Abstract

We investigate the scattering of single photons by single atoms and, in particular, the dependence of the atomic dynamics and the scattering probability on the photon bandwidth. We tightly focus the incident photons onto a single trapped 87Rb atom and use the time-resolved transmission to characterize the interaction strength. Decreasing the bandwidth of the single photons from 6 to 2 times the atomic linewidth, we observe an increase in atomic peak excitation and photon scattering probability.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single atom Rydberg excitation in a small dipole trap

Zhanchun Zuo, Miho Fukusen, Yoshihito Tamaki, Tomoki Watanabe, Yusuke Nakagawa, and Ken’ichi Nakagawa
Opt. Express 17(25) 22898-22905 (2009)

Analyzing quantum jumps of one and two atoms strongly coupled to an optical cavity

Sebastian Reick, Klaus Mølmer, Wolfgang Alt, Martin Eckstein, Tobias Kampschulte, Lingbo Kong, René Reimann, Alexander Thobe, Artur Widera, and Dieter Meschede
J. Opt. Soc. Am. B 27(6) A152-A163 (2010)

Quantum networking with photons and trapped atoms (Invited)

D. L. Moehring, M. J. Madsen, K. C. Younge, R. N. Kohn, Jr., P. Maunz, L.-M. Duan, C. Monroe, and B. B. Blinov
J. Opt. Soc. Am. B 24(2) 300-315 (2007)

References

  • View by:
  • |
  • |
  • |

  1. Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, “Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85, 623–653 (2013).
    [Crossref]
  2. G. Kurizki, P. Bertet, Y. Kubo, K. Molmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, “Quantum technologies with hybrid systems,” PNAS 112, 3866–3873 (2015).
    [Crossref] [PubMed]
  3. H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
    [Crossref] [PubMed]
  4. E. Waks and C. Monroe, “Protocol for hybrid entanglement between a trapped atom and a quantum dot,” Phys. Rev. A 80, 062330 (2009).
    [Crossref]
  5. T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488–490 (2007).
    [Crossref] [PubMed]
  6. S. Ritter, C. Nolleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mucke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
    [Crossref] [PubMed]
  7. N. Akopian, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot,” Nat. Photonics 5, 230–233 (2011).
    [Crossref]
  8. S. M. Ulrich, S. Weiler, M. Oster, M. Jetter, A. Urvoy, R. Löw, and P. Michler, “Spectroscopy of the D1 transition of cesium by dressed-state resonance fluorescence from a single (in,ga)as/gaas quantum dot,” Phys. Rev. B 90, 125310 (2014).
    [Crossref]
  9. P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509, 66–70 (2014).
    [Crossref] [PubMed]
  10. J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015).
    [Crossref]
  11. H. M. Meyer, R. Stockill, M. Steiner, C. Le Gall, C. Matthiesen, E. Clarke, A. Ludwig, J. Reichel, M. Atatüre, and M. Köhl, “Direct photonic coupling of a semiconductor quantum dot and a trapped ion,” Phys. Rev. Lett. 114, 123001 (2015).
    [Crossref] [PubMed]
  12. G. Leuchs and M. Sondermann, “Light-matter interaction in free space,” J. Mod. Opt. 60, 36–42 (2013).
    [Crossref] [PubMed]
  13. V. Leong, M. A. Seidler, M. Steiner, A. Cerè, and C. Kurtsiefer, “Time-resolved scattering of a single photon by a single atom,” Nat. Commun. 7, 13716 (2016).
    [Crossref] [PubMed]
  14. V. Bužek, G. Drobný, M. G. Kim, M. Havukainen, and P. L. Knight, “Numerical simulations of atomic decay in cavities and material media,” Phys. Rev. A 60, 582–592 (1999).
    [Crossref]
  15. S. J. van Enk and H. J. Kimble, “Single atom in free space as a quantum aperture,” Phys. Rev. A 61, 051802 (2000).
    [Crossref]
  16. S. J. van Enk and H. J. Kimble, “Strongly focused light beams interacting with single atoms in free space,” Phys. Rev. A 63, 023809 (2001).
    [Crossref]
  17. S. J. van Enk, “Atoms, dipole waves, and strongly focused light beams,” Phys. Rev. A 69, 043813 (2004).
    [Crossref]
  18. P. Domokos, P. Horak, and H. Ritsch, “Quantum description of light-pulse scattering on a single atom in waveguides,” Phys. Rev. A 65, 033832 (2002).
    [Crossref]
  19. D. Pinotsi and A. Imamoglu, “Single photon absorption by a single quantum emitter,” Phys. Rev. Lett. 100, 093603 (2008).
    [Crossref] [PubMed]
  20. G. Zumofen, N. M. Mojarad, V. Sandoghdar, and M. Agio, “Perfect reflection of light by an oscillating dipole,” Phys. Rev. Lett. 101, 180404 (2008).
    [Crossref] [PubMed]
  21. G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).
    [Crossref]
  22. S. Heugel, A. S. Villar, M. Sondermann, U. Peschel, and G. Leuchs, “On the analogy between a single atom and an optical resonator,” Laser Phys. 20, 100–106 (2009).
    [Crossref]
  23. M. Stobińska, G. Alber, and G. Leuchs, “Perfect excitation of a matter qubit by a single photon in free space,” EPL 86, 14007 (2009).
    [Crossref]
  24. M. K. Tey, G. Maslennikov, T. C. H. Liew, S. A. Aljunid, F. Huber, B. Chng, Z. Chen, V. Scarani, and C. Kurtsiefer, “Interfacing light and single atoms with a lens,” New J. Phys. 11, 043011 (2009).
    [Crossref]
  25. Y. Wang, J. Minář, L. Sheridan, and V. Scarani, “Efficient excitation of a two-level atom by a single photon in a propagating mode,” Phys. Rev. A 83, 063482 (2011).
  26. G. Leuchs and M. Sondermann, “Time-reversal symmetry in optics,” Physica Scripta 85, 058101 (2012).
    [Crossref]
  27. N. Trautmann, G. Alber, and G. Leuchs, “Efficient single-photon absorption by a trapped moving atom,” Phys. Rev. A 94, 033832 (2016).
    [Crossref]
  28. V. Weisskopf and E. Wigner, “Berechnung der natürlichen linienbreite auf grund der diracschen lichttheorie,” Zeitschr. Phys. 63, 54–73 (1930).
    [Crossref]
  29. T. Chanelière, D. N. Matsukevich, and S. D. Jenkins, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96, 093604 (2006).
    [Crossref] [PubMed]
  30. B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
    [Crossref] [PubMed]
  31. J. Brito, S. Kucera, P. Eich, P. Müller, and J. Eschner, “Doubly heralded single-photon absorption by a single atom,” Appl. Phys. B 122, 1–5 (2016).
    [Crossref]
  32. M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without the need for a cavity,” Nat. Phys. 4, 924–927 (2008).
    [Crossref]
  33. J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992).
    [Crossref] [PubMed]
  34. B. Srivathsan, G. K. Gulati, A. Cerè, B. Chng, and C. Kurtsiefer, “Reversing the temporal envelope of a heralded single photon using a cavity,” Phys. Rev. Lett. 113, 163601 (2014).
    [Crossref] [PubMed]
  35. G. K. Gulati, B. Srivathsan, B. Chng, A. Cerè, D. Matsukevich, and C. Kurtsiefer, “Generation of an exponentially rising single-photon field from parametric conversion in atoms,” Phys. Rev. A 90, 033819 (2014).
    [Crossref]
  36. H. H. Jen, “Spectral analysis for cascade-emission-based quantum communication in atomic ensembles,” J. Phys. B: At. Mol. Opt. Phys. 45, 165504 (2012).
    [Crossref]
  37. Y.-S. Chin, M. Steiner, and C. Kurtsiefer, “Quantifying the role of thermal motion in free-space light-atom interaction,” arXiv:1611.08048 [quant-ph] (2016).
  38. N. P. Georgiades, E. S. Polzik, K. Edamatsu, H. J. Kimble, and A. S. Parkins, “Nonclassical excitation for atoms in a squeezed vacuum,” Phys. Rev. Lett. 75, 3426–3429 (1995).
    [Crossref] [PubMed]
  39. M. Strauß, M. Placke, S. Kreinberg, C. Schneider, M. Kamp, S. Höfling, J. Wolters, and S. Reitzenstein, “Photon-statistics excitation spectroscopy of a single two-level system,” Phys. Rev. B 93, 241306 (2016).
    [Crossref]
  40. L. Alber, M. Fischer, M. Bader, K. Mantel, M. Sondermann, and G. Leuchs, “Focusing characteristics of a 4π parabolic mirror light-matter interface,” arXiv:1609.06884 [quant-ph] (2016).

2016 (4)

V. Leong, M. A. Seidler, M. Steiner, A. Cerè, and C. Kurtsiefer, “Time-resolved scattering of a single photon by a single atom,” Nat. Commun. 7, 13716 (2016).
[Crossref] [PubMed]

N. Trautmann, G. Alber, and G. Leuchs, “Efficient single-photon absorption by a trapped moving atom,” Phys. Rev. A 94, 033832 (2016).
[Crossref]

J. Brito, S. Kucera, P. Eich, P. Müller, and J. Eschner, “Doubly heralded single-photon absorption by a single atom,” Appl. Phys. B 122, 1–5 (2016).
[Crossref]

M. Strauß, M. Placke, S. Kreinberg, C. Schneider, M. Kamp, S. Höfling, J. Wolters, and S. Reitzenstein, “Photon-statistics excitation spectroscopy of a single two-level system,” Phys. Rev. B 93, 241306 (2016).
[Crossref]

2015 (3)

J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015).
[Crossref]

H. M. Meyer, R. Stockill, M. Steiner, C. Le Gall, C. Matthiesen, E. Clarke, A. Ludwig, J. Reichel, M. Atatüre, and M. Köhl, “Direct photonic coupling of a semiconductor quantum dot and a trapped ion,” Phys. Rev. Lett. 114, 123001 (2015).
[Crossref] [PubMed]

G. Kurizki, P. Bertet, Y. Kubo, K. Molmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, “Quantum technologies with hybrid systems,” PNAS 112, 3866–3873 (2015).
[Crossref] [PubMed]

2014 (4)

S. M. Ulrich, S. Weiler, M. Oster, M. Jetter, A. Urvoy, R. Löw, and P. Michler, “Spectroscopy of the D1 transition of cesium by dressed-state resonance fluorescence from a single (in,ga)as/gaas quantum dot,” Phys. Rev. B 90, 125310 (2014).
[Crossref]

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509, 66–70 (2014).
[Crossref] [PubMed]

B. Srivathsan, G. K. Gulati, A. Cerè, B. Chng, and C. Kurtsiefer, “Reversing the temporal envelope of a heralded single photon using a cavity,” Phys. Rev. Lett. 113, 163601 (2014).
[Crossref] [PubMed]

G. K. Gulati, B. Srivathsan, B. Chng, A. Cerè, D. Matsukevich, and C. Kurtsiefer, “Generation of an exponentially rising single-photon field from parametric conversion in atoms,” Phys. Rev. A 90, 033819 (2014).
[Crossref]

2013 (3)

G. Leuchs and M. Sondermann, “Light-matter interaction in free space,” J. Mod. Opt. 60, 36–42 (2013).
[Crossref] [PubMed]

Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, “Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85, 623–653 (2013).
[Crossref]

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
[Crossref] [PubMed]

2012 (3)

S. Ritter, C. Nolleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mucke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[Crossref] [PubMed]

H. H. Jen, “Spectral analysis for cascade-emission-based quantum communication in atomic ensembles,” J. Phys. B: At. Mol. Opt. Phys. 45, 165504 (2012).
[Crossref]

G. Leuchs and M. Sondermann, “Time-reversal symmetry in optics,” Physica Scripta 85, 058101 (2012).
[Crossref]

2011 (2)

Y. Wang, J. Minář, L. Sheridan, and V. Scarani, “Efficient excitation of a two-level atom by a single photon in a propagating mode,” Phys. Rev. A 83, 063482 (2011).

N. Akopian, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot,” Nat. Photonics 5, 230–233 (2011).
[Crossref]

2009 (4)

E. Waks and C. Monroe, “Protocol for hybrid entanglement between a trapped atom and a quantum dot,” Phys. Rev. A 80, 062330 (2009).
[Crossref]

S. Heugel, A. S. Villar, M. Sondermann, U. Peschel, and G. Leuchs, “On the analogy between a single atom and an optical resonator,” Laser Phys. 20, 100–106 (2009).
[Crossref]

M. Stobińska, G. Alber, and G. Leuchs, “Perfect excitation of a matter qubit by a single photon in free space,” EPL 86, 14007 (2009).
[Crossref]

M. K. Tey, G. Maslennikov, T. C. H. Liew, S. A. Aljunid, F. Huber, B. Chng, Z. Chen, V. Scarani, and C. Kurtsiefer, “Interfacing light and single atoms with a lens,” New J. Phys. 11, 043011 (2009).
[Crossref]

2008 (5)

D. Pinotsi and A. Imamoglu, “Single photon absorption by a single quantum emitter,” Phys. Rev. Lett. 100, 093603 (2008).
[Crossref] [PubMed]

G. Zumofen, N. M. Mojarad, V. Sandoghdar, and M. Agio, “Perfect reflection of light by an oscillating dipole,” Phys. Rev. Lett. 101, 180404 (2008).
[Crossref] [PubMed]

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).
[Crossref]

M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without the need for a cavity,” Nat. Phys. 4, 924–927 (2008).
[Crossref]

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref] [PubMed]

2007 (1)

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488–490 (2007).
[Crossref] [PubMed]

2006 (1)

T. Chanelière, D. N. Matsukevich, and S. D. Jenkins, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96, 093604 (2006).
[Crossref] [PubMed]

2004 (1)

S. J. van Enk, “Atoms, dipole waves, and strongly focused light beams,” Phys. Rev. A 69, 043813 (2004).
[Crossref]

2002 (1)

P. Domokos, P. Horak, and H. Ritsch, “Quantum description of light-pulse scattering on a single atom in waveguides,” Phys. Rev. A 65, 033832 (2002).
[Crossref]

2001 (1)

S. J. van Enk and H. J. Kimble, “Strongly focused light beams interacting with single atoms in free space,” Phys. Rev. A 63, 023809 (2001).
[Crossref]

2000 (1)

S. J. van Enk and H. J. Kimble, “Single atom in free space as a quantum aperture,” Phys. Rev. A 61, 051802 (2000).
[Crossref]

1999 (1)

V. Bužek, G. Drobný, M. G. Kim, M. Havukainen, and P. L. Knight, “Numerical simulations of atomic decay in cavities and material media,” Phys. Rev. A 60, 582–592 (1999).
[Crossref]

1995 (1)

N. P. Georgiades, E. S. Polzik, K. Edamatsu, H. J. Kimble, and A. S. Parkins, “Nonclassical excitation for atoms in a squeezed vacuum,” Phys. Rev. Lett. 75, 3426–3429 (1995).
[Crossref] [PubMed]

1992 (1)

J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992).
[Crossref] [PubMed]

1930 (1)

V. Weisskopf and E. Wigner, “Berechnung der natürlichen linienbreite auf grund der diracschen lichttheorie,” Zeitschr. Phys. 63, 54–73 (1930).
[Crossref]

Agio, M.

G. Zumofen, N. M. Mojarad, V. Sandoghdar, and M. Agio, “Perfect reflection of light by an oscillating dipole,” Phys. Rev. Lett. 101, 180404 (2008).
[Crossref] [PubMed]

Akopian, N.

N. Akopian, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot,” Nat. Photonics 5, 230–233 (2011).
[Crossref]

Alber, G.

N. Trautmann, G. Alber, and G. Leuchs, “Efficient single-photon absorption by a trapped moving atom,” Phys. Rev. A 94, 033832 (2016).
[Crossref]

M. Stobińska, G. Alber, and G. Leuchs, “Perfect excitation of a matter qubit by a single photon in free space,” EPL 86, 14007 (2009).
[Crossref]

Alber, L.

L. Alber, M. Fischer, M. Bader, K. Mantel, M. Sondermann, and G. Leuchs, “Focusing characteristics of a 4π parabolic mirror light-matter interface,” arXiv:1609.06884 [quant-ph] (2016).

Aljunid, S. A.

M. K. Tey, G. Maslennikov, T. C. H. Liew, S. A. Aljunid, F. Huber, B. Chng, Z. Chen, V. Scarani, and C. Kurtsiefer, “Interfacing light and single atoms with a lens,” New J. Phys. 11, 043011 (2009).
[Crossref]

M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without the need for a cavity,” Nat. Phys. 4, 924–927 (2008).
[Crossref]

Ashhab, S.

Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, “Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85, 623–653 (2013).
[Crossref]

Atatüre, M.

H. M. Meyer, R. Stockill, M. Steiner, C. Le Gall, C. Matthiesen, E. Clarke, A. Ludwig, J. Reichel, M. Atatüre, and M. Köhl, “Direct photonic coupling of a semiconductor quantum dot and a trapped ion,” Phys. Rev. Lett. 114, 123001 (2015).
[Crossref] [PubMed]

Bader, M.

L. Alber, M. Fischer, M. Bader, K. Mantel, M. Sondermann, and G. Leuchs, “Focusing characteristics of a 4π parabolic mirror light-matter interface,” arXiv:1609.06884 [quant-ph] (2016).

Béguin, L.

J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015).
[Crossref]

Bertet, P.

G. Kurizki, P. Bertet, Y. Kubo, K. Molmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, “Quantum technologies with hybrid systems,” PNAS 112, 3866–3873 (2015).
[Crossref] [PubMed]

Bochmann, J.

S. Ritter, C. Nolleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mucke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[Crossref] [PubMed]

Brito, J.

J. Brito, S. Kucera, P. Eich, P. Müller, and J. Eschner, “Doubly heralded single-photon absorption by a single atom,” Appl. Phys. B 122, 1–5 (2016).
[Crossref]

Bužek, V.

V. Bužek, G. Drobný, M. G. Kim, M. Havukainen, and P. L. Knight, “Numerical simulations of atomic decay in cavities and material media,” Phys. Rev. A 60, 582–592 (1999).
[Crossref]

Cerè, A.

V. Leong, M. A. Seidler, M. Steiner, A. Cerè, and C. Kurtsiefer, “Time-resolved scattering of a single photon by a single atom,” Nat. Commun. 7, 13716 (2016).
[Crossref] [PubMed]

B. Srivathsan, G. K. Gulati, A. Cerè, B. Chng, and C. Kurtsiefer, “Reversing the temporal envelope of a heralded single photon using a cavity,” Phys. Rev. Lett. 113, 163601 (2014).
[Crossref] [PubMed]

G. K. Gulati, B. Srivathsan, B. Chng, A. Cerè, D. Matsukevich, and C. Kurtsiefer, “Generation of an exponentially rising single-photon field from parametric conversion in atoms,” Phys. Rev. A 90, 033819 (2014).
[Crossref]

Chanelière, T.

T. Chanelière, D. N. Matsukevich, and S. D. Jenkins, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96, 093604 (2006).
[Crossref] [PubMed]

Chen, Z.

M. K. Tey, G. Maslennikov, T. C. H. Liew, S. A. Aljunid, F. Huber, B. Chng, Z. Chen, V. Scarani, and C. Kurtsiefer, “Interfacing light and single atoms with a lens,” New J. Phys. 11, 043011 (2009).
[Crossref]

M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without the need for a cavity,” Nat. Phys. 4, 924–927 (2008).
[Crossref]

Chin, Y.-S.

Y.-S. Chin, M. Steiner, and C. Kurtsiefer, “Quantifying the role of thermal motion in free-space light-atom interaction,” arXiv:1611.08048 [quant-ph] (2016).

Chng, B.

G. K. Gulati, B. Srivathsan, B. Chng, A. Cerè, D. Matsukevich, and C. Kurtsiefer, “Generation of an exponentially rising single-photon field from parametric conversion in atoms,” Phys. Rev. A 90, 033819 (2014).
[Crossref]

B. Srivathsan, G. K. Gulati, A. Cerè, B. Chng, and C. Kurtsiefer, “Reversing the temporal envelope of a heralded single photon using a cavity,” Phys. Rev. Lett. 113, 163601 (2014).
[Crossref] [PubMed]

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
[Crossref] [PubMed]

M. K. Tey, G. Maslennikov, T. C. H. Liew, S. A. Aljunid, F. Huber, B. Chng, Z. Chen, V. Scarani, and C. Kurtsiefer, “Interfacing light and single atoms with a lens,” New J. Phys. 11, 043011 (2009).
[Crossref]

M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without the need for a cavity,” Nat. Phys. 4, 924–927 (2008).
[Crossref]

Clarke, E.

H. M. Meyer, R. Stockill, M. Steiner, C. Le Gall, C. Matthiesen, E. Clarke, A. Ludwig, J. Reichel, M. Atatüre, and M. Köhl, “Direct photonic coupling of a semiconductor quantum dot and a trapped ion,” Phys. Rev. Lett. 114, 123001 (2015).
[Crossref] [PubMed]

Ding, F.

J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015).
[Crossref]

Domokos, P.

P. Domokos, P. Horak, and H. Ritsch, “Quantum description of light-pulse scattering on a single atom in waveguides,” Phys. Rev. A 65, 033832 (2002).
[Crossref]

Drobný, G.

V. Bužek, G. Drobný, M. G. Kim, M. Havukainen, and P. L. Knight, “Numerical simulations of atomic decay in cavities and material media,” Phys. Rev. A 60, 582–592 (1999).
[Crossref]

Edamatsu, K.

N. P. Georgiades, E. S. Polzik, K. Edamatsu, H. J. Kimble, and A. S. Parkins, “Nonclassical excitation for atoms in a squeezed vacuum,” Phys. Rev. Lett. 75, 3426–3429 (1995).
[Crossref] [PubMed]

Eich, P.

J. Brito, S. Kucera, P. Eich, P. Müller, and J. Eschner, “Doubly heralded single-photon absorption by a single atom,” Appl. Phys. B 122, 1–5 (2016).
[Crossref]

Eschner, J.

J. Brito, S. Kucera, P. Eich, P. Müller, and J. Eschner, “Doubly heralded single-photon absorption by a single atom,” Appl. Phys. B 122, 1–5 (2016).
[Crossref]

Figueroa, E.

S. Ritter, C. Nolleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mucke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[Crossref] [PubMed]

Fischer, M.

L. Alber, M. Fischer, M. Bader, K. Mantel, M. Sondermann, and G. Leuchs, “Focusing characteristics of a 4π parabolic mirror light-matter interface,” arXiv:1609.06884 [quant-ph] (2016).

Franson, J. D.

J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992).
[Crossref] [PubMed]

Georgiades, N. P.

N. P. Georgiades, E. S. Polzik, K. Edamatsu, H. J. Kimble, and A. S. Parkins, “Nonclassical excitation for atoms in a squeezed vacuum,” Phys. Rev. Lett. 75, 3426–3429 (1995).
[Crossref] [PubMed]

Gerhardt, I.

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509, 66–70 (2014).
[Crossref] [PubMed]

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).
[Crossref]

Gulati, G. K.

G. K. Gulati, B. Srivathsan, B. Chng, A. Cerè, D. Matsukevich, and C. Kurtsiefer, “Generation of an exponentially rising single-photon field from parametric conversion in atoms,” Phys. Rev. A 90, 033819 (2014).
[Crossref]

B. Srivathsan, G. K. Gulati, A. Cerè, B. Chng, and C. Kurtsiefer, “Reversing the temporal envelope of a heralded single photon using a cavity,” Phys. Rev. Lett. 113, 163601 (2014).
[Crossref] [PubMed]

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
[Crossref] [PubMed]

Hahn, C.

S. Ritter, C. Nolleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mucke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[Crossref] [PubMed]

Havukainen, M.

V. Bužek, G. Drobný, M. G. Kim, M. Havukainen, and P. L. Knight, “Numerical simulations of atomic decay in cavities and material media,” Phys. Rev. A 60, 582–592 (1999).
[Crossref]

Heugel, S.

S. Heugel, A. S. Villar, M. Sondermann, U. Peschel, and G. Leuchs, “On the analogy between a single atom and an optical resonator,” Laser Phys. 20, 100–106 (2009).
[Crossref]

Höfling, S.

M. Strauß, M. Placke, S. Kreinberg, C. Schneider, M. Kamp, S. Höfling, J. Wolters, and S. Reitzenstein, “Photon-statistics excitation spectroscopy of a single two-level system,” Phys. Rev. B 93, 241306 (2016).
[Crossref]

Horak, P.

P. Domokos, P. Horak, and H. Ritsch, “Quantum description of light-pulse scattering on a single atom in waveguides,” Phys. Rev. A 65, 033832 (2002).
[Crossref]

Huber, F.

M. K. Tey, G. Maslennikov, T. C. H. Liew, S. A. Aljunid, F. Huber, B. Chng, Z. Chen, V. Scarani, and C. Kurtsiefer, “Interfacing light and single atoms with a lens,” New J. Phys. 11, 043011 (2009).
[Crossref]

M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without the need for a cavity,” Nat. Phys. 4, 924–927 (2008).
[Crossref]

Huo, Y.

J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015).
[Crossref]

Hwang, J.

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).
[Crossref]

Imamoglu, A.

D. Pinotsi and A. Imamoglu, “Single photon absorption by a single quantum emitter,” Phys. Rev. Lett. 100, 093603 (2008).
[Crossref] [PubMed]

Jahn, J.-P.

J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015).
[Crossref]

Jen, H. H.

H. H. Jen, “Spectral analysis for cascade-emission-based quantum communication in atomic ensembles,” J. Phys. B: At. Mol. Opt. Phys. 45, 165504 (2012).
[Crossref]

Jenkins, S. D.

T. Chanelière, D. N. Matsukevich, and S. D. Jenkins, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96, 093604 (2006).
[Crossref] [PubMed]

Jetter, M.

S. M. Ulrich, S. Weiler, M. Oster, M. Jetter, A. Urvoy, R. Löw, and P. Michler, “Spectroscopy of the D1 transition of cesium by dressed-state resonance fluorescence from a single (in,ga)as/gaas quantum dot,” Phys. Rev. B 90, 125310 (2014).
[Crossref]

Kamp, M.

M. Strauß, M. Placke, S. Kreinberg, C. Schneider, M. Kamp, S. Höfling, J. Wolters, and S. Reitzenstein, “Photon-statistics excitation spectroscopy of a single two-level system,” Phys. Rev. B 93, 241306 (2016).
[Crossref]

Kim, M. G.

V. Bužek, G. Drobný, M. G. Kim, M. Havukainen, and P. L. Knight, “Numerical simulations of atomic decay in cavities and material media,” Phys. Rev. A 60, 582–592 (1999).
[Crossref]

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref] [PubMed]

S. J. van Enk and H. J. Kimble, “Strongly focused light beams interacting with single atoms in free space,” Phys. Rev. A 63, 023809 (2001).
[Crossref]

S. J. van Enk and H. J. Kimble, “Single atom in free space as a quantum aperture,” Phys. Rev. A 61, 051802 (2000).
[Crossref]

N. P. Georgiades, E. S. Polzik, K. Edamatsu, H. J. Kimble, and A. S. Parkins, “Nonclassical excitation for atoms in a squeezed vacuum,” Phys. Rev. Lett. 75, 3426–3429 (1995).
[Crossref] [PubMed]

Knight, P. L.

V. Bužek, G. Drobný, M. G. Kim, M. Havukainen, and P. L. Knight, “Numerical simulations of atomic decay in cavities and material media,” Phys. Rev. A 60, 582–592 (1999).
[Crossref]

Köhl, M.

H. M. Meyer, R. Stockill, M. Steiner, C. Le Gall, C. Matthiesen, E. Clarke, A. Ludwig, J. Reichel, M. Atatüre, and M. Köhl, “Direct photonic coupling of a semiconductor quantum dot and a trapped ion,” Phys. Rev. Lett. 114, 123001 (2015).
[Crossref] [PubMed]

Kreinberg, S.

M. Strauß, M. Placke, S. Kreinberg, C. Schneider, M. Kamp, S. Höfling, J. Wolters, and S. Reitzenstein, “Photon-statistics excitation spectroscopy of a single two-level system,” Phys. Rev. B 93, 241306 (2016).
[Crossref]

Kubo, Y.

G. Kurizki, P. Bertet, Y. Kubo, K. Molmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, “Quantum technologies with hybrid systems,” PNAS 112, 3866–3873 (2015).
[Crossref] [PubMed]

Kucera, S.

J. Brito, S. Kucera, P. Eich, P. Müller, and J. Eschner, “Doubly heralded single-photon absorption by a single atom,” Appl. Phys. B 122, 1–5 (2016).
[Crossref]

Kuhlmann, A. V.

J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015).
[Crossref]

Kuhn, A.

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488–490 (2007).
[Crossref] [PubMed]

Kurizki, G.

G. Kurizki, P. Bertet, Y. Kubo, K. Molmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, “Quantum technologies with hybrid systems,” PNAS 112, 3866–3873 (2015).
[Crossref] [PubMed]

Kurtsiefer, C.

V. Leong, M. A. Seidler, M. Steiner, A. Cerè, and C. Kurtsiefer, “Time-resolved scattering of a single photon by a single atom,” Nat. Commun. 7, 13716 (2016).
[Crossref] [PubMed]

G. K. Gulati, B. Srivathsan, B. Chng, A. Cerè, D. Matsukevich, and C. Kurtsiefer, “Generation of an exponentially rising single-photon field from parametric conversion in atoms,” Phys. Rev. A 90, 033819 (2014).
[Crossref]

B. Srivathsan, G. K. Gulati, A. Cerè, B. Chng, and C. Kurtsiefer, “Reversing the temporal envelope of a heralded single photon using a cavity,” Phys. Rev. Lett. 113, 163601 (2014).
[Crossref] [PubMed]

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
[Crossref] [PubMed]

M. K. Tey, G. Maslennikov, T. C. H. Liew, S. A. Aljunid, F. Huber, B. Chng, Z. Chen, V. Scarani, and C. Kurtsiefer, “Interfacing light and single atoms with a lens,” New J. Phys. 11, 043011 (2009).
[Crossref]

M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without the need for a cavity,” Nat. Phys. 4, 924–927 (2008).
[Crossref]

Y.-S. Chin, M. Steiner, and C. Kurtsiefer, “Quantifying the role of thermal motion in free-space light-atom interaction,” arXiv:1611.08048 [quant-ph] (2016).

Le Gall, C.

H. M. Meyer, R. Stockill, M. Steiner, C. Le Gall, C. Matthiesen, E. Clarke, A. Ludwig, J. Reichel, M. Atatüre, and M. Köhl, “Direct photonic coupling of a semiconductor quantum dot and a trapped ion,” Phys. Rev. Lett. 114, 123001 (2015).
[Crossref] [PubMed]

Leong, V.

V. Leong, M. A. Seidler, M. Steiner, A. Cerè, and C. Kurtsiefer, “Time-resolved scattering of a single photon by a single atom,” Nat. Commun. 7, 13716 (2016).
[Crossref] [PubMed]

Leuchs, G.

N. Trautmann, G. Alber, and G. Leuchs, “Efficient single-photon absorption by a trapped moving atom,” Phys. Rev. A 94, 033832 (2016).
[Crossref]

G. Leuchs and M. Sondermann, “Light-matter interaction in free space,” J. Mod. Opt. 60, 36–42 (2013).
[Crossref] [PubMed]

G. Leuchs and M. Sondermann, “Time-reversal symmetry in optics,” Physica Scripta 85, 058101 (2012).
[Crossref]

M. Stobińska, G. Alber, and G. Leuchs, “Perfect excitation of a matter qubit by a single photon in free space,” EPL 86, 14007 (2009).
[Crossref]

S. Heugel, A. S. Villar, M. Sondermann, U. Peschel, and G. Leuchs, “On the analogy between a single atom and an optical resonator,” Laser Phys. 20, 100–106 (2009).
[Crossref]

L. Alber, M. Fischer, M. Bader, K. Mantel, M. Sondermann, and G. Leuchs, “Focusing characteristics of a 4π parabolic mirror light-matter interface,” arXiv:1609.06884 [quant-ph] (2016).

Liew, T. C. H.

M. K. Tey, G. Maslennikov, T. C. H. Liew, S. A. Aljunid, F. Huber, B. Chng, Z. Chen, V. Scarani, and C. Kurtsiefer, “Interfacing light and single atoms with a lens,” New J. Phys. 11, 043011 (2009).
[Crossref]

Löw, R.

S. M. Ulrich, S. Weiler, M. Oster, M. Jetter, A. Urvoy, R. Löw, and P. Michler, “Spectroscopy of the D1 transition of cesium by dressed-state resonance fluorescence from a single (in,ga)as/gaas quantum dot,” Phys. Rev. B 90, 125310 (2014).
[Crossref]

Ludwig, A.

H. M. Meyer, R. Stockill, M. Steiner, C. Le Gall, C. Matthiesen, E. Clarke, A. Ludwig, J. Reichel, M. Atatüre, and M. Köhl, “Direct photonic coupling of a semiconductor quantum dot and a trapped ion,” Phys. Rev. Lett. 114, 123001 (2015).
[Crossref] [PubMed]

Mantel, K.

L. Alber, M. Fischer, M. Bader, K. Mantel, M. Sondermann, and G. Leuchs, “Focusing characteristics of a 4π parabolic mirror light-matter interface,” arXiv:1609.06884 [quant-ph] (2016).

Maslennikov, G.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
[Crossref] [PubMed]

M. K. Tey, G. Maslennikov, T. C. H. Liew, S. A. Aljunid, F. Huber, B. Chng, Z. Chen, V. Scarani, and C. Kurtsiefer, “Interfacing light and single atoms with a lens,” New J. Phys. 11, 043011 (2009).
[Crossref]

M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without the need for a cavity,” Nat. Phys. 4, 924–927 (2008).
[Crossref]

Matsukevich, D.

G. K. Gulati, B. Srivathsan, B. Chng, A. Cerè, D. Matsukevich, and C. Kurtsiefer, “Generation of an exponentially rising single-photon field from parametric conversion in atoms,” Phys. Rev. A 90, 033819 (2014).
[Crossref]

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
[Crossref] [PubMed]

Matsukevich, D. N.

T. Chanelière, D. N. Matsukevich, and S. D. Jenkins, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96, 093604 (2006).
[Crossref] [PubMed]

Matthiesen, C.

H. M. Meyer, R. Stockill, M. Steiner, C. Le Gall, C. Matthiesen, E. Clarke, A. Ludwig, J. Reichel, M. Atatüre, and M. Köhl, “Direct photonic coupling of a semiconductor quantum dot and a trapped ion,” Phys. Rev. Lett. 114, 123001 (2015).
[Crossref] [PubMed]

Meyer, H. M.

H. M. Meyer, R. Stockill, M. Steiner, C. Le Gall, C. Matthiesen, E. Clarke, A. Ludwig, J. Reichel, M. Atatüre, and M. Köhl, “Direct photonic coupling of a semiconductor quantum dot and a trapped ion,” Phys. Rev. Lett. 114, 123001 (2015).
[Crossref] [PubMed]

Michler, P.

S. M. Ulrich, S. Weiler, M. Oster, M. Jetter, A. Urvoy, R. Löw, and P. Michler, “Spectroscopy of the D1 transition of cesium by dressed-state resonance fluorescence from a single (in,ga)as/gaas quantum dot,” Phys. Rev. B 90, 125310 (2014).
[Crossref]

Minár, J.

Y. Wang, J. Minář, L. Sheridan, and V. Scarani, “Efficient excitation of a two-level atom by a single photon in a propagating mode,” Phys. Rev. A 83, 063482 (2011).

Mojarad, N. M.

G. Zumofen, N. M. Mojarad, V. Sandoghdar, and M. Agio, “Perfect reflection of light by an oscillating dipole,” Phys. Rev. Lett. 101, 180404 (2008).
[Crossref] [PubMed]

Molmer, K.

G. Kurizki, P. Bertet, Y. Kubo, K. Molmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, “Quantum technologies with hybrid systems,” PNAS 112, 3866–3873 (2015).
[Crossref] [PubMed]

Monroe, C.

E. Waks and C. Monroe, “Protocol for hybrid entanglement between a trapped atom and a quantum dot,” Phys. Rev. A 80, 062330 (2009).
[Crossref]

Mucke, M.

S. Ritter, C. Nolleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mucke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[Crossref] [PubMed]

Müller, P.

J. Brito, S. Kucera, P. Eich, P. Müller, and J. Eschner, “Doubly heralded single-photon absorption by a single atom,” Appl. Phys. B 122, 1–5 (2016).
[Crossref]

Munsch, M.

J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015).
[Crossref]

Neuzner, A.

S. Ritter, C. Nolleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mucke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[Crossref] [PubMed]

Nolleke, C.

S. Ritter, C. Nolleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mucke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[Crossref] [PubMed]

Nori, F.

Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, “Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85, 623–653 (2013).
[Crossref]

Oster, M.

S. M. Ulrich, S. Weiler, M. Oster, M. Jetter, A. Urvoy, R. Löw, and P. Michler, “Spectroscopy of the D1 transition of cesium by dressed-state resonance fluorescence from a single (in,ga)as/gaas quantum dot,” Phys. Rev. B 90, 125310 (2014).
[Crossref]

Parkins, A. S.

N. P. Georgiades, E. S. Polzik, K. Edamatsu, H. J. Kimble, and A. S. Parkins, “Nonclassical excitation for atoms in a squeezed vacuum,” Phys. Rev. Lett. 75, 3426–3429 (1995).
[Crossref] [PubMed]

Peschel, U.

S. Heugel, A. S. Villar, M. Sondermann, U. Peschel, and G. Leuchs, “On the analogy between a single atom and an optical resonator,” Laser Phys. 20, 100–106 (2009).
[Crossref]

Petrosyan, D.

G. Kurizki, P. Bertet, Y. Kubo, K. Molmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, “Quantum technologies with hybrid systems,” PNAS 112, 3866–3873 (2015).
[Crossref] [PubMed]

Pinotsi, D.

D. Pinotsi and A. Imamoglu, “Single photon absorption by a single quantum emitter,” Phys. Rev. Lett. 100, 093603 (2008).
[Crossref] [PubMed]

Placke, M.

M. Strauß, M. Placke, S. Kreinberg, C. Schneider, M. Kamp, S. Höfling, J. Wolters, and S. Reitzenstein, “Photon-statistics excitation spectroscopy of a single two-level system,” Phys. Rev. B 93, 241306 (2016).
[Crossref]

Polzik, E. S.

N. P. Georgiades, E. S. Polzik, K. Edamatsu, H. J. Kimble, and A. S. Parkins, “Nonclassical excitation for atoms in a squeezed vacuum,” Phys. Rev. Lett. 75, 3426–3429 (1995).
[Crossref] [PubMed]

Rabl, P.

G. Kurizki, P. Bertet, Y. Kubo, K. Molmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, “Quantum technologies with hybrid systems,” PNAS 112, 3866–3873 (2015).
[Crossref] [PubMed]

Rastelli, A.

J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015).
[Crossref]

N. Akopian, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot,” Nat. Photonics 5, 230–233 (2011).
[Crossref]

Reichel, J.

H. M. Meyer, R. Stockill, M. Steiner, C. Le Gall, C. Matthiesen, E. Clarke, A. Ludwig, J. Reichel, M. Atatüre, and M. Köhl, “Direct photonic coupling of a semiconductor quantum dot and a trapped ion,” Phys. Rev. Lett. 114, 123001 (2015).
[Crossref] [PubMed]

Reindl, M.

J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015).
[Crossref]

Reiserer, A.

S. Ritter, C. Nolleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mucke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[Crossref] [PubMed]

Reitzenstein, S.

M. Strauß, M. Placke, S. Kreinberg, C. Schneider, M. Kamp, S. Höfling, J. Wolters, and S. Reitzenstein, “Photon-statistics excitation spectroscopy of a single two-level system,” Phys. Rev. B 93, 241306 (2016).
[Crossref]

Rempe, G.

S. Ritter, C. Nolleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mucke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[Crossref] [PubMed]

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488–490 (2007).
[Crossref] [PubMed]

Renggli, M.

J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015).
[Crossref]

Ritsch, H.

P. Domokos, P. Horak, and H. Ritsch, “Quantum description of light-pulse scattering on a single atom in waveguides,” Phys. Rev. A 65, 033832 (2002).
[Crossref]

Ritter, S.

S. Ritter, C. Nolleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mucke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[Crossref] [PubMed]

Sandoghdar, V.

G. Zumofen, N. M. Mojarad, V. Sandoghdar, and M. Agio, “Perfect reflection of light by an oscillating dipole,” Phys. Rev. Lett. 101, 180404 (2008).
[Crossref] [PubMed]

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).
[Crossref]

Scarani, V.

Y. Wang, J. Minář, L. Sheridan, and V. Scarani, “Efficient excitation of a two-level atom by a single photon in a propagating mode,” Phys. Rev. A 83, 063482 (2011).

M. K. Tey, G. Maslennikov, T. C. H. Liew, S. A. Aljunid, F. Huber, B. Chng, Z. Chen, V. Scarani, and C. Kurtsiefer, “Interfacing light and single atoms with a lens,” New J. Phys. 11, 043011 (2009).
[Crossref]

Schmidt, O. G.

J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015).
[Crossref]

N. Akopian, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot,” Nat. Photonics 5, 230–233 (2011).
[Crossref]

Schmiedmayer, J.

G. Kurizki, P. Bertet, Y. Kubo, K. Molmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, “Quantum technologies with hybrid systems,” PNAS 112, 3866–3873 (2015).
[Crossref] [PubMed]

Schneider, C.

M. Strauß, M. Placke, S. Kreinberg, C. Schneider, M. Kamp, S. Höfling, J. Wolters, and S. Reitzenstein, “Photon-statistics excitation spectroscopy of a single two-level system,” Phys. Rev. B 93, 241306 (2016).
[Crossref]

Seidler, M. A.

V. Leong, M. A. Seidler, M. Steiner, A. Cerè, and C. Kurtsiefer, “Time-resolved scattering of a single photon by a single atom,” Nat. Commun. 7, 13716 (2016).
[Crossref] [PubMed]

Sheridan, L.

Y. Wang, J. Minář, L. Sheridan, and V. Scarani, “Efficient excitation of a two-level atom by a single photon in a propagating mode,” Phys. Rev. A 83, 063482 (2011).

Siyushev, P.

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509, 66–70 (2014).
[Crossref] [PubMed]

Sondermann, M.

G. Leuchs and M. Sondermann, “Light-matter interaction in free space,” J. Mod. Opt. 60, 36–42 (2013).
[Crossref] [PubMed]

G. Leuchs and M. Sondermann, “Time-reversal symmetry in optics,” Physica Scripta 85, 058101 (2012).
[Crossref]

S. Heugel, A. S. Villar, M. Sondermann, U. Peschel, and G. Leuchs, “On the analogy between a single atom and an optical resonator,” Laser Phys. 20, 100–106 (2009).
[Crossref]

L. Alber, M. Fischer, M. Bader, K. Mantel, M. Sondermann, and G. Leuchs, “Focusing characteristics of a 4π parabolic mirror light-matter interface,” arXiv:1609.06884 [quant-ph] (2016).

Srivathsan, B.

B. Srivathsan, G. K. Gulati, A. Cerè, B. Chng, and C. Kurtsiefer, “Reversing the temporal envelope of a heralded single photon using a cavity,” Phys. Rev. Lett. 113, 163601 (2014).
[Crossref] [PubMed]

G. K. Gulati, B. Srivathsan, B. Chng, A. Cerè, D. Matsukevich, and C. Kurtsiefer, “Generation of an exponentially rising single-photon field from parametric conversion in atoms,” Phys. Rev. A 90, 033819 (2014).
[Crossref]

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
[Crossref] [PubMed]

Stein, G.

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509, 66–70 (2014).
[Crossref] [PubMed]

Steiner, M.

V. Leong, M. A. Seidler, M. Steiner, A. Cerè, and C. Kurtsiefer, “Time-resolved scattering of a single photon by a single atom,” Nat. Commun. 7, 13716 (2016).
[Crossref] [PubMed]

H. M. Meyer, R. Stockill, M. Steiner, C. Le Gall, C. Matthiesen, E. Clarke, A. Ludwig, J. Reichel, M. Atatüre, and M. Köhl, “Direct photonic coupling of a semiconductor quantum dot and a trapped ion,” Phys. Rev. Lett. 114, 123001 (2015).
[Crossref] [PubMed]

Y.-S. Chin, M. Steiner, and C. Kurtsiefer, “Quantifying the role of thermal motion in free-space light-atom interaction,” arXiv:1611.08048 [quant-ph] (2016).

Stobinska, M.

M. Stobińska, G. Alber, and G. Leuchs, “Perfect excitation of a matter qubit by a single photon in free space,” EPL 86, 14007 (2009).
[Crossref]

Stockill, R.

H. M. Meyer, R. Stockill, M. Steiner, C. Le Gall, C. Matthiesen, E. Clarke, A. Ludwig, J. Reichel, M. Atatüre, and M. Köhl, “Direct photonic coupling of a semiconductor quantum dot and a trapped ion,” Phys. Rev. Lett. 114, 123001 (2015).
[Crossref] [PubMed]

Strauß, M.

M. Strauß, M. Placke, S. Kreinberg, C. Schneider, M. Kamp, S. Höfling, J. Wolters, and S. Reitzenstein, “Photon-statistics excitation spectroscopy of a single two-level system,” Phys. Rev. B 93, 241306 (2016).
[Crossref]

Tey, M. K.

M. K. Tey, G. Maslennikov, T. C. H. Liew, S. A. Aljunid, F. Huber, B. Chng, Z. Chen, V. Scarani, and C. Kurtsiefer, “Interfacing light and single atoms with a lens,” New J. Phys. 11, 043011 (2009).
[Crossref]

M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without the need for a cavity,” Nat. Phys. 4, 924–927 (2008).
[Crossref]

Trautmann, N.

N. Trautmann, G. Alber, and G. Leuchs, “Efficient single-photon absorption by a trapped moving atom,” Phys. Rev. A 94, 033832 (2016).
[Crossref]

Treutlein, P.

J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015).
[Crossref]

Trotta, R.

J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015).
[Crossref]

Ulrich, S. M.

S. M. Ulrich, S. Weiler, M. Oster, M. Jetter, A. Urvoy, R. Löw, and P. Michler, “Spectroscopy of the D1 transition of cesium by dressed-state resonance fluorescence from a single (in,ga)as/gaas quantum dot,” Phys. Rev. B 90, 125310 (2014).
[Crossref]

Uphoff, M.

S. Ritter, C. Nolleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mucke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[Crossref] [PubMed]

Urvoy, A.

S. M. Ulrich, S. Weiler, M. Oster, M. Jetter, A. Urvoy, R. Löw, and P. Michler, “Spectroscopy of the D1 transition of cesium by dressed-state resonance fluorescence from a single (in,ga)as/gaas quantum dot,” Phys. Rev. B 90, 125310 (2014).
[Crossref]

van Enk, S. J.

S. J. van Enk, “Atoms, dipole waves, and strongly focused light beams,” Phys. Rev. A 69, 043813 (2004).
[Crossref]

S. J. van Enk and H. J. Kimble, “Strongly focused light beams interacting with single atoms in free space,” Phys. Rev. A 63, 023809 (2001).
[Crossref]

S. J. van Enk and H. J. Kimble, “Single atom in free space as a quantum aperture,” Phys. Rev. A 61, 051802 (2000).
[Crossref]

Villar, A. S.

S. Heugel, A. S. Villar, M. Sondermann, U. Peschel, and G. Leuchs, “On the analogy between a single atom and an optical resonator,” Laser Phys. 20, 100–106 (2009).
[Crossref]

Waks, E.

E. Waks and C. Monroe, “Protocol for hybrid entanglement between a trapped atom and a quantum dot,” Phys. Rev. A 80, 062330 (2009).
[Crossref]

Wang, L.

N. Akopian, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot,” Nat. Photonics 5, 230–233 (2011).
[Crossref]

Wang, Y.

Y. Wang, J. Minář, L. Sheridan, and V. Scarani, “Efficient excitation of a two-level atom by a single photon in a propagating mode,” Phys. Rev. A 83, 063482 (2011).

Warburton, R. J.

J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015).
[Crossref]

Webster, S. C.

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488–490 (2007).
[Crossref] [PubMed]

Weiler, S.

S. M. Ulrich, S. Weiler, M. Oster, M. Jetter, A. Urvoy, R. Löw, and P. Michler, “Spectroscopy of the D1 transition of cesium by dressed-state resonance fluorescence from a single (in,ga)as/gaas quantum dot,” Phys. Rev. B 90, 125310 (2014).
[Crossref]

Weisskopf, V.

V. Weisskopf and E. Wigner, “Berechnung der natürlichen linienbreite auf grund der diracschen lichttheorie,” Zeitschr. Phys. 63, 54–73 (1930).
[Crossref]

Wigner, E.

V. Weisskopf and E. Wigner, “Berechnung der natürlichen linienbreite auf grund der diracschen lichttheorie,” Zeitschr. Phys. 63, 54–73 (1930).
[Crossref]

Wilk, T.

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488–490 (2007).
[Crossref] [PubMed]

Wolters, J.

M. Strauß, M. Placke, S. Kreinberg, C. Schneider, M. Kamp, S. Höfling, J. Wolters, and S. Reitzenstein, “Photon-statistics excitation spectroscopy of a single two-level system,” Phys. Rev. B 93, 241306 (2016).
[Crossref]

Wrachtrup, J.

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509, 66–70 (2014).
[Crossref] [PubMed]

Wrigge, G.

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).
[Crossref]

Xiang, Z.-L.

Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, “Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85, 623–653 (2013).
[Crossref]

You, J. Q.

Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, “Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85, 623–653 (2013).
[Crossref]

Zumofen, G.

G. Zumofen, N. M. Mojarad, V. Sandoghdar, and M. Agio, “Perfect reflection of light by an oscillating dipole,” Phys. Rev. Lett. 101, 180404 (2008).
[Crossref] [PubMed]

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).
[Crossref]

Zwiller, V.

N. Akopian, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot,” Nat. Photonics 5, 230–233 (2011).
[Crossref]

Appl. Phys. B (1)

J. Brito, S. Kucera, P. Eich, P. Müller, and J. Eschner, “Doubly heralded single-photon absorption by a single atom,” Appl. Phys. B 122, 1–5 (2016).
[Crossref]

EPL (1)

M. Stobińska, G. Alber, and G. Leuchs, “Perfect excitation of a matter qubit by a single photon in free space,” EPL 86, 14007 (2009).
[Crossref]

J. Mod. Opt. (1)

G. Leuchs and M. Sondermann, “Light-matter interaction in free space,” J. Mod. Opt. 60, 36–42 (2013).
[Crossref] [PubMed]

J. Phys. B: At. Mol. Opt. Phys. (1)

H. H. Jen, “Spectral analysis for cascade-emission-based quantum communication in atomic ensembles,” J. Phys. B: At. Mol. Opt. Phys. 45, 165504 (2012).
[Crossref]

Laser Phys. (1)

S. Heugel, A. S. Villar, M. Sondermann, U. Peschel, and G. Leuchs, “On the analogy between a single atom and an optical resonator,” Laser Phys. 20, 100–106 (2009).
[Crossref]

Nat. Commun. (1)

V. Leong, M. A. Seidler, M. Steiner, A. Cerè, and C. Kurtsiefer, “Time-resolved scattering of a single photon by a single atom,” Nat. Commun. 7, 13716 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

N. Akopian, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot,” Nat. Photonics 5, 230–233 (2011).
[Crossref]

Nat. Phys. (2)

M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without the need for a cavity,” Nat. Phys. 4, 924–927 (2008).
[Crossref]

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).
[Crossref]

Nature (3)

S. Ritter, C. Nolleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mucke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012).
[Crossref] [PubMed]

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509, 66–70 (2014).
[Crossref] [PubMed]

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref] [PubMed]

New J. Phys. (1)

M. K. Tey, G. Maslennikov, T. C. H. Liew, S. A. Aljunid, F. Huber, B. Chng, Z. Chen, V. Scarani, and C. Kurtsiefer, “Interfacing light and single atoms with a lens,” New J. Phys. 11, 043011 (2009).
[Crossref]

Phys. Rev. A (10)

Y. Wang, J. Minář, L. Sheridan, and V. Scarani, “Efficient excitation of a two-level atom by a single photon in a propagating mode,” Phys. Rev. A 83, 063482 (2011).

N. Trautmann, G. Alber, and G. Leuchs, “Efficient single-photon absorption by a trapped moving atom,” Phys. Rev. A 94, 033832 (2016).
[Crossref]

J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992).
[Crossref] [PubMed]

G. K. Gulati, B. Srivathsan, B. Chng, A. Cerè, D. Matsukevich, and C. Kurtsiefer, “Generation of an exponentially rising single-photon field from parametric conversion in atoms,” Phys. Rev. A 90, 033819 (2014).
[Crossref]

E. Waks and C. Monroe, “Protocol for hybrid entanglement between a trapped atom and a quantum dot,” Phys. Rev. A 80, 062330 (2009).
[Crossref]

V. Bužek, G. Drobný, M. G. Kim, M. Havukainen, and P. L. Knight, “Numerical simulations of atomic decay in cavities and material media,” Phys. Rev. A 60, 582–592 (1999).
[Crossref]

S. J. van Enk and H. J. Kimble, “Single atom in free space as a quantum aperture,” Phys. Rev. A 61, 051802 (2000).
[Crossref]

S. J. van Enk and H. J. Kimble, “Strongly focused light beams interacting with single atoms in free space,” Phys. Rev. A 63, 023809 (2001).
[Crossref]

S. J. van Enk, “Atoms, dipole waves, and strongly focused light beams,” Phys. Rev. A 69, 043813 (2004).
[Crossref]

P. Domokos, P. Horak, and H. Ritsch, “Quantum description of light-pulse scattering on a single atom in waveguides,” Phys. Rev. A 65, 033832 (2002).
[Crossref]

Phys. Rev. B (3)

J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015).
[Crossref]

S. M. Ulrich, S. Weiler, M. Oster, M. Jetter, A. Urvoy, R. Löw, and P. Michler, “Spectroscopy of the D1 transition of cesium by dressed-state resonance fluorescence from a single (in,ga)as/gaas quantum dot,” Phys. Rev. B 90, 125310 (2014).
[Crossref]

M. Strauß, M. Placke, S. Kreinberg, C. Schneider, M. Kamp, S. Höfling, J. Wolters, and S. Reitzenstein, “Photon-statistics excitation spectroscopy of a single two-level system,” Phys. Rev. B 93, 241306 (2016).
[Crossref]

Phys. Rev. Lett. (7)

N. P. Georgiades, E. S. Polzik, K. Edamatsu, H. J. Kimble, and A. S. Parkins, “Nonclassical excitation for atoms in a squeezed vacuum,” Phys. Rev. Lett. 75, 3426–3429 (1995).
[Crossref] [PubMed]

H. M. Meyer, R. Stockill, M. Steiner, C. Le Gall, C. Matthiesen, E. Clarke, A. Ludwig, J. Reichel, M. Atatüre, and M. Köhl, “Direct photonic coupling of a semiconductor quantum dot and a trapped ion,” Phys. Rev. Lett. 114, 123001 (2015).
[Crossref] [PubMed]

D. Pinotsi and A. Imamoglu, “Single photon absorption by a single quantum emitter,” Phys. Rev. Lett. 100, 093603 (2008).
[Crossref] [PubMed]

G. Zumofen, N. M. Mojarad, V. Sandoghdar, and M. Agio, “Perfect reflection of light by an oscillating dipole,” Phys. Rev. Lett. 101, 180404 (2008).
[Crossref] [PubMed]

T. Chanelière, D. N. Matsukevich, and S. D. Jenkins, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96, 093604 (2006).
[Crossref] [PubMed]

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
[Crossref] [PubMed]

B. Srivathsan, G. K. Gulati, A. Cerè, B. Chng, and C. Kurtsiefer, “Reversing the temporal envelope of a heralded single photon using a cavity,” Phys. Rev. Lett. 113, 163601 (2014).
[Crossref] [PubMed]

Physica Scripta (1)

G. Leuchs and M. Sondermann, “Time-reversal symmetry in optics,” Physica Scripta 85, 058101 (2012).
[Crossref]

PNAS (1)

G. Kurizki, P. Bertet, Y. Kubo, K. Molmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, “Quantum technologies with hybrid systems,” PNAS 112, 3866–3873 (2015).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, “Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85, 623–653 (2013).
[Crossref]

Science (1)

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488–490 (2007).
[Crossref] [PubMed]

Zeitschr. Phys. (1)

V. Weisskopf and E. Wigner, “Berechnung der natürlichen linienbreite auf grund der diracschen lichttheorie,” Zeitschr. Phys. 63, 54–73 (1930).
[Crossref]

Other (2)

L. Alber, M. Fischer, M. Bader, K. Mantel, M. Sondermann, and G. Leuchs, “Focusing characteristics of a 4π parabolic mirror light-matter interface,” arXiv:1609.06884 [quant-ph] (2016).

Y.-S. Chin, M. Steiner, and C. Kurtsiefer, “Quantifying the role of thermal motion in free-space light-atom interaction,” arXiv:1611.08048 [quant-ph] (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Optical setup to prepare heralded single photons at 780 nm which are tightly focused on a single trapped atom. Four-wave mixing: two co-aligned pump fields (pump1 at 795 nm and pump2 at 762 nm) generate herald (776 nm) and probe (780 nm) photon pairs in a cold cloud of 87Rb atoms. The detection of a herald photon at Dh signals the presence of a single photon in the probe mode. Single Atom: a 87Rb atom is trapped at the focus of a confocal aspheric lens pair (AL) with an optical dipole trap. Dh, Df: avalanche photodetectors, P: polarizer, F: interference filter, λ/2, λ/4: half- and quarter-wave plate, (P)BS: (polarizing) beam splitter, DM: dichroic mirror, AOM: acousto-optic modulator, MOT: magneto-optical trap. (b) Level scheme of the FWM process. (c) Level scheme of the single 87Rb atom in the dipole trap.

Fig. 2
Fig. 2

Coincidence histograms between heralding detector Dh and forward detector Df for probe photons with five different bandwidths. The bandwidths, shown in the figure legends, are determined by fitting the histograms to Eq. (3). Each histogram is normalized to the heralding efficiency ηf. Error bars are smaller than symbol size (one standard deviation of propagated Poissonian counting uncertainties). Detection times are offset to account for delays introduced by electrical and optical lines.

Fig. 3
Fig. 3

Extinction of probe photons with different bandwidth Γp (circles). For comparison we include the observed extinction of weak coherent field (diamond). Solid line: Eq. (2) with Λ = 0.033. Error bars are smaller than symbol size (one standard deviation of propagated Poissonian counting uncertainties).

Fig. 4
Fig. 4

Temporal evolution of the atomic excited population Pe(t) obtained from the time-resolved changes in transmission detection rate in Eq. (7). Narrowband photons lead to stronger and longer lasting atomic excitation, in agreement with Eq. (4) (solid lines). Error bars represent one standard deviation of the distributions obtained by a Monte-Carlo method which assumes Poissonian statistics for the detection rates.

Fig. 5
Fig. 5

Atomic peak excitation Pe, max(t), extracted from the experimental Pe(t) curves shown in Fig. 4. Solid line: Eq. (5).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

( ω ) 1 ( ω ω 0 ) 2 + Γ p 2 / 4
= 4 Λ ( 1 Λ ) Γ 0 Γ 0 + Γ p ,
P p ( t ) = Γ p Θ ( t ) exp ( Γ p t ) ,
P e ( t ) = 4 Λ Γ 0 Γ p ( Γ 0 Γ p ) 2 Θ ( t ) [ exp ( 1 2 Γ 0 t ) exp ( 1 2 Γ p t ) ] 2 ,
P e , max = 4 Λ ( Γ p Γ 0 ) Γ 0 + Γ p Γ 0 Γ p .
= 1 i G ( t i ) / i G 0 ( t i )
P ˙ e ( t ) = δ ( t ) ( 1 Λ ) Γ 0 P e ( t ) .

Metrics