Hader, M. Scheller, A. Laurain, I. Kilen, C. Baker, J. V. Moloney, and S. W. Koch, “Ultrafast non-equilibrium carrier dynamics in semiconductor laser mode-locking,” Semicond. Sci. Technol. 32(1), 013002 (2017).
[Crossref]

Lee, S. N.

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83(11), 2121–2123 (2003).
[Crossref]

Leinonen, T.

M. Guina, A. Härkönen, V.-M. Korpijärvi, T. Leinonen, and S. Suomalainen, “Semiconductor Disk Lasers: Recent Advances in Generation of Yellow-Orange and Mid-IR Radiation,” Adv. Opt. Technol. 2012(19), 265010 (2012).

Link, S. M.

Lipson, M.

Livshits, D. A.

Loza-Alvarez, P.

Luke, K.

Maas, D. J. H. C.

Maker, G.

Malcolm, G.

Malcolm, G. P. A.

Mangold, M.

D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100 fs semiconductor disk lasers,” Optica 3(8), 844–852 (2016).
[Crossref]

S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23(5), 5521–5531 (2015).
[Crossref] [PubMed]

M. Mangold, M. Golling, E. Gini, B. W. Tilma, and U. Keller, “Sub-300-femtosecond operation from a MIXSEL,” Opt. Express 23(17), 22043–22059 (2015).
[Crossref] [PubMed]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4(7), e310 (2015).
[Crossref]

M. Mangold, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, and U. Keller, “Pulse repetition rate scaling from 5 to 100 GHz with a high-power semiconductor disk laser,” Opt. Express 22(5), 6099–6107 (2014).
[Crossref] [PubMed]

C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, and U. Keller, “Gigahertz self-referenceable frequency comb from a semiconductor disk laser,” Opt. Express 22(13), 16445–16455 (2014).
[Crossref] [PubMed]

O. D. Sieber, M. Hoffmann, V. J. Wittwer, M. Mangold, M. Golling, B. W. Tilma, T. Südmeyer, and U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113(1), 133–145 (2013).
[Crossref]

M. Mangold, V. J. Wittwer, O. D. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, and U. Keller, “VECSEL gain characterization,” Opt. Express 20(4), 4136–4148 (2012).
[Crossref] [PubMed]

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Mayer, A. S.

Mishra, A. K.

Moloney, J. V.

J. Hader, M. Scheller, A. Laurain, I. Kilen, C. Baker, J. V. Moloney, and S. W. Koch, “Ultrafast non-equilibrium carrier dynamics in semiconductor laser mode-locking,” Semicond. Sci. Technol. 32(1), 013002 (2017).
[Crossref]

I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney, “Fully microscopic modeling of mode locking in microcavity lasers,” J. Opt. Soc. Am. B 33(1), 75–80 (2016).
[Crossref]

C. Baker, M. Scheller, S. W. Koch, A. R. Perez, W. Stolz, R. Jason Jones, and J. V. Moloney, “In situ probing of mode-locked vertical-external-cavity-surface-emitting lasers,” Opt. Lett. 40(23), 5459–5462 (2015).
[Crossref] [PubMed]

I. Kilen, J. Hader, J. V. Moloney, and S. W. Koch, “Ultrafast nonequilibrium carrier dynamics in semiconductor laser mode locking,” Optica 1(4), 192–197 (2014).
[Crossref]

J. V. Moloney, I. Kilen, A. Bäumner, M. Scheller, and S. W. Koch, “Nonequilibrium and thermal effects in mode-locked VECSELs,” Opt. Express 22(6), 6422–6427 (2014).
[Crossref] [PubMed]

J. Hader, J. V. Moloney, and S. W. Koch, “Microscopic analysis of non-equilibrium dynamics in the semiconductor-laser gain medium,” Appl. Phys. Lett. 104(15), 151111 (2014).
[Crossref]

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

Mooradian, A.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

Morier-Genoud, F.

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photonics Technol. Lett. 12(9), 1135–1137 (2000).
[Crossref]

Mosley, P. J.

Nagar, R.

N. Tessler, R. Nagar, and G. Eisenstein, “Structure dependent modulation responses in quantum-well lasers,” IEEE J. Quantum Electron. 28(10), 2242–2250 (1992).
[Crossref]

Nickel, H.

S. T. Cundiff, A. Knorr, J. Feldmann, S. W. Koch, E. O. Göbel, and H. Nickel, “Rabi flopping in semiconductors,” Phys. Rev. Lett. 73(8), 1178–1181 (1994).
[Crossref] [PubMed]

Oduncuoglu, M.

H. Toktamiş, B. Gönül, and M. Oduncuoğlu, “Comparative study of the band-offset ratio of conventionally strained and strain-compensated InGaAs/GaAs QW lasers,” Physica E 24(3–4), 183–186 (2004).
[Crossref]

Okawachi, Y.

Ongstad, A. P.

A. P. Ongstad, D. J. Gallant, and G. C. Dente, “Carrier lifetime saturation in InGaAs single quantum wells,” Appl. Phys. Lett. 66(20), 2730–2732 (1995).
[Crossref]

Park, S. H.

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83(11), 2121–2123 (2003).
[Crossref]

Park, Y.

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83(11), 2121–2123 (2003).
[Crossref]

Paschotta, R.

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photonics Technol. Lett. 12(9), 1135–1137 (2000).
[Crossref]

Perez, A. R.

Quarterman, A. H.

Rafailov, E. U.

Rahimi-Iman, A.

M. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

Reithmaier, J. P.

Richman, B.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Roberts, J. S.

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photonics Technol. Lett. 12(9), 1135–1137 (2000).
[Crossref]

Rudin, B.

Rutz, A.

Sakong, T.

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83(11), 2121–2123 (2003).
[Crossref]

Santos, S. I. C. O.

Saraceno, C. J.

Scheller, M.

Schibli, T. R.

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70(S1Suppl.), S41–S49 (2000).
[Crossref]

Sieber, O. D.

Sparenberg, M.

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

Sprague, R.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

Steinmeyer, G.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
[Crossref]

Stenger, J.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
[Crossref]

Stolz, W.

M. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

C. Baker, M. Scheller, S. W. Koch, A. R. Perez, W. Stolz, R. Jason Jones, and J. V. Moloney, “In situ probing of mode-locked vertical-external-cavity-surface-emitting lasers,” Opt. Lett. 40(23), 5459–5462 (2015).
[Crossref] [PubMed]

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

Südmeyer, T.

O. D. Sieber, M. Hoffmann, V. J. Wittwer, M. Mangold, M. Golling, B. W. Tilma, T. Südmeyer, and U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113(1), 133–145 (2013).
[Crossref]

M. Mangold, V. J. Wittwer, O. D. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, and U. Keller, “VECSEL gain characterization,” Opt. Express 20(4), 4136–4148 (2012).
[Crossref] [PubMed]

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express 2(4), 739–747 (2011).
[Crossref] [PubMed]

B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power,” Opt. Express 18(26), 27582–27588 (2010).
[Crossref] [PubMed]

B. Rudin, A. Rutz, M. Hoffmann, D. J. H. C. Maas, A.-R. Bellancourt, E. Gini, T. Südmeyer, and U. Keller, “Highly efficient optically pumped vertical-emitting semiconductor laser with more than 20 W average output power in a fundamental transverse mode,” Opt. Lett. 33(22), 2719–2721 (2008).
[Crossref] [PubMed]

D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Appl. Phys. B 88(4), 493–497 (2007).
[Crossref]

Sugioka, K.

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

Sun, C. K.

C. K. Sun, B. Golubovic, H. K. Choi, C. A. Wang, and J. G. Fujimoto, “Femtosecond investigations of spectral hole burning in semiconductor lasers,” Appl. Phys. Lett. 66(13), 1650–1652 (1995).
[Crossref]

Suomalainen, S.

M. Guina, A. Härkönen, V.-M. Korpijärvi, T. Leinonen, and S. Suomalainen, “Semiconductor Disk Lasers: Recent Advances in Generation of Yellow-Orange and Mid-IR Radiation,” Adv. Opt. Technol. 2012(19), 265010 (2012).

Sutter, D. H.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
[Crossref]

Sweetser, J. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Telle, H. R.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
[Crossref]

Tessler, N.

N. Tessler and G. Eisenstein, “Modelling carrier dynamics and small-signal modulation response in quantum-well lasers,” Opt. Quantum Electron. 26(7), S767–S787 (1994).
[Crossref]

N. Tessler and G. Eistenstein, “On carrier injection and gain dynamics in quantum well lasers,” IEEE J. Quantum Electron. 29(6), 1586–1595 (1993).
[Crossref]

N. Tessler, R. Nagar, and G. Eisenstein, “Structure dependent modulation responses in quantum-well lasers,” IEEE J. Quantum Electron. 28(10), 2242–2250 (1992).
[Crossref]

Thoen, E. R.

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70(S1Suppl.), S41–S49 (2000).
[Crossref]

Tilma, B. W.

D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100 fs semiconductor disk lasers,” Optica 3(8), 844–852 (2016).
[Crossref]

M. Mangold, M. Golling, E. Gini, B. W. Tilma, and U. Keller, “Sub-300-femtosecond operation from a MIXSEL,” Opt. Express 23(17), 22043–22059 (2015).
[Crossref] [PubMed]

S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23(5), 5521–5531 (2015).
[Crossref] [PubMed]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4(7), e310 (2015).
[Crossref]

M. Mangold, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, and U. Keller, “Pulse repetition rate scaling from 5 to 100 GHz with a high-power semiconductor disk laser,” Opt. Express 22(5), 6099–6107 (2014).
[Crossref] [PubMed]

C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, and U. Keller, “Gigahertz self-referenceable frequency comb from a semiconductor disk laser,” Opt. Express 22(13), 16445–16455 (2014).
[Crossref] [PubMed]

O. D. Sieber, M. Hoffmann, V. J. Wittwer, M. Mangold, M. Golling, B. W. Tilma, T. Südmeyer, and U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113(1), 133–145 (2013).
[Crossref]

Toktamis, H.

H. Toktamiş, B. Gönül, and M. Oduncuoğlu, “Comparative study of the band-offset ratio of conventionally strained and strain-compensated InGaAs/GaAs QW lasers,” Physica E 24(3–4), 183–186 (2004).
[Crossref]

Trebino, R.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Tromborg, B.

H. Dery, B. Tromborg, and G. Eisenstein, “Carrier-carrier relaxation kinetics in quantum well semiconductor structures with nonparabolic energy bands,” Phys. Rev. B 68(16), 165323 (2003).
[Crossref]

Tropper, A. C.

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429(2), 67–120 (2006).
[Crossref]

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photonics Technol. Lett. 12(9), 1135–1137 (2000).
[Crossref]

Unold, H. J.

D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Appl. Phys. B 88(4), 493–497 (2007).
[Crossref]

Viktorov, E. A.

Waldburger, D.

D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100 fs semiconductor disk lasers,” Optica 3(8), 844–852 (2016).
[Crossref]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4(7), e310 (2015).
[Crossref]

Wang, C. A.

C. K. Sun, B. Golubovic, H. K. Choi, C. A. Wang, and J. G. Fujimoto, “Femtosecond investigations of spectral hole burning in semiconductor lasers,” Appl. Phys. Lett. 66(13), 1650–1652 (1995).
[Crossref]

Wang, T. L.

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

Weber, A.

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

Weingarten, K. J.

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express 2(4), 739–747 (2011).
[Crossref] [PubMed]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Wilcox, K. G.

Wittwer, V. J.

Yeom, G. Y.

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83(11), 2121–2123 (2003).
[Crossref]

Zaugg, C. A.

Adv. Opt. Photonics (1)

M. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

Adv. Opt. Technol. (1)

M. Guina, A. Härkönen, V.-M. Korpijärvi, T. Leinonen, and S. Suomalainen, “Semiconductor Disk Lasers: Recent Advances in Generation of Yellow-Orange and Mid-IR Radiation,” Adv. Opt. Technol. 2012(19), 265010 (2012).

Appl. Phys. B (4)

D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Appl. Phys. B 88(4), 493–497 (2007).
[Crossref]

O. D. Sieber, M. Hoffmann, V. J. Wittwer, M. Mangold, M. Golling, B. W. Tilma, T. Südmeyer, and U. Keller, “Experimentally verified pulse formation model for high-power femtosecond VECSELs,” Appl. Phys. B 113(1), 133–145 (2013).
[Crossref]

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
[Crossref]

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70(S1Suppl.), S41–S49 (2000).
[Crossref]

Appl. Phys. Lett. (4)

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83(11), 2121–2123 (2003).
[Crossref]

J. Hader, J. V. Moloney, and S. W. Koch, “Microscopic analysis of non-equilibrium dynamics in the semiconductor-laser gain medium,” Appl. Phys. Lett. 104(15), 151111 (2014).
[Crossref]

A. P. Ongstad, D. J. Gallant, and G. C. Dente, “Carrier lifetime saturation in InGaAs single quantum wells,” Appl. Phys. Lett. 66(20), 2730–2732 (1995).
[Crossref]

C. K. Sun, B. Golubovic, H. K. Choi, C. A. Wang, and J. G. Fujimoto, “Femtosecond investigations of spectral hole burning in semiconductor lasers,” Appl. Phys. Lett. 66(13), 1650–1652 (1995).
[Crossref]

Biomed. Opt. Express (1)

Electron. Lett. (1)

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

IEEE J. Quantum Electron. (3)

N. Tessler, R. Nagar, and G. Eisenstein, “Structure dependent modulation responses in quantum-well lasers,” IEEE J. Quantum Electron. 28(10), 2242–2250 (1992).
[Crossref]

N. Tessler and G. Eistenstein, “On carrier injection and gain dynamics in quantum well lasers,” IEEE J. Quantum Electron. 29(6), 1586–1595 (1993).
[Crossref]

M. Asada, “Intraband relaxation time in quantum-well lasers,” IEEE J. Quantum Electron. 25(9), 2019–2026 (1989).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

IEEE Photonics Technol. Lett. (2)

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photonics Technol. Lett. 12(9), 1135–1137 (2000).
[Crossref]

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Optics-UK (1)

R.-I. Arash, “Recent advances in VECSELs,” J. Optics-UK 18(9), 093003 (2016).
[Crossref]

Light Sci. Appl. (2)

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light Sci. Appl. 4(7), e310 (2015).
[Crossref]

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

Opt. Express (13)

C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, and U. Keller, “Gigahertz self-referenceable frequency comb from a semiconductor disk laser,” Opt. Express 22(13), 16445–16455 (2014).
[Crossref] [PubMed]

A. H. Quarterman, L. E. Hooper, P. J. Mosley, and K. G. Wilcox, “Gigahertz pulse source by compression of mode-locked VECSEL pulses coherently broadened in the normal dispersion regime,” Opt. Express 22(10), 12096–12101 (2014).
[Crossref] [PubMed]

B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power,” Opt. Express 18(26), 27582–27588 (2010).
[Crossref] [PubMed]

M. Mangold, M. Golling, E. Gini, B. W. Tilma, and U. Keller, “Sub-300-femtosecond operation from a MIXSEL,” Opt. Express 23(17), 22043–22059 (2015).
[Crossref] [PubMed]

M. Mangold, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, and U. Keller, “Pulse repetition rate scaling from 5 to 100 GHz with a high-power semiconductor disk laser,” Opt. Express 22(5), 6099–6107 (2014).
[Crossref] [PubMed]

S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23(5), 5521–5531 (2015).
[Crossref] [PubMed]

A. Klenner, A. S. Mayer, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides,” Opt. Express 24(10), 11043–11053 (2016).
[Crossref] [PubMed]

A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides,” Opt. Express 23(12), 15440–15451 (2015).
[Crossref] [PubMed]

J. V. Moloney, I. Kilen, A. Bäumner, M. Scheller, and S. W. Koch, “Nonequilibrium and thermal effects in mode-locked VECSELs,” Opt. Express 22(6), 6422–6427 (2014).
[Crossref] [PubMed]

C. G. E. Alfieri, A. Diebold, F. Emaury, E. Gini, C. J. Saraceno, and U. Keller, “Improved SESAMs for femtosecond pulse generation approaching the kW average power regime,” Opt. Express 24(24), 27587–27599 (2016).
[Crossref] [PubMed]

M. Mangold, V. J. Wittwer, O. D. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, and U. Keller, “VECSEL gain characterization,” Opt. Express 20(4), 4136–4148 (2012).
[Crossref] [PubMed]

M. Butkus, E. A. Viktorov, T. Erneux, C. J. Hamilton, G. Maker, G. P. A. Malcolm, and E. U. Rafailov, “85.7 MHz repetition rate mode-locked semiconductor disk laser: fundamental and soliton bound states,” Opt. Express 21(21), 25526–25531 (2013).
[Crossref] [PubMed]

A. Klenner, M. Golling, and U. Keller, “High peak power gigahertz Yb:CALGO laser,” Opt. Express 22(10), 11884–11891 (2014).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

N. Tessler and G. Eisenstein, “Modelling carrier dynamics and small-signal modulation response in quantum-well lasers,” Opt. Quantum Electron. 26(7), S767–S787 (1994).
[Crossref]

Optica (3)

Phys. Rep. (1)

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429(2), 67–120 (2006).
[Crossref]

Phys. Rev. B (1)

H. Dery, B. Tromborg, and G. Eisenstein, “Carrier-carrier relaxation kinetics in quantum well semiconductor structures with nonparabolic energy bands,” Phys. Rev. B 68(16), 165323 (2003).
[Crossref]

Phys. Rev. Lett. (1)

S. T. Cundiff, A. Knorr, J. Feldmann, S. W. Koch, E. O. Göbel, and H. Nickel, “Rabi flopping in semiconductors,” Phys. Rev. Lett. 73(8), 1178–1181 (1994).
[Crossref] [PubMed]

Physica E (1)

H. Toktamiş, B. Gönül, and M. Oduncuoğlu, “Comparative study of the band-offset ratio of conventionally strained and strain-compensated InGaAs/GaAs QW lasers,” Physica E 24(3–4), 183–186 (2004).
[Crossref]

Rev. Sci. Instrum. (1)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Semicond. Sci. Technol. (1)

J. Hader, M. Scheller, A. Laurain, I. Kilen, C. Baker, J. V. Moloney, and S. W. Koch, “Ultrafast non-equilibrium carrier dynamics in semiconductor laser mode-locking,” Semicond. Sci. Technol. 32(1), 013002 (2017).
[Crossref]

Other (3)

S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, Submitted to Science (January 2017).

C. G. E. Alfieri, D. Waldburger, S. M. Link, E. Gini, M. Golling, B. W. Tilma, M. Mangold, and U. Keller, “Recent progress in high power ultrafast MIXSELs,” in Proc. SPIE (2016), p. 973407.

C. A. Zaugg, A. Klenner, O. D. Sieber, M. Golling, B. W. Tilma, and U. Keller, “Sub-100 MHz Passively Modelocked VECSEL,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), CW1G.6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Modelocked integrated external-cavity surface-emitting laser (MIXSEL) which generates pulses as short as 184 fs: (a) Layer stack of the semiconductor MIXSEL chip. The standing electric intensity wave pattern is normalized to 4 outside of the structure. (b) Zoom into the active region of the layer stack: AlAs barriers with a higher bandgap energy define the active region and confine the carriers generated through optical pump absorption in the GaAs and GaAs0.94P0.06 layers. (c) Simple linear MIXSEL cavity. The semiconductor MIXSEL chip forms one cavity end mirror and the output coupler (OC) the other. The OC has a 350-mm radius of curvature (ROC) and a transmission TOC of 0.44%. An intracavity Brewster plate is used for polarization selection. The MIXSEL chip is pumped with a high-power diode laser array under a 45° angle. For a pulse repetition rate of ≈4.3 GHz in fundamental modelocking, we use a cavity length L of ≈3.5 cm.
Fig. 2
Fig. 2 Modelocking results of the 184-fs MIXSEL: (a) Measured SHG-FROG spectrogram. (b) Retrieved FROG spectrogram (error 0.0011). (c) Retrieved temporal profile and spectral phase. (d) Retrieved spectral intensity and spectral phase overlapped with the measured optical spectrum centered at 1048 nm with a FWHM of 7.4 nm. (e) Microwave spectrum centered at the fundamental repetition rate of 4.33 GHz with a span of 15 MHz and 100 Hz RBW. (f) Microwave spectrum over a larger frequency span with a RBW of 30 kHz. The power decrease for the higher harmonics is a consequence of the limited bandwidth of the photodetector.
Fig. 3
Fig. 3 Ambipolar quantum well (QW) model. Carriers diffuse from the optically pumped GaAs barriers into the QW with a time constant τc, then relax to the bottom of the band with an intraband time constant τintra. Finally, they spontaneously recombine with a time constant τlife. The normalized density of states (DOS) is depicted on the right side of the QW. N1 corresponds to the region interested by stimulated emission and spontaneous recombination; N2 acts as a carrier reservoir
Fig. 4
Fig. 4 (a) Saturation recovery measurement for a single In0.19Ga0.81As QW. Inset: zoom into the initial fast recovery. (b) Gain dynamics of a modelocked VECSEL on a multi-roundtrip time scale. The gain chip folds a V-shaped cavity with unbalanced arm lengths. The strong drops in reflectivity correspond to the pulse arrival times on the gain chip. Our simulation is compared to measurements performed in [45]. (c) VECSEL fast gain recovery for two different pulse durations. The simulation is in good agreement with the measurements of [45].
Fig. 5
Fig. 5 Modelocking characterization of the Ti:sapphire laser used to probe the gain saturation of SDLs. (a) Measured optical spectrum centered at 1020 nm with FWHM bandwidth of 12.3 nm. (b) Autocorrelation trace directly at the laser output and at the sample position: the setup adds ≈5000 fs2 of positive GDD. (c) Autocorrelation trace (measured before setup) of the stretched pulses used to probe the gain.
Fig. 6
Fig. 6 (a) VECSEL gain saturation measurements. The VECSEL shows an earlier saturation when probed with shorter pulses. (b) Values of measured and simulated gain saturation fluences. The experimental values are obtained through least-square fit of the measured data point to the model described in [46].
Fig. 7
Fig. 7 (a) Fluence-dependent reflectivity for the 100-fs VECSEL chip probed with 170-fs pulses under the same operation conditions described in [12]. The probe pulse is centered at the VECSEL emission wavelength of 1034 nm and has a comparable FWHM spectral bandwidth. The measured saturation behavior is compared to the simulated one. (b) Absorption saturation curve of the SESAM used in [12] and correspondent simulation. (c) Simulation of combined VECSEL and SESAM effects for 100-fs pulses in a V-shaped cavity as described in [12] (solid line). The dashed lines simulate the effects of longer pulses for the same lasing conditions. (d) Simulation of the actual lasing conditions of [12] including gain saturation and TPA (solid line); without TPA in the gain chip (orange dashed line); without gain saturation (yellow dashed line); without TPA and saturation effects in the VECSEL (apricot dashed line).
Fig. 8
Fig. 8 (a) Measured saturation curve of the 253-fs MIXSEL [15] and of the 184-fs MIXSEL. For both chips, the modelocking fluence almost corresponds to the point of maximum reflectivity. (b) Zoom of the saturation curve of the 184-fs MIXSEL chip and comparison with simulation.
Fig. 9
Fig. 9 Ultrafasat SDL performance with different absorber recovery time and QW gain lifetimes: (a) Calculated F0 for different pulse durations and MIXSEL parameters. (b) Calculate OC rate at F0. (c) Calculated efficiency at F0. Solid lines are obtained with the model parameters for the 184-fs MIXSEL (Table 1); dashed lines represent simulation with an increased absorber recovery time or an increased gain QW lifetime.
Fig. 10
Fig. 10 Ultrafast SDL performance with different pulse repetition rates: (a) MIXSEL saturation curve calculated at different repetition rates. The solid line represents the simulation obtained with the 184-fs MIXSEL parameters at 4.33 GHz: the model reproduces correctly the actual performance; the dashed lines simulate the results for different repetition rates of 10 and 30 GHz; cavity losses are included. (b), (c) and (d): gain and carrier dynamics in the QW gain simulated for different pulse repetition rates. Starting from an initially empty QW, the overall QW population and gain reached at steady-state decrease for reduced roundtrip time. Populations are normalized to the respective maximum values N10 and N20.

Tables (1)

Tables Icon

Table 1 Model input parameters for the analyzed SDLs

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

N 1 t = N 1 (t) N ' 10 (t) τ intra N 2 (t) N 20 N 1 (t) τ life Γ gain Pulse( t, F p , τ p , τ 0 )
N 2 t = N 2 (t) N 20 (t) τ c + N 1 (t) N ' 10 (t) τ intra N 2 (t) N 20
N ' 10 (t)= N 10 1+exp( E 0 E F (t) k b T )
N abs t = N abs (t) τ abs + Γ abs [ 1 N abs (t) ]Pulse( t,K F p , τ p , τ 0 )
R MIXSEL ( F p , τ p )= = 0 T Pulse( t, F p , τ p , τ 0 ){ 1+σ N 1 (t)ΔR[ 1 N abs (t) ]Δ R ns } dt 0 T Pulse( t, F p , τ p , τ 0 )dt e F p F 2 ( τ p )
σ= g ss N 1 ( )
R VECSEL ( F p , τ p )= = 0 T Pulse( t, F p , τ p , τ 0 ){ 1+2σ N 1 (t)ΔR[ 1 N abs (t) ]2Δ R ns,VECSEL Δ R ns,SESAM }dt 0 T Pulse( t, F p , τ p , τ 0 )dt e 2 F p F 2,VECSEL ( τ p ) K F p F 2,SESAM ( τ p )
η calc = Q def A pump N stim N stim + N spont OC( F 0 ) OC( F 0 )+Δ R ns,cavity +Δ R ns +ΔR( 1 N abs ) e F 0 F 2
N spont = 0 T ( N 1 (t) τ life )dt

Metrics