Abstract

An iron-doped Y-cut lithium niobate (Fe:LN) slab was coated with indium-tin-oxide (ITO) thin films by magnetron sputtering. The electron confinement in a sub-nanometer region at ITO/LN interfaces is resulted from electric screening effect. Consequently, the local plasma frequency in the sub-nanometer metallic-like layer is shifted to the UV regime. This makes it possible to excite surface plasmon polaritons (SPPs) in the visible region with photorefractive phase gratings in the LN slab and to transport SPPs much energy-efficiently. Direct evidence of the excitation of SPPs was demonstrated by the presence of deep transmission spectral valleys in the transmission spectra and striking dark bands in the 2D diffraction patterns while using a white reading beam. Theoretical arguments and confirmation experiments are presented to elucidate all the related findings.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultralow loss visible surface plasmon based waveguides formed in indium-tin-oxide coated Fe-doped LiNbO3 slabs

Hua Zhao, Tingyu Xue, Liang Li, and Jingwen Zhang
Opt. Lett. 41(18) 4150-4153 (2016)

Accumulation-layer hybridized surface plasmon polaritions at an ITO/LiNbO3 interface

Yingce Wang, Hua Zhao, Dewang Huo, Hang Su, Chao Wang, and Jingwen Zhang
Opt. Lett. 44(4) 947-950 (2019)

Direct coupling of photonic modes and surface plasmon polaritons observed in 2-photon PEEM

Robert C. Word, Joseph P. S. Fitzgerald, and Rolf Könenkamp
Opt. Express 21(25) 30507-30520 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
    [Crossref]
  2. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [Crossref]
  3. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  4. S. Franzen, “Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C 112(15), 6027–6032 (2008).
    [Crossref]
  5. C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103(9), 093108 (2008).
    [Crossref]
  6. E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
    [Crossref] [PubMed]
  7. H. Wang, J. Zhang, and H. Zhao, “Surface plasmon polariton excitation by electrostatic modulation and phase grating in indium-tin-oxide coated lithium niobate slabs,” J. Appl. Phys. 118(6), 063102 (2015).
    [Crossref]
  8. H. Wang, H. Zhao, C. Xu, L. Li, G. Hu, and J. Zhang, “Coupling mediated by photorefractive phase grating between visible radiation and surface plasmon polaritons in iron-doped LiNbO3 crystal slabs coated with indium tin oxide,” Appl. Phys. Express 7(10), 102001 (2014).
    [Crossref]
  9. H. Zhao, T. Xue, L. Li, and J. Zhang, “Ultralow loss visible surface plasmon based waveguides formed in indium-tin-oxide coated Fe-doped LiNbO3 slabs,” Opt. Lett. 41(18), 4150–4153 (2016).
    [Crossref] [PubMed]
  10. C. Chen, S. Lv, J. Li, Z. Wang, X. Liang, Y. Li, D. Viehland, K. Nakajima, and Y. Ikuhara, “Two-dimensional electron gas at the Ti-diffused BiFeO3/SrTiO3 interface,” Appl. Phys. Lett. 107(3), 031601 (2015).
    [Crossref]
  11. G. Herranz, M. Basletić, M. Bibes, C. Carrétéro, E. Tafra, E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzić, J.-M. Broto, A. Barthélémy, and A. Fert, “High mobility in LaAlO3/SrTiO3 heterostructures: origin, dimensionality, and perspectives,” Phys. Rev. Lett. 98(21), 216803 (2007).
    [Crossref] [PubMed]
  12. S. Sanna and W. G. Schmidt, “Lithium niobate X-cut, Y-cut, and Z-cut surfaces from ab initio theory,” Phys. Rev. B 81(21), 214116 (2010).
    [Crossref]
  13. S. Sanna, W. G. Schmidt, S. Rode, S. Klassen, and A. Kühnle, “Unraveling the LiNbO3 X-cut surface by atomic force microscopy and density functional theory,” Phys. Rev. B 89(7), 075403 (2014).
    [Crossref]
  14. M. Glass, D. von der Linde, and T. J. Negran, “High voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25(4), 233–235 (1974).
    [Crossref]
  15. S. G. Odoulov, “Vectorial interaction in photovoltaic media,” Ferroelectrics 91(1), 213–225 (1989).
    [Crossref]
  16. B. Sturman, M. Carrascosa, and F. Agullo-Lopez, “Light-induced charge transport in LiNbO3 crystals,” Phys. Rev. B 78(24), 245114 (2008).
    [Crossref]
  17. M. Goulkov, M. Imlau, and Th. Woike, “Photorefractive parameters of lithium niobate crystals from photoinduced light scattering,” Phys. Rev. B 77(23), 235110 (2008).
    [Crossref]
  18. J. Zhang, M. Li, Y. Xu, W. Sun, H. Zhao, S. Bian, and K. Xu, “Enhancement of the exponential gain coefficient as a result of the light-fanning effect in thin doped LiNbO3 crystals,” Opt. Lett. 18(17), 1391–1393 (1993).
    [Crossref] [PubMed]
  19. H. Ahn, A. Bhattacharya, M. Di Ventra, J. N. Eckstein, C. D. Frisbie, M. E. Gershenson, A. M. Goldman, I. H. Inoue, J. Mannhart, A. J. Millis, A. F. Morpurgo, D. Natelson, and J.-M. Triscone, “Electrostatic modification of novel materials,” Rev. Mod. Phys. 78(4), 1185–1212 (2006).
    [Crossref]
  20. K. Buse, J. Imbrock, E. Krätzig, and K. Peithmann, “Photorefractive Effects in LiNbO3 and LiTaO3” in Book entitled: Photorefractive Materials and Their Applications 2, ed. P. Günter and J.-P. Huignard (Springer, Heidelberg, 2007) Chapter 4, p. 83.
  21. S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D Appl. Phys. 45(43), 433001 (2012).
    [Crossref]
  22. D. Maystre, “Diffraction gratings: An amazing phenomenon,” C. R. Phys. 14(4), 381–392 (2013).
    [Crossref]
  23. S. J. Elston and J. R. Samble, “Surface plasmon-polaritons on an anisotropic substrate,” J. Mod. Opt. 37(12), 1895–1902 (1990).
    [Crossref]
  24. K. R. Daly, S. Abbott, G. D’Alessandro, D. C. Smith, and M. Kaczmarek, “Theory of hybrid photorefractive plasmonic liquid crystal cells,” J. Opt. Soc. Am. B 28(8), 1874–1881 (2011).
    [Crossref]
  25. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer-Verlag, Berlin, 1988.
  26. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
    [Crossref]
  27. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [Crossref]

2016 (1)

2015 (2)

C. Chen, S. Lv, J. Li, Z. Wang, X. Liang, Y. Li, D. Viehland, K. Nakajima, and Y. Ikuhara, “Two-dimensional electron gas at the Ti-diffused BiFeO3/SrTiO3 interface,” Appl. Phys. Lett. 107(3), 031601 (2015).
[Crossref]

H. Wang, J. Zhang, and H. Zhao, “Surface plasmon polariton excitation by electrostatic modulation and phase grating in indium-tin-oxide coated lithium niobate slabs,” J. Appl. Phys. 118(6), 063102 (2015).
[Crossref]

2014 (2)

H. Wang, H. Zhao, C. Xu, L. Li, G. Hu, and J. Zhang, “Coupling mediated by photorefractive phase grating between visible radiation and surface plasmon polaritons in iron-doped LiNbO3 crystal slabs coated with indium tin oxide,” Appl. Phys. Express 7(10), 102001 (2014).
[Crossref]

S. Sanna, W. G. Schmidt, S. Rode, S. Klassen, and A. Kühnle, “Unraveling the LiNbO3 X-cut surface by atomic force microscopy and density functional theory,” Phys. Rev. B 89(7), 075403 (2014).
[Crossref]

2013 (2)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

D. Maystre, “Diffraction gratings: An amazing phenomenon,” C. R. Phys. 14(4), 381–392 (2013).
[Crossref]

2012 (1)

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D Appl. Phys. 45(43), 433001 (2012).
[Crossref]

2011 (1)

2010 (3)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

S. Sanna and W. G. Schmidt, “Lithium niobate X-cut, Y-cut, and Z-cut surfaces from ab initio theory,” Phys. Rev. B 81(21), 214116 (2010).
[Crossref]

2008 (4)

B. Sturman, M. Carrascosa, and F. Agullo-Lopez, “Light-induced charge transport in LiNbO3 crystals,” Phys. Rev. B 78(24), 245114 (2008).
[Crossref]

M. Goulkov, M. Imlau, and Th. Woike, “Photorefractive parameters of lithium niobate crystals from photoinduced light scattering,” Phys. Rev. B 77(23), 235110 (2008).
[Crossref]

S. Franzen, “Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C 112(15), 6027–6032 (2008).
[Crossref]

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103(9), 093108 (2008).
[Crossref]

2007 (1)

G. Herranz, M. Basletić, M. Bibes, C. Carrétéro, E. Tafra, E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzić, J.-M. Broto, A. Barthélémy, and A. Fert, “High mobility in LaAlO3/SrTiO3 heterostructures: origin, dimensionality, and perspectives,” Phys. Rev. Lett. 98(21), 216803 (2007).
[Crossref] [PubMed]

2006 (1)

H. Ahn, A. Bhattacharya, M. Di Ventra, J. N. Eckstein, C. D. Frisbie, M. E. Gershenson, A. M. Goldman, I. H. Inoue, J. Mannhart, A. J. Millis, A. F. Morpurgo, D. Natelson, and J.-M. Triscone, “Electrostatic modification of novel materials,” Rev. Mod. Phys. 78(4), 1185–1212 (2006).
[Crossref]

2005 (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

1993 (1)

1990 (1)

S. J. Elston and J. R. Samble, “Surface plasmon-polaritons on an anisotropic substrate,” J. Mod. Opt. 37(12), 1895–1902 (1990).
[Crossref]

1989 (1)

S. G. Odoulov, “Vectorial interaction in photovoltaic media,” Ferroelectrics 91(1), 213–225 (1989).
[Crossref]

1981 (1)

1974 (1)

M. Glass, D. von der Linde, and T. J. Negran, “High voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25(4), 233–235 (1974).
[Crossref]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Abbott, S.

Agullo-Lopez, F.

B. Sturman, M. Carrascosa, and F. Agullo-Lopez, “Light-induced charge transport in LiNbO3 crystals,” Phys. Rev. B 78(24), 245114 (2008).
[Crossref]

Ahn, H.

H. Ahn, A. Bhattacharya, M. Di Ventra, J. N. Eckstein, C. D. Frisbie, M. E. Gershenson, A. M. Goldman, I. H. Inoue, J. Mannhart, A. J. Millis, A. F. Morpurgo, D. Natelson, and J.-M. Triscone, “Electrostatic modification of novel materials,” Rev. Mod. Phys. 78(4), 1185–1212 (2006).
[Crossref]

Aspnes, D. E.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103(9), 093108 (2008).
[Crossref]

Atwater, H. A.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Barthélémy, A.

G. Herranz, M. Basletić, M. Bibes, C. Carrétéro, E. Tafra, E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzić, J.-M. Broto, A. Barthélémy, and A. Fert, “High mobility in LaAlO3/SrTiO3 heterostructures: origin, dimensionality, and perspectives,” Phys. Rev. Lett. 98(21), 216803 (2007).
[Crossref] [PubMed]

Basletic, M.

G. Herranz, M. Basletić, M. Bibes, C. Carrétéro, E. Tafra, E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzić, J.-M. Broto, A. Barthélémy, and A. Fert, “High mobility in LaAlO3/SrTiO3 heterostructures: origin, dimensionality, and perspectives,” Phys. Rev. Lett. 98(21), 216803 (2007).
[Crossref] [PubMed]

Bhattacharya, A.

H. Ahn, A. Bhattacharya, M. Di Ventra, J. N. Eckstein, C. D. Frisbie, M. E. Gershenson, A. M. Goldman, I. H. Inoue, J. Mannhart, A. J. Millis, A. F. Morpurgo, D. Natelson, and J.-M. Triscone, “Electrostatic modification of novel materials,” Rev. Mod. Phys. 78(4), 1185–1212 (2006).
[Crossref]

Bian, S.

Bibes, M.

G. Herranz, M. Basletić, M. Bibes, C. Carrétéro, E. Tafra, E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzić, J.-M. Broto, A. Barthélémy, and A. Fert, “High mobility in LaAlO3/SrTiO3 heterostructures: origin, dimensionality, and perspectives,” Phys. Rev. Lett. 98(21), 216803 (2007).
[Crossref] [PubMed]

Boltasseva, A.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Bouzehouane, K.

G. Herranz, M. Basletić, M. Bibes, C. Carrétéro, E. Tafra, E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzić, J.-M. Broto, A. Barthélémy, and A. Fert, “High mobility in LaAlO3/SrTiO3 heterostructures: origin, dimensionality, and perspectives,” Phys. Rev. Lett. 98(21), 216803 (2007).
[Crossref] [PubMed]

Broto, J.-M.

G. Herranz, M. Basletić, M. Bibes, C. Carrétéro, E. Tafra, E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzić, J.-M. Broto, A. Barthélémy, and A. Fert, “High mobility in LaAlO3/SrTiO3 heterostructures: origin, dimensionality, and perspectives,” Phys. Rev. Lett. 98(21), 216803 (2007).
[Crossref] [PubMed]

Carrascosa, M.

B. Sturman, M. Carrascosa, and F. Agullo-Lopez, “Light-induced charge transport in LiNbO3 crystals,” Phys. Rev. B 78(24), 245114 (2008).
[Crossref]

Carrétéro, C.

G. Herranz, M. Basletić, M. Bibes, C. Carrétéro, E. Tafra, E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzić, J.-M. Broto, A. Barthélémy, and A. Fert, “High mobility in LaAlO3/SrTiO3 heterostructures: origin, dimensionality, and perspectives,” Phys. Rev. Lett. 98(21), 216803 (2007).
[Crossref] [PubMed]

Cerruti, M.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103(9), 093108 (2008).
[Crossref]

Chen, C.

C. Chen, S. Lv, J. Li, Z. Wang, X. Liang, Y. Li, D. Viehland, K. Nakajima, and Y. Ikuhara, “Two-dimensional electron gas at the Ti-diffused BiFeO3/SrTiO3 interface,” Appl. Phys. Lett. 107(3), 031601 (2015).
[Crossref]

D’Alessandro, G.

Daly, K. R.

Deranlot, C.

G. Herranz, M. Basletić, M. Bibes, C. Carrétéro, E. Tafra, E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzić, J.-M. Broto, A. Barthélémy, and A. Fert, “High mobility in LaAlO3/SrTiO3 heterostructures: origin, dimensionality, and perspectives,” Phys. Rev. Lett. 98(21), 216803 (2007).
[Crossref] [PubMed]

Di Ventra, M.

H. Ahn, A. Bhattacharya, M. Di Ventra, J. N. Eckstein, C. D. Frisbie, M. E. Gershenson, A. M. Goldman, I. H. Inoue, J. Mannhart, A. J. Millis, A. F. Morpurgo, D. Natelson, and J.-M. Triscone, “Electrostatic modification of novel materials,” Rev. Mod. Phys. 78(4), 1185–1212 (2006).
[Crossref]

Diest, K.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Eckstein, J. N.

H. Ahn, A. Bhattacharya, M. Di Ventra, J. N. Eckstein, C. D. Frisbie, M. E. Gershenson, A. M. Goldman, I. H. Inoue, J. Mannhart, A. J. Millis, A. F. Morpurgo, D. Natelson, and J.-M. Triscone, “Electrostatic modification of novel materials,” Rev. Mod. Phys. 78(4), 1185–1212 (2006).
[Crossref]

Efremenko, A.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103(9), 093108 (2008).
[Crossref]

Elston, S. J.

S. J. Elston and J. R. Samble, “Surface plasmon-polaritons on an anisotropic substrate,” J. Mod. Opt. 37(12), 1895–1902 (1990).
[Crossref]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Feigenbaum, E.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Fert, A.

G. Herranz, M. Basletić, M. Bibes, C. Carrétéro, E. Tafra, E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzić, J.-M. Broto, A. Barthélémy, and A. Fert, “High mobility in LaAlO3/SrTiO3 heterostructures: origin, dimensionality, and perspectives,” Phys. Rev. Lett. 98(21), 216803 (2007).
[Crossref] [PubMed]

Franzen, S.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103(9), 093108 (2008).
[Crossref]

S. Franzen, “Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C 112(15), 6027–6032 (2008).
[Crossref]

Frisbie, C. D.

H. Ahn, A. Bhattacharya, M. Di Ventra, J. N. Eckstein, C. D. Frisbie, M. E. Gershenson, A. M. Goldman, I. H. Inoue, J. Mannhart, A. J. Millis, A. F. Morpurgo, D. Natelson, and J.-M. Triscone, “Electrostatic modification of novel materials,” Rev. Mod. Phys. 78(4), 1185–1212 (2006).
[Crossref]

Gaylord, T. K.

Gershenson, M. E.

H. Ahn, A. Bhattacharya, M. Di Ventra, J. N. Eckstein, C. D. Frisbie, M. E. Gershenson, A. M. Goldman, I. H. Inoue, J. Mannhart, A. J. Millis, A. F. Morpurgo, D. Natelson, and J.-M. Triscone, “Electrostatic modification of novel materials,” Rev. Mod. Phys. 78(4), 1185–1212 (2006).
[Crossref]

Glass, M.

M. Glass, D. von der Linde, and T. J. Negran, “High voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25(4), 233–235 (1974).
[Crossref]

Goldman, A. M.

H. Ahn, A. Bhattacharya, M. Di Ventra, J. N. Eckstein, C. D. Frisbie, M. E. Gershenson, A. M. Goldman, I. H. Inoue, J. Mannhart, A. J. Millis, A. F. Morpurgo, D. Natelson, and J.-M. Triscone, “Electrostatic modification of novel materials,” Rev. Mod. Phys. 78(4), 1185–1212 (2006).
[Crossref]

Goulkov, M.

M. Goulkov, M. Imlau, and Th. Woike, “Photorefractive parameters of lithium niobate crystals from photoinduced light scattering,” Phys. Rev. B 77(23), 235110 (2008).
[Crossref]

Hamzic, A.

G. Herranz, M. Basletić, M. Bibes, C. Carrétéro, E. Tafra, E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzić, J.-M. Broto, A. Barthélémy, and A. Fert, “High mobility in LaAlO3/SrTiO3 heterostructures: origin, dimensionality, and perspectives,” Phys. Rev. Lett. 98(21), 216803 (2007).
[Crossref] [PubMed]

Hayashi, S.

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D Appl. Phys. 45(43), 433001 (2012).
[Crossref]

Herranz, G.

G. Herranz, M. Basletić, M. Bibes, C. Carrétéro, E. Tafra, E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzić, J.-M. Broto, A. Barthélémy, and A. Fert, “High mobility in LaAlO3/SrTiO3 heterostructures: origin, dimensionality, and perspectives,” Phys. Rev. Lett. 98(21), 216803 (2007).
[Crossref] [PubMed]

Hu, G.

H. Wang, H. Zhao, C. Xu, L. Li, G. Hu, and J. Zhang, “Coupling mediated by photorefractive phase grating between visible radiation and surface plasmon polaritons in iron-doped LiNbO3 crystal slabs coated with indium tin oxide,” Appl. Phys. Express 7(10), 102001 (2014).
[Crossref]

Ikuhara, Y.

C. Chen, S. Lv, J. Li, Z. Wang, X. Liang, Y. Li, D. Viehland, K. Nakajima, and Y. Ikuhara, “Two-dimensional electron gas at the Ti-diffused BiFeO3/SrTiO3 interface,” Appl. Phys. Lett. 107(3), 031601 (2015).
[Crossref]

Imlau, M.

M. Goulkov, M. Imlau, and Th. Woike, “Photorefractive parameters of lithium niobate crystals from photoinduced light scattering,” Phys. Rev. B 77(23), 235110 (2008).
[Crossref]

Inoue, I. H.

H. Ahn, A. Bhattacharya, M. Di Ventra, J. N. Eckstein, C. D. Frisbie, M. E. Gershenson, A. M. Goldman, I. H. Inoue, J. Mannhart, A. J. Millis, A. F. Morpurgo, D. Natelson, and J.-M. Triscone, “Electrostatic modification of novel materials,” Rev. Mod. Phys. 78(4), 1185–1212 (2006).
[Crossref]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Jacquet, E.

G. Herranz, M. Basletić, M. Bibes, C. Carrétéro, E. Tafra, E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzić, J.-M. Broto, A. Barthélémy, and A. Fert, “High mobility in LaAlO3/SrTiO3 heterostructures: origin, dimensionality, and perspectives,” Phys. Rev. Lett. 98(21), 216803 (2007).
[Crossref] [PubMed]

Kaczmarek, M.

Klassen, S.

S. Sanna, W. G. Schmidt, S. Rode, S. Klassen, and A. Kühnle, “Unraveling the LiNbO3 X-cut surface by atomic force microscopy and density functional theory,” Phys. Rev. B 89(7), 075403 (2014).
[Crossref]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Kühnle, A.

S. Sanna, W. G. Schmidt, S. Rode, S. Klassen, and A. Kühnle, “Unraveling the LiNbO3 X-cut surface by atomic force microscopy and density functional theory,” Phys. Rev. B 89(7), 075403 (2014).
[Crossref]

Li, J.

C. Chen, S. Lv, J. Li, Z. Wang, X. Liang, Y. Li, D. Viehland, K. Nakajima, and Y. Ikuhara, “Two-dimensional electron gas at the Ti-diffused BiFeO3/SrTiO3 interface,” Appl. Phys. Lett. 107(3), 031601 (2015).
[Crossref]

Li, L.

H. Zhao, T. Xue, L. Li, and J. Zhang, “Ultralow loss visible surface plasmon based waveguides formed in indium-tin-oxide coated Fe-doped LiNbO3 slabs,” Opt. Lett. 41(18), 4150–4153 (2016).
[Crossref] [PubMed]

H. Wang, H. Zhao, C. Xu, L. Li, G. Hu, and J. Zhang, “Coupling mediated by photorefractive phase grating between visible radiation and surface plasmon polaritons in iron-doped LiNbO3 crystal slabs coated with indium tin oxide,” Appl. Phys. Express 7(10), 102001 (2014).
[Crossref]

Li, M.

Li, Y.

C. Chen, S. Lv, J. Li, Z. Wang, X. Liang, Y. Li, D. Viehland, K. Nakajima, and Y. Ikuhara, “Two-dimensional electron gas at the Ti-diffused BiFeO3/SrTiO3 interface,” Appl. Phys. Lett. 107(3), 031601 (2015).
[Crossref]

Liang, X.

C. Chen, S. Lv, J. Li, Z. Wang, X. Liang, Y. Li, D. Viehland, K. Nakajima, and Y. Ikuhara, “Two-dimensional electron gas at the Ti-diffused BiFeO3/SrTiO3 interface,” Appl. Phys. Lett. 107(3), 031601 (2015).
[Crossref]

Losego, M.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103(9), 093108 (2008).
[Crossref]

Lv, S.

C. Chen, S. Lv, J. Li, Z. Wang, X. Liang, Y. Li, D. Viehland, K. Nakajima, and Y. Ikuhara, “Two-dimensional electron gas at the Ti-diffused BiFeO3/SrTiO3 interface,” Appl. Phys. Lett. 107(3), 031601 (2015).
[Crossref]

Mannhart, J.

H. Ahn, A. Bhattacharya, M. Di Ventra, J. N. Eckstein, C. D. Frisbie, M. E. Gershenson, A. M. Goldman, I. H. Inoue, J. Mannhart, A. J. Millis, A. F. Morpurgo, D. Natelson, and J.-M. Triscone, “Electrostatic modification of novel materials,” Rev. Mod. Phys. 78(4), 1185–1212 (2006).
[Crossref]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Maria, J. P.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103(9), 093108 (2008).
[Crossref]

Maystre, D.

D. Maystre, “Diffraction gratings: An amazing phenomenon,” C. R. Phys. 14(4), 381–392 (2013).
[Crossref]

Millis, A. J.

H. Ahn, A. Bhattacharya, M. Di Ventra, J. N. Eckstein, C. D. Frisbie, M. E. Gershenson, A. M. Goldman, I. H. Inoue, J. Mannhart, A. J. Millis, A. F. Morpurgo, D. Natelson, and J.-M. Triscone, “Electrostatic modification of novel materials,” Rev. Mod. Phys. 78(4), 1185–1212 (2006).
[Crossref]

Moharam, M. G.

Morpurgo, A. F.

H. Ahn, A. Bhattacharya, M. Di Ventra, J. N. Eckstein, C. D. Frisbie, M. E. Gershenson, A. M. Goldman, I. H. Inoue, J. Mannhart, A. J. Millis, A. F. Morpurgo, D. Natelson, and J.-M. Triscone, “Electrostatic modification of novel materials,” Rev. Mod. Phys. 78(4), 1185–1212 (2006).
[Crossref]

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Nakajima, K.

C. Chen, S. Lv, J. Li, Z. Wang, X. Liang, Y. Li, D. Viehland, K. Nakajima, and Y. Ikuhara, “Two-dimensional electron gas at the Ti-diffused BiFeO3/SrTiO3 interface,” Appl. Phys. Lett. 107(3), 031601 (2015).
[Crossref]

Natelson, D.

H. Ahn, A. Bhattacharya, M. Di Ventra, J. N. Eckstein, C. D. Frisbie, M. E. Gershenson, A. M. Goldman, I. H. Inoue, J. Mannhart, A. J. Millis, A. F. Morpurgo, D. Natelson, and J.-M. Triscone, “Electrostatic modification of novel materials,” Rev. Mod. Phys. 78(4), 1185–1212 (2006).
[Crossref]

Negran, T. J.

M. Glass, D. von der Linde, and T. J. Negran, “High voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25(4), 233–235 (1974).
[Crossref]

Odoulov, S. G.

S. G. Odoulov, “Vectorial interaction in photovoltaic media,” Ferroelectrics 91(1), 213–225 (1989).
[Crossref]

Okamoto, T.

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D Appl. Phys. 45(43), 433001 (2012).
[Crossref]

Rhodes, C.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103(9), 093108 (2008).
[Crossref]

Rode, S.

S. Sanna, W. G. Schmidt, S. Rode, S. Klassen, and A. Kühnle, “Unraveling the LiNbO3 X-cut surface by atomic force microscopy and density functional theory,” Phys. Rev. B 89(7), 075403 (2014).
[Crossref]

Samble, J. R.

S. J. Elston and J. R. Samble, “Surface plasmon-polaritons on an anisotropic substrate,” J. Mod. Opt. 37(12), 1895–1902 (1990).
[Crossref]

Sanna, S.

S. Sanna, W. G. Schmidt, S. Rode, S. Klassen, and A. Kühnle, “Unraveling the LiNbO3 X-cut surface by atomic force microscopy and density functional theory,” Phys. Rev. B 89(7), 075403 (2014).
[Crossref]

S. Sanna and W. G. Schmidt, “Lithium niobate X-cut, Y-cut, and Z-cut surfaces from ab initio theory,” Phys. Rev. B 81(21), 214116 (2010).
[Crossref]

Schmidt, W. G.

S. Sanna, W. G. Schmidt, S. Rode, S. Klassen, and A. Kühnle, “Unraveling the LiNbO3 X-cut surface by atomic force microscopy and density functional theory,” Phys. Rev. B 89(7), 075403 (2014).
[Crossref]

S. Sanna and W. G. Schmidt, “Lithium niobate X-cut, Y-cut, and Z-cut surfaces from ab initio theory,” Phys. Rev. B 81(21), 214116 (2010).
[Crossref]

Shalaev, V. M.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Smith, D. C.

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Sturman, B.

B. Sturman, M. Carrascosa, and F. Agullo-Lopez, “Light-induced charge transport in LiNbO3 crystals,” Phys. Rev. B 78(24), 245114 (2008).
[Crossref]

Sun, W.

Tafra, E.

G. Herranz, M. Basletić, M. Bibes, C. Carrétéro, E. Tafra, E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzić, J.-M. Broto, A. Barthélémy, and A. Fert, “High mobility in LaAlO3/SrTiO3 heterostructures: origin, dimensionality, and perspectives,” Phys. Rev. Lett. 98(21), 216803 (2007).
[Crossref] [PubMed]

Triscone, J.-M.

H. Ahn, A. Bhattacharya, M. Di Ventra, J. N. Eckstein, C. D. Frisbie, M. E. Gershenson, A. M. Goldman, I. H. Inoue, J. Mannhart, A. J. Millis, A. F. Morpurgo, D. Natelson, and J.-M. Triscone, “Electrostatic modification of novel materials,” Rev. Mod. Phys. 78(4), 1185–1212 (2006).
[Crossref]

Viehland, D.

C. Chen, S. Lv, J. Li, Z. Wang, X. Liang, Y. Li, D. Viehland, K. Nakajima, and Y. Ikuhara, “Two-dimensional electron gas at the Ti-diffused BiFeO3/SrTiO3 interface,” Appl. Phys. Lett. 107(3), 031601 (2015).
[Crossref]

von der Linde, D.

M. Glass, D. von der Linde, and T. J. Negran, “High voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25(4), 233–235 (1974).
[Crossref]

Wang, H.

H. Wang, J. Zhang, and H. Zhao, “Surface plasmon polariton excitation by electrostatic modulation and phase grating in indium-tin-oxide coated lithium niobate slabs,” J. Appl. Phys. 118(6), 063102 (2015).
[Crossref]

H. Wang, H. Zhao, C. Xu, L. Li, G. Hu, and J. Zhang, “Coupling mediated by photorefractive phase grating between visible radiation and surface plasmon polaritons in iron-doped LiNbO3 crystal slabs coated with indium tin oxide,” Appl. Phys. Express 7(10), 102001 (2014).
[Crossref]

Wang, Z.

C. Chen, S. Lv, J. Li, Z. Wang, X. Liang, Y. Li, D. Viehland, K. Nakajima, and Y. Ikuhara, “Two-dimensional electron gas at the Ti-diffused BiFeO3/SrTiO3 interface,” Appl. Phys. Lett. 107(3), 031601 (2015).
[Crossref]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Woike, Th.

M. Goulkov, M. Imlau, and Th. Woike, “Photorefractive parameters of lithium niobate crystals from photoinduced light scattering,” Phys. Rev. B 77(23), 235110 (2008).
[Crossref]

Xu, C.

H. Wang, H. Zhao, C. Xu, L. Li, G. Hu, and J. Zhang, “Coupling mediated by photorefractive phase grating between visible radiation and surface plasmon polaritons in iron-doped LiNbO3 crystal slabs coated with indium tin oxide,” Appl. Phys. Express 7(10), 102001 (2014).
[Crossref]

Xu, K.

Xu, Y.

Xue, T.

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Zhang, J.

H. Zhao, T. Xue, L. Li, and J. Zhang, “Ultralow loss visible surface plasmon based waveguides formed in indium-tin-oxide coated Fe-doped LiNbO3 slabs,” Opt. Lett. 41(18), 4150–4153 (2016).
[Crossref] [PubMed]

H. Wang, J. Zhang, and H. Zhao, “Surface plasmon polariton excitation by electrostatic modulation and phase grating in indium-tin-oxide coated lithium niobate slabs,” J. Appl. Phys. 118(6), 063102 (2015).
[Crossref]

H. Wang, H. Zhao, C. Xu, L. Li, G. Hu, and J. Zhang, “Coupling mediated by photorefractive phase grating between visible radiation and surface plasmon polaritons in iron-doped LiNbO3 crystal slabs coated with indium tin oxide,” Appl. Phys. Express 7(10), 102001 (2014).
[Crossref]

J. Zhang, M. Li, Y. Xu, W. Sun, H. Zhao, S. Bian, and K. Xu, “Enhancement of the exponential gain coefficient as a result of the light-fanning effect in thin doped LiNbO3 crystals,” Opt. Lett. 18(17), 1391–1393 (1993).
[Crossref] [PubMed]

Zhao, H.

H. Zhao, T. Xue, L. Li, and J. Zhang, “Ultralow loss visible surface plasmon based waveguides formed in indium-tin-oxide coated Fe-doped LiNbO3 slabs,” Opt. Lett. 41(18), 4150–4153 (2016).
[Crossref] [PubMed]

H. Wang, J. Zhang, and H. Zhao, “Surface plasmon polariton excitation by electrostatic modulation and phase grating in indium-tin-oxide coated lithium niobate slabs,” J. Appl. Phys. 118(6), 063102 (2015).
[Crossref]

H. Wang, H. Zhao, C. Xu, L. Li, G. Hu, and J. Zhang, “Coupling mediated by photorefractive phase grating between visible radiation and surface plasmon polaritons in iron-doped LiNbO3 crystal slabs coated with indium tin oxide,” Appl. Phys. Express 7(10), 102001 (2014).
[Crossref]

J. Zhang, M. Li, Y. Xu, W. Sun, H. Zhao, S. Bian, and K. Xu, “Enhancement of the exponential gain coefficient as a result of the light-fanning effect in thin doped LiNbO3 crystals,” Opt. Lett. 18(17), 1391–1393 (1993).
[Crossref] [PubMed]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Appl. Phys. Express (1)

H. Wang, H. Zhao, C. Xu, L. Li, G. Hu, and J. Zhang, “Coupling mediated by photorefractive phase grating between visible radiation and surface plasmon polaritons in iron-doped LiNbO3 crystal slabs coated with indium tin oxide,” Appl. Phys. Express 7(10), 102001 (2014).
[Crossref]

Appl. Phys. Lett. (2)

C. Chen, S. Lv, J. Li, Z. Wang, X. Liang, Y. Li, D. Viehland, K. Nakajima, and Y. Ikuhara, “Two-dimensional electron gas at the Ti-diffused BiFeO3/SrTiO3 interface,” Appl. Phys. Lett. 107(3), 031601 (2015).
[Crossref]

M. Glass, D. von der Linde, and T. J. Negran, “High voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25(4), 233–235 (1974).
[Crossref]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

C. R. Phys. (1)

D. Maystre, “Diffraction gratings: An amazing phenomenon,” C. R. Phys. 14(4), 381–392 (2013).
[Crossref]

Ferroelectrics (1)

S. G. Odoulov, “Vectorial interaction in photovoltaic media,” Ferroelectrics 91(1), 213–225 (1989).
[Crossref]

J. Appl. Phys. (2)

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J. P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103(9), 093108 (2008).
[Crossref]

H. Wang, J. Zhang, and H. Zhao, “Surface plasmon polariton excitation by electrostatic modulation and phase grating in indium-tin-oxide coated lithium niobate slabs,” J. Appl. Phys. 118(6), 063102 (2015).
[Crossref]

J. Mod. Opt. (1)

S. J. Elston and J. R. Samble, “Surface plasmon-polaritons on an anisotropic substrate,” J. Mod. Opt. 37(12), 1895–1902 (1990).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

S. Franzen, “Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C 112(15), 6027–6032 (2008).
[Crossref]

J. Phys. D Appl. Phys. (1)

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D Appl. Phys. 45(43), 433001 (2012).
[Crossref]

Laser Photonics Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Nano Lett. (1)

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Phys. Rev. B (4)

B. Sturman, M. Carrascosa, and F. Agullo-Lopez, “Light-induced charge transport in LiNbO3 crystals,” Phys. Rev. B 78(24), 245114 (2008).
[Crossref]

M. Goulkov, M. Imlau, and Th. Woike, “Photorefractive parameters of lithium niobate crystals from photoinduced light scattering,” Phys. Rev. B 77(23), 235110 (2008).
[Crossref]

S. Sanna and W. G. Schmidt, “Lithium niobate X-cut, Y-cut, and Z-cut surfaces from ab initio theory,” Phys. Rev. B 81(21), 214116 (2010).
[Crossref]

S. Sanna, W. G. Schmidt, S. Rode, S. Klassen, and A. Kühnle, “Unraveling the LiNbO3 X-cut surface by atomic force microscopy and density functional theory,” Phys. Rev. B 89(7), 075403 (2014).
[Crossref]

Phys. Rev. Lett. (1)

G. Herranz, M. Basletić, M. Bibes, C. Carrétéro, E. Tafra, E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzić, J.-M. Broto, A. Barthélémy, and A. Fert, “High mobility in LaAlO3/SrTiO3 heterostructures: origin, dimensionality, and perspectives,” Phys. Rev. Lett. 98(21), 216803 (2007).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

H. Ahn, A. Bhattacharya, M. Di Ventra, J. N. Eckstein, C. D. Frisbie, M. E. Gershenson, A. M. Goldman, I. H. Inoue, J. Mannhart, A. J. Millis, A. F. Morpurgo, D. Natelson, and J.-M. Triscone, “Electrostatic modification of novel materials,” Rev. Mod. Phys. 78(4), 1185–1212 (2006).
[Crossref]

Other (2)

K. Buse, J. Imbrock, E. Krätzig, and K. Peithmann, “Photorefractive Effects in LiNbO3 and LiTaO3” in Book entitled: Photorefractive Materials and Their Applications 2, ed. P. Günter and J.-P. Huignard (Springer, Heidelberg, 2007) Chapter 4, p. 83.

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer-Verlag, Berlin, 1988.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1 (a) Illustration of the ITO/LN interface, coordinate system, electrostatic modification and electron confinement in a sub-nm layer. (b) Real and imaginary parts of ITO permittivity dispersions versus carrier concentrations in un- and modified ITO portions. (c) A simplified illustration of the modified layered structure with ε2/ ε ITO mod 2, ε ITO mod : the dielectric function of the modified metallic-like layer and ε2: dielectric constant of the LN and unmodified ITO, treated as the same as the LN’s for simplicity; (d) Schematic of writing (reading) phase gratings and of the spectral measurement configuration.
Fig. 2
Fig. 2 (a) A diffraction pattern taken after an exposure of 10 s, the white spot was the directly transmitted one, the colorful one on the left with a dark band was the first diffraction, and the yellowish one on the right top corner was the reflected spot. (b) Transmission spectra taken after 2, 4, 6 and 10 s exposure and the inset were the spectra taken at three crossing angles after 3.0 min exposure. (c) 1D SPP band structure of ITO/LN composite slab. The red lines correspond to kxin, the blue dashed lines the light lines in the LN slab, the bold black line the original SPP dispersion curve, and the horizontal bold black line marks the frequency for 561 nm light, Δm = 3 is chosen for clarity in display. (d) The diffraction pattern of white light corresponding to Θ = 3.4° and 30 s exposure.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k SPP = k xin +Δk= k xin +m 2π Λ , m=±1, ±2 ,... ,
ϖ + : ε ITO Mod k z2 + ε 2 k z1 tanh( 1 2i k ITO mod z d)=0,
ϖ : ε ITO mod k z2 + ε 2 k z1 ctgh( 1 2i k ITO mod z d)=0.

Metrics