Abstract

The waveguiding of surface enhanced Raman scattering (SERS) signals was demonstrated by using organic semiconducting microrods (MRs) hybridized with functionalized gold nanoparticles (Au-NPs). Organic semiconducting 1,4-bis(3,5-bis(trifluoromethyl) styryl)-2,5-dibromobenzene (TSDB) crystalline MRs were fabricated as active optical waveguiding system using a self-assembly method. The static SERS effect and the enhancement of photoluminescence were simultaneously observed for the TSDB MRs hybridized with Au-NPs. The waveguiding characteristics of the SERS signals through the hybrid MR of TSDB/Au-NPs were investigated using a high-resolution laser confocal microscope (LCM) system. The enhanced output Raman characteristic modes of TSDB molecules were clearly observed along the hybrid MR of TSDB/Au-NPs, which is attributed to stronger scattering of the light and the increased coupling efficiency of waveguiding due to the presence of Au-NPs. The waveguiding of the SERS signals exhibited different decay constants for the corresponding characteristic Raman modes, such as -C = C- aromatic, -CF3, and C-Br stretching modes. The observed waveguiding characteristics of various SERS modes enable multi-modal waveguiding with relatively narrow spectral resolution for nanophotonic information.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface-enhanced Raman scattering for 2-D WSe2 hybridized with functionalized gold nanoparticles

Jun Young Kim, Jeongyong Kim, and Jinsoo Joo
Opt. Express 24(24) 27546-27553 (2016)

A nanotweezer system for evanescent wave excited surface enhanced Raman spectroscopy (SERS) of single nanoparticles

Lingbo Kong, Changwon Lee, Christopher M. Earhart, Bernardo Cordovez, and James W. Chan
Opt. Express 23(5) 6793-6802 (2015)

Surface-enhanced Raman scattering biosensor for DNA detection on nanoparticle island substrates

Wu Yuan, Ho Pui Ho, Rebecca K. Y. Lee, and Siu Kai Kong
Appl. Opt. 48(22) 4329-4337 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007).
    [Crossref]
  2. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Rev. Sec. Phys. Lett. 408, 131–314 (2005).
  3. H. Wei and H. Xu, “Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy,” Nanoscale 5(22), 10794–10805 (2013).
    [Crossref] [PubMed]
  4. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [Crossref]
  5. C. J. L. Constantino, T. Lemma, P. A. Antunes, and R. Aroca, “Single-molecule detection using surface-enhanced resonance Raman scattering and Langmuir-Blodgett monolayers,” Anal. Chem. 73(15), 3674–3678 (2001).
    [Crossref] [PubMed]
  6. S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: A route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
    [Crossref] [PubMed]
  7. M. Käll, “Plasmonic nanosensors: Inverse sensitivity,” Nat. Mater. 11(7), 570–571 (2012).
    [Crossref] [PubMed]
  8. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
    [Crossref] [PubMed]
  9. S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
    [Crossref] [PubMed]
  10. J. Yoo, X. Ma, W. Tang, and G. C. Yi, “Metal-lined semiconductor nanotubes for surface plasmon-mediated luminescence enhancement,” Nano Lett. 13(5), 2134–2140 (2013).
    [Crossref] [PubMed]
  11. W. Zhang, F. Ding, and S. Y. Chou, “Large enhancement of upconversion luminescence of NaYF4:Yb3+/Er3+ nanocrystal by 3D plasmonic nano-antennas,” Adv. Mater. 24(35), OP236–OP241 (2012).
    [Crossref] [PubMed]
  12. D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12(3), 1333–1339 (2012).
    [Crossref] [PubMed]
  13. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
    [Crossref] [PubMed]
  14. M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
    [Crossref]
  15. D. L. Jeanmaire and R. P. Vanduyne, “Surface Raman spectroelectrochemistry Part 1. Heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
    [Crossref]
  16. D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
    [Crossref] [PubMed]
  17. A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
    [Crossref]
  18. J. R. Lombardi and R. L. Birke, “A unified view of surface-enhanced Raman scattering,” Acc. Chem. Res. 42(6), 734–742 (2009).
    [Crossref] [PubMed]
  19. A. Otto, “The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering,” J. Raman Spectrosc. 36(6-7), 497–509 (2005).
    [Crossref]
  20. L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, and M. Sun, “Visualized method of chemical enhancement mechanism on SERS and TERS,” J. Raman Spectrosc. 45(7), 533–540 (2014).
    [Crossref]
  21. Y. Z. Huang and B. Dong, “pH Dependent plasmon-driven surface-catalysis reactions of p,p′-dimercaptoazobenzene produced from para-aminothiophenol and 4-nitrobenzenethiol,” Sci. China Chem. 55(12), 2567–2572 (2012).
    [Crossref]
  22. H. Wei, F. Hao, Y. Huang, W. Wang, P. Nordlander, and H. Xu, “Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems,” Nano Lett. 8(8), 2497–2502 (2008).
    [Crossref] [PubMed]
  23. C. V. Pagba, S. M. Lane, and S. W. Hogiu, “Raman and surface-enhanced Raman spectroscopic studies of the 15-mer DNA thrombin-binding aptamer,” J. Raman Spectrosc. 41, 241–247 (2010).
  24. H. X. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
    [Crossref]
  25. D. H. Park, M. S. Kim, and J. Joo, “Hybrid nanostructures using π-conjugated polymers and nanoscale metals: synthesis, characteristics, and optoelectronic applications,” Chem. Soc. Rev. 39(7), 2439–2452 (2010).
    [Crossref] [PubMed]
  26. L. Heng, X. Wang, D. Tian, J. Zhai, B. Tang, and L. Jiang, “Optical waveguides based on single-crystalline organic micro-tiles,” Adv. Mater. 22(42), 4716–4720 (2010).
    [Crossref] [PubMed]
  27. Y. S. Zhao, A. Peng, H. Fu, Y. Ma, and J. Yao, “Nanowire waveguides and ultraviolet lasers based on small organic molecules,” Adv. Mater. 20(9), 1661–1665 (2008).
    [Crossref]
  28. D. J. Sirbuly, A. Tao, M. Law, R. Fan, and P. Yang, “Multifunctional nanowire evanescent wave optical sensors,” Adv. Mater. 19(1), 61–66 (2007).
    [Crossref]
  29. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
    [Crossref]
  30. J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
    [Crossref]
  31. S. G. Jo, D. H. Park, B. G. Kim, S. Seo, S. J. Lee, J. Kim, J. Kim, and J. Joo, “Dual-mode waveguiding of Raman and luminescence signals in a crystalline organic microplate,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6077–6083 (2014).
    [Crossref]
  32. E. H. Cho, B. G. Kim, S. Jun, J. Lee, D. H. Park, K. S. Lee, J. Kim, J. Kim, and J. Joo, “Remote biosensing with polychromatic optical waveguide using blue light-emitting organic nanowires hybridized with quantum dots,” Adv. Funct. Mater. 24(24), 3684–3691 (2014).
    [Crossref]
  33. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system,” J. Chem. Soc. Chem. Commun. 0(7), 801–802 (1994).
    [Crossref]
  34. J. Y. Kim, J. Kim, and J. Joo, “Surface-enhanced Raman scattering for 2-D WSe2 hybridized with functionalized gold nanoparticles,” Opt. Express 24(24), 27546–27553 (2016).
    [Crossref] [PubMed]
  35. Y. Ito, K. Matsuda, and Y. Kanemitsu, “Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces,” Phys. Rev. B 75(3), 033309 (2007).
    [Crossref]
  36. H. Wang, L. Xu, R. Zhang, Z. Ge, W. Zhang, J. Xu, Z. Ma, and K. Chen, “Controllable photoluminescence enhancement of CdTe/CdS quantum dots thin films incorporation with Au nanoparticles,” Nanoscale Res. Lett. 10(1), 128 (2015).
    [Crossref] [PubMed]
  37. Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
    [Crossref] [PubMed]
  38. J. Pan, J. Chen, D. Zhao, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, and W. Lei, “Surface plasmon-enhanced quantum dot light-emitting diodes by incorporating gold nanoparticles,” Opt. Express 24(2), A33–A43 (2016).
    [Crossref] [PubMed]
  39. E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: A comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
    [Crossref]
  40. R. R. Lunt, N. C. Giebink, A. A. Belak, J. B. Benziger, and S. R. Forrest, “Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching,” J. Appl. Phys. 105(5), 053711 (2009).
    [Crossref]
  41. A. Das, P. Bhattacharya, J. Heo, A. Banerjee, and W. Guo, “Polariton Bose-Einstein condensate at room temperature in an Al(Ga)N nanowire-dielectric microcavity with a spatial potential trap,” Proc. Natl. Acad. Sci. U.S.A. 110(8), 2735–2740 (2013).
    [Crossref] [PubMed]

2016 (3)

2015 (1)

H. Wang, L. Xu, R. Zhang, Z. Ge, W. Zhang, J. Xu, Z. Ma, and K. Chen, “Controllable photoluminescence enhancement of CdTe/CdS quantum dots thin films incorporation with Au nanoparticles,” Nanoscale Res. Lett. 10(1), 128 (2015).
[Crossref] [PubMed]

2014 (3)

S. G. Jo, D. H. Park, B. G. Kim, S. Seo, S. J. Lee, J. Kim, J. Kim, and J. Joo, “Dual-mode waveguiding of Raman and luminescence signals in a crystalline organic microplate,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6077–6083 (2014).
[Crossref]

E. H. Cho, B. G. Kim, S. Jun, J. Lee, D. H. Park, K. S. Lee, J. Kim, J. Kim, and J. Joo, “Remote biosensing with polychromatic optical waveguide using blue light-emitting organic nanowires hybridized with quantum dots,” Adv. Funct. Mater. 24(24), 3684–3691 (2014).
[Crossref]

L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, and M. Sun, “Visualized method of chemical enhancement mechanism on SERS and TERS,” J. Raman Spectrosc. 45(7), 533–540 (2014).
[Crossref]

2013 (3)

H. Wei and H. Xu, “Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy,” Nanoscale 5(22), 10794–10805 (2013).
[Crossref] [PubMed]

J. Yoo, X. Ma, W. Tang, and G. C. Yi, “Metal-lined semiconductor nanotubes for surface plasmon-mediated luminescence enhancement,” Nano Lett. 13(5), 2134–2140 (2013).
[Crossref] [PubMed]

A. Das, P. Bhattacharya, J. Heo, A. Banerjee, and W. Guo, “Polariton Bose-Einstein condensate at room temperature in an Al(Ga)N nanowire-dielectric microcavity with a spatial potential trap,” Proc. Natl. Acad. Sci. U.S.A. 110(8), 2735–2740 (2013).
[Crossref] [PubMed]

2012 (5)

W. Zhang, F. Ding, and S. Y. Chou, “Large enhancement of upconversion luminescence of NaYF4:Yb3+/Er3+ nanocrystal by 3D plasmonic nano-antennas,” Adv. Mater. 24(35), OP236–OP241 (2012).
[Crossref] [PubMed]

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12(3), 1333–1339 (2012).
[Crossref] [PubMed]

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

M. Käll, “Plasmonic nanosensors: Inverse sensitivity,” Nat. Mater. 11(7), 570–571 (2012).
[Crossref] [PubMed]

Y. Z. Huang and B. Dong, “pH Dependent plasmon-driven surface-catalysis reactions of p,p′-dimercaptoazobenzene produced from para-aminothiophenol and 4-nitrobenzenethiol,” Sci. China Chem. 55(12), 2567–2572 (2012).
[Crossref]

2011 (1)

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: A route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

2010 (5)

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

D. H. Park, M. S. Kim, and J. Joo, “Hybrid nanostructures using π-conjugated polymers and nanoscale metals: synthesis, characteristics, and optoelectronic applications,” Chem. Soc. Rev. 39(7), 2439–2452 (2010).
[Crossref] [PubMed]

L. Heng, X. Wang, D. Tian, J. Zhai, B. Tang, and L. Jiang, “Optical waveguides based on single-crystalline organic micro-tiles,” Adv. Mater. 22(42), 4716–4720 (2010).
[Crossref] [PubMed]

C. V. Pagba, S. M. Lane, and S. W. Hogiu, “Raman and surface-enhanced Raman spectroscopic studies of the 15-mer DNA thrombin-binding aptamer,” J. Raman Spectrosc. 41, 241–247 (2010).

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

2009 (2)

J. R. Lombardi and R. L. Birke, “A unified view of surface-enhanced Raman scattering,” Acc. Chem. Res. 42(6), 734–742 (2009).
[Crossref] [PubMed]

R. R. Lunt, N. C. Giebink, A. A. Belak, J. B. Benziger, and S. R. Forrest, “Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching,” J. Appl. Phys. 105(5), 053711 (2009).
[Crossref]

2008 (2)

H. Wei, F. Hao, Y. Huang, W. Wang, P. Nordlander, and H. Xu, “Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems,” Nano Lett. 8(8), 2497–2502 (2008).
[Crossref] [PubMed]

Y. S. Zhao, A. Peng, H. Fu, Y. Ma, and J. Yao, “Nanowire waveguides and ultraviolet lasers based on small organic molecules,” Adv. Mater. 20(9), 1661–1665 (2008).
[Crossref]

2007 (6)

D. J. Sirbuly, A. Tao, M. Law, R. Fan, and P. Yang, “Multifunctional nanowire evanescent wave optical sensors,” Adv. Mater. 19(1), 61–66 (2007).
[Crossref]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Y. Ito, K. Matsuda, and Y. Kanemitsu, “Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces,” Phys. Rev. B 75(3), 033309 (2007).
[Crossref]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007).
[Crossref]

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: A comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

2005 (2)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Rev. Sec. Phys. Lett. 408, 131–314 (2005).

A. Otto, “The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering,” J. Raman Spectrosc. 36(6-7), 497–509 (2005).
[Crossref]

2003 (1)

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[Crossref]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

2001 (1)

C. J. L. Constantino, T. Lemma, P. A. Antunes, and R. Aroca, “Single-molecule detection using surface-enhanced resonance Raman scattering and Langmuir-Blodgett monolayers,” Anal. Chem. 73(15), 3674–3678 (2001).
[Crossref] [PubMed]

1999 (1)

H. X. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

1997 (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

1994 (1)

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system,” J. Chem. Soc. Chem. Commun. 0(7), 801–802 (1994).
[Crossref]

1977 (1)

D. L. Jeanmaire and R. P. Vanduyne, “Surface Raman spectroelectrochemistry Part 1. Heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[Crossref]

1974 (1)

M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Aizpurua, J.

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12(3), 1333–1339 (2012).
[Crossref] [PubMed]

Akimov, A. V.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Antunes, P. A.

C. J. L. Constantino, T. Lemma, P. A. Antunes, and R. Aroca, “Single-molecule detection using surface-enhanced resonance Raman scattering and Langmuir-Blodgett monolayers,” Anal. Chem. 73(15), 3674–3678 (2001).
[Crossref] [PubMed]

Aroca, R.

C. J. L. Constantino, T. Lemma, P. A. Antunes, and R. Aroca, “Single-molecule detection using surface-enhanced resonance Raman scattering and Langmuir-Blodgett monolayers,” Anal. Chem. 73(15), 3674–3678 (2001).
[Crossref] [PubMed]

Banerjee, A.

A. Das, P. Bhattacharya, J. Heo, A. Banerjee, and W. Guo, “Polariton Bose-Einstein condensate at room temperature in an Al(Ga)N nanowire-dielectric microcavity with a spatial potential trap,” Proc. Natl. Acad. Sci. U.S.A. 110(8), 2735–2740 (2013).
[Crossref] [PubMed]

Bao, K.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: A route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

Belak, A. A.

R. R. Lunt, N. C. Giebink, A. A. Belak, J. B. Benziger, and S. R. Forrest, “Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching,” J. Appl. Phys. 105(5), 053711 (2009).
[Crossref]

Benziger, J. B.

R. R. Lunt, N. C. Giebink, A. A. Belak, J. B. Benziger, and S. R. Forrest, “Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching,” J. Appl. Phys. 105(5), 053711 (2009).
[Crossref]

Bethell, D.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system,” J. Chem. Soc. Chem. Commun. 0(7), 801–802 (1994).
[Crossref]

Bhattacharya, P.

A. Das, P. Bhattacharya, J. Heo, A. Banerjee, and W. Guo, “Polariton Bose-Einstein condensate at room temperature in an Al(Ga)N nanowire-dielectric microcavity with a spatial potential trap,” Proc. Natl. Acad. Sci. U.S.A. 110(8), 2735–2740 (2013).
[Crossref] [PubMed]

Birke, R. L.

J. R. Lombardi and R. L. Birke, “A unified view of surface-enhanced Raman scattering,” Acc. Chem. Res. 42(6), 734–742 (2009).
[Crossref] [PubMed]

Bjerneld, E. J.

H. X. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Blackie, E.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: A comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Borisov, A. G.

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12(3), 1333–1339 (2012).
[Crossref] [PubMed]

Börjesson, L.

H. X. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Brust, M.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system,” J. Chem. Soc. Chem. Commun. 0(7), 801–802 (1994).
[Crossref]

Chang, D. E.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Chang, Y.-H.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref] [PubMed]

Chen, J.

Chen, K.

H. Wang, L. Xu, R. Zhang, Z. Ge, W. Zhang, J. Xu, Z. Ma, and K. Chen, “Controllable photoluminescence enhancement of CdTe/CdS quantum dots thin films incorporation with Au nanoparticles,” Nanoscale Res. Lett. 10(1), 128 (2015).
[Crossref] [PubMed]

Chen, M.

L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, and M. Sun, “Visualized method of chemical enhancement mechanism on SERS and TERS,” J. Raman Spectrosc. 45(7), 533–540 (2014).
[Crossref]

Chen, W. T.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Cho, E. H.

E. H. Cho, B. G. Kim, S. Jun, J. Lee, D. H. Park, K. S. Lee, J. Kim, J. Kim, and J. Joo, “Remote biosensing with polychromatic optical waveguide using blue light-emitting organic nanowires hybridized with quantum dots,” Adv. Funct. Mater. 24(24), 3684–3691 (2014).
[Crossref]

Chou, S. Y.

W. Zhang, F. Ding, and S. Y. Chou, “Large enhancement of upconversion luminescence of NaYF4:Yb3+/Er3+ nanocrystal by 3D plasmonic nano-antennas,” Adv. Mater. 24(35), OP236–OP241 (2012).
[Crossref] [PubMed]

Chulkov, E. V.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007).
[Crossref]

Clark, J.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

Constantino, C. J. L.

C. J. L. Constantino, T. Lemma, P. A. Antunes, and R. Aroca, “Single-molecule detection using surface-enhanced resonance Raman scattering and Langmuir-Blodgett monolayers,” Anal. Chem. 73(15), 3674–3678 (2001).
[Crossref] [PubMed]

Das, A.

A. Das, P. Bhattacharya, J. Heo, A. Banerjee, and W. Guo, “Polariton Bose-Einstein condensate at room temperature in an Al(Ga)N nanowire-dielectric microcavity with a spatial potential trap,” Proc. Natl. Acad. Sci. U.S.A. 110(8), 2735–2740 (2013).
[Crossref] [PubMed]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Ding, F.

W. Zhang, F. Ding, and S. Y. Chou, “Large enhancement of upconversion luminescence of NaYF4:Yb3+/Er3+ nanocrystal by 3D plasmonic nano-antennas,” Adv. Mater. 24(35), OP236–OP241 (2012).
[Crossref] [PubMed]

Dong, B.

Y. Z. Huang and B. Dong, “pH Dependent plasmon-driven surface-catalysis reactions of p,p′-dimercaptoazobenzene produced from para-aminothiophenol and 4-nitrobenzenethiol,” Sci. China Chem. 55(12), 2567–2572 (2012).
[Crossref]

Dong, Z.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref] [PubMed]

Ebbesen, T. W.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Echenique, P. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007).
[Crossref]

Eda, G.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref] [PubMed]

Etchegoin, P. G.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: A comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Fan, R.

D. J. Sirbuly, A. Tao, M. Law, R. Fan, and P. Yang, “Multifunctional nanowire evanescent wave optical sensors,” Adv. Mater. 19(1), 61–66 (2007).
[Crossref]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Fleischmann, M.

M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Forrest, S. R.

R. R. Lunt, N. C. Giebink, A. A. Belak, J. B. Benziger, and S. R. Forrest, “Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching,” J. Appl. Phys. 105(5), 053711 (2009).
[Crossref]

Fu, H.

Y. S. Zhao, A. Peng, H. Fu, Y. Ma, and J. Yao, “Nanowire waveguides and ultraviolet lasers based on small organic molecules,” Adv. Mater. 20(9), 1661–1665 (2008).
[Crossref]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Ge, Z.

H. Wang, L. Xu, R. Zhang, Z. Ge, W. Zhang, J. Xu, Z. Ma, and K. Chen, “Controllable photoluminescence enhancement of CdTe/CdS quantum dots thin films incorporation with Au nanoparticles,” Nanoscale Res. Lett. 10(1), 128 (2015).
[Crossref] [PubMed]

Giebink, N. C.

R. R. Lunt, N. C. Giebink, A. A. Belak, J. B. Benziger, and S. R. Forrest, “Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching,” J. Appl. Phys. 105(5), 053711 (2009).
[Crossref]

Goldberger, J.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[Crossref]

Grinblat, G.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref] [PubMed]

Gu, Y.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref] [PubMed]

Guo, G. Y.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Guo, W.

A. Das, P. Bhattacharya, J. Heo, A. Banerjee, and W. Guo, “Polariton Bose-Einstein condensate at room temperature in an Al(Ga)N nanowire-dielectric microcavity with a spatial potential trap,” Proc. Natl. Acad. Sci. U.S.A. 110(8), 2735–2740 (2013).
[Crossref] [PubMed]

Halas, N. J.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: A route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Hao, F.

H. Wei, F. Hao, Y. Huang, W. Wang, P. Nordlander, and H. Xu, “Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems,” Nano Lett. 8(8), 2497–2502 (2008).
[Crossref] [PubMed]

He, Q.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

He, R.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[Crossref]

Hemmer, P. R.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Hendra, P. J.

M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Heng, L.

L. Heng, X. Wang, D. Tian, J. Zhai, B. Tang, and L. Jiang, “Optical waveguides based on single-crystalline organic micro-tiles,” Adv. Mater. 22(42), 4716–4720 (2010).
[Crossref] [PubMed]

Heo, J.

A. Das, P. Bhattacharya, J. Heo, A. Banerjee, and W. Guo, “Polariton Bose-Einstein condensate at room temperature in an Al(Ga)N nanowire-dielectric microcavity with a spatial potential trap,” Proc. Natl. Acad. Sci. U.S.A. 110(8), 2735–2740 (2013).
[Crossref] [PubMed]

Hess, C.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[Crossref]

Hogiu, S. W.

C. V. Pagba, S. M. Lane, and S. W. Hogiu, “Raman and surface-enhanced Raman spectroscopic studies of the 15-mer DNA thrombin-binding aptamer,” J. Raman Spectrosc. 41, 241–247 (2010).

Huang, Q.

Huang, Y.

H. Wei, F. Hao, Y. Huang, W. Wang, P. Nordlander, and H. Xu, “Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems,” Nano Lett. 8(8), 2497–2502 (2008).
[Crossref] [PubMed]

Huang, Y. Z.

Y. Z. Huang and B. Dong, “pH Dependent plasmon-driven surface-catalysis reactions of p,p′-dimercaptoazobenzene produced from para-aminothiophenol and 4-nitrobenzenethiol,” Sci. China Chem. 55(12), 2567–2572 (2012).
[Crossref]

Ito, Y.

Y. Ito, K. Matsuda, and Y. Kanemitsu, “Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces,” Phys. Rev. B 75(3), 033309 (2007).
[Crossref]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Jeanmaire, D. L.

D. L. Jeanmaire and R. P. Vanduyne, “Surface Raman spectroelectrochemistry Part 1. Heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[Crossref]

Jeon, K.-S.

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Jiang, L.

L. Heng, X. Wang, D. Tian, J. Zhai, B. Tang, and L. Jiang, “Optical waveguides based on single-crystalline organic micro-tiles,” Adv. Mater. 22(42), 4716–4720 (2010).
[Crossref] [PubMed]

Jo, S. G.

S. G. Jo, D. H. Park, B. G. Kim, S. Seo, S. J. Lee, J. Kim, J. Kim, and J. Joo, “Dual-mode waveguiding of Raman and luminescence signals in a crystalline organic microplate,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6077–6083 (2014).
[Crossref]

Joo, J.

J. Y. Kim, J. Kim, and J. Joo, “Surface-enhanced Raman scattering for 2-D WSe2 hybridized with functionalized gold nanoparticles,” Opt. Express 24(24), 27546–27553 (2016).
[Crossref] [PubMed]

E. H. Cho, B. G. Kim, S. Jun, J. Lee, D. H. Park, K. S. Lee, J. Kim, J. Kim, and J. Joo, “Remote biosensing with polychromatic optical waveguide using blue light-emitting organic nanowires hybridized with quantum dots,” Adv. Funct. Mater. 24(24), 3684–3691 (2014).
[Crossref]

S. G. Jo, D. H. Park, B. G. Kim, S. Seo, S. J. Lee, J. Kim, J. Kim, and J. Joo, “Dual-mode waveguiding of Raman and luminescence signals in a crystalline organic microplate,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6077–6083 (2014).
[Crossref]

D. H. Park, M. S. Kim, and J. Joo, “Hybrid nanostructures using π-conjugated polymers and nanoscale metals: synthesis, characteristics, and optoelectronic applications,” Chem. Soc. Rev. 39(7), 2439–2452 (2010).
[Crossref] [PubMed]

Juan, T. K.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Jun, S.

E. H. Cho, B. G. Kim, S. Jun, J. Lee, D. H. Park, K. S. Lee, J. Kim, J. Kim, and J. Joo, “Remote biosensing with polychromatic optical waveguide using blue light-emitting organic nanowires hybridized with quantum dots,” Adv. Funct. Mater. 24(24), 3684–3691 (2014).
[Crossref]

Käll, M.

M. Käll, “Plasmonic nanosensors: Inverse sensitivity,” Nat. Mater. 11(7), 570–571 (2012).
[Crossref] [PubMed]

H. X. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Kanemitsu, Y.

Y. Ito, K. Matsuda, and Y. Kanemitsu, “Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces,” Phys. Rev. B 75(3), 033309 (2007).
[Crossref]

Kazansky, A. K.

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12(3), 1333–1339 (2012).
[Crossref] [PubMed]

Khan, Q.

Kim, B. G.

E. H. Cho, B. G. Kim, S. Jun, J. Lee, D. H. Park, K. S. Lee, J. Kim, J. Kim, and J. Joo, “Remote biosensing with polychromatic optical waveguide using blue light-emitting organic nanowires hybridized with quantum dots,” Adv. Funct. Mater. 24(24), 3684–3691 (2014).
[Crossref]

S. G. Jo, D. H. Park, B. G. Kim, S. Seo, S. J. Lee, J. Kim, J. Kim, and J. Joo, “Dual-mode waveguiding of Raman and luminescence signals in a crystalline organic microplate,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6077–6083 (2014).
[Crossref]

Kim, F.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[Crossref]

Kim, H. M.

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Kim, J.

J. Y. Kim, J. Kim, and J. Joo, “Surface-enhanced Raman scattering for 2-D WSe2 hybridized with functionalized gold nanoparticles,” Opt. Express 24(24), 27546–27553 (2016).
[Crossref] [PubMed]

E. H. Cho, B. G. Kim, S. Jun, J. Lee, D. H. Park, K. S. Lee, J. Kim, J. Kim, and J. Joo, “Remote biosensing with polychromatic optical waveguide using blue light-emitting organic nanowires hybridized with quantum dots,” Adv. Funct. Mater. 24(24), 3684–3691 (2014).
[Crossref]

E. H. Cho, B. G. Kim, S. Jun, J. Lee, D. H. Park, K. S. Lee, J. Kim, J. Kim, and J. Joo, “Remote biosensing with polychromatic optical waveguide using blue light-emitting organic nanowires hybridized with quantum dots,” Adv. Funct. Mater. 24(24), 3684–3691 (2014).
[Crossref]

S. G. Jo, D. H. Park, B. G. Kim, S. Seo, S. J. Lee, J. Kim, J. Kim, and J. Joo, “Dual-mode waveguiding of Raman and luminescence signals in a crystalline organic microplate,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6077–6083 (2014).
[Crossref]

S. G. Jo, D. H. Park, B. G. Kim, S. Seo, S. J. Lee, J. Kim, J. Kim, and J. Joo, “Dual-mode waveguiding of Raman and luminescence signals in a crystalline organic microplate,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6077–6083 (2014).
[Crossref]

Kim, J. Y.

Kim, M. S.

D. H. Park, M. S. Kim, and J. Joo, “Hybrid nanostructures using π-conjugated polymers and nanoscale metals: synthesis, characteristics, and optoelectronic applications,” Chem. Soc. Rev. 39(7), 2439–2452 (2010).
[Crossref] [PubMed]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kung, W. T.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Lane, S. M.

C. V. Pagba, S. M. Lane, and S. W. Hogiu, “Raman and surface-enhanced Raman spectroscopic studies of the 15-mer DNA thrombin-binding aptamer,” J. Raman Spectrosc. 41, 241–247 (2010).

Lanzani, G.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

Law, M.

D. J. Sirbuly, A. Tao, M. Law, R. Fan, and P. Yang, “Multifunctional nanowire evanescent wave optical sensors,” Adv. Mater. 19(1), 61–66 (2007).
[Crossref]

Le Ru, E. C.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: A comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Lee, J.

E. H. Cho, B. G. Kim, S. Jun, J. Lee, D. H. Park, K. S. Lee, J. Kim, J. Kim, and J. Joo, “Remote biosensing with polychromatic optical waveguide using blue light-emitting organic nanowires hybridized with quantum dots,” Adv. Funct. Mater. 24(24), 3684–3691 (2014).
[Crossref]

Lee, K. S.

E. H. Cho, B. G. Kim, S. Jun, J. Lee, D. H. Park, K. S. Lee, J. Kim, J. Kim, and J. Joo, “Remote biosensing with polychromatic optical waveguide using blue light-emitting organic nanowires hybridized with quantum dots,” Adv. Funct. Mater. 24(24), 3684–3691 (2014).
[Crossref]

Lee, S. J.

S. G. Jo, D. H. Park, B. G. Kim, S. Seo, S. J. Lee, J. Kim, J. Kim, and J. Joo, “Dual-mode waveguiding of Raman and luminescence signals in a crystalline organic microplate,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6077–6083 (2014).
[Crossref]

Lei, W.

Lemma, T.

C. J. L. Constantino, T. Lemma, P. A. Antunes, and R. Aroca, “Single-molecule detection using surface-enhanced resonance Raman scattering and Langmuir-Blodgett monolayers,” Anal. Chem. 73(15), 3674–3678 (2001).
[Crossref] [PubMed]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Li, L.-J.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref] [PubMed]

Liao, C. Y.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Lim, D.-K.

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Liu, X.

Lombardi, J. R.

J. R. Lombardi and R. L. Birke, “A unified view of surface-enhanced Raman scattering,” Acc. Chem. Res. 42(6), 734–742 (2009).
[Crossref] [PubMed]

Lukin, M. D.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Lunt, R. R.

R. R. Lunt, N. C. Giebink, A. A. Belak, J. B. Benziger, and S. R. Forrest, “Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching,” J. Appl. Phys. 105(5), 053711 (2009).
[Crossref]

Ma, X.

J. Yoo, X. Ma, W. Tang, and G. C. Yi, “Metal-lined semiconductor nanotubes for surface plasmon-mediated luminescence enhancement,” Nano Lett. 13(5), 2134–2140 (2013).
[Crossref] [PubMed]

Ma, Y.

Y. S. Zhao, A. Peng, H. Fu, Y. Ma, and J. Yao, “Nanowire waveguides and ultraviolet lasers based on small organic molecules,” Adv. Mater. 20(9), 1661–1665 (2008).
[Crossref]

Ma, Z.

H. Wang, L. Xu, R. Zhang, Z. Ge, W. Zhang, J. Xu, Z. Ma, and K. Chen, “Controllable photoluminescence enhancement of CdTe/CdS quantum dots thin films incorporation with Au nanoparticles,” Nanoscale Res. Lett. 10(1), 128 (2015).
[Crossref] [PubMed]

Maier, S. A.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref] [PubMed]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Rev. Sec. Phys. Lett. 408, 131–314 (2005).

Marinica, D. C.

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12(3), 1333–1339 (2012).
[Crossref] [PubMed]

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Matsuda, K.

Y. Ito, K. Matsuda, and Y. Kanemitsu, “Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces,” Phys. Rev. B 75(3), 033309 (2007).
[Crossref]

Mcquillan, A. J.

M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Meyer, M.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: A comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Mukherjee, A.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Nam, J.-M.

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Nordlander, P.

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12(3), 1333–1339 (2012).
[Crossref] [PubMed]

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: A route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

H. Wei, F. Hao, Y. Huang, W. Wang, P. Nordlander, and H. Xu, “Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems,” Nano Lett. 8(8), 2497–2502 (2008).
[Crossref] [PubMed]

Otto, A.

A. Otto, “The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering,” J. Raman Spectrosc. 36(6-7), 497–509 (2005).
[Crossref]

Pagba, C. V.

C. V. Pagba, S. M. Lane, and S. W. Hogiu, “Raman and surface-enhanced Raman spectroscopic studies of the 15-mer DNA thrombin-binding aptamer,” J. Raman Spectrosc. 41, 241–247 (2010).

Pan, J.

Park, D. H.

E. H. Cho, B. G. Kim, S. Jun, J. Lee, D. H. Park, K. S. Lee, J. Kim, J. Kim, and J. Joo, “Remote biosensing with polychromatic optical waveguide using blue light-emitting organic nanowires hybridized with quantum dots,” Adv. Funct. Mater. 24(24), 3684–3691 (2014).
[Crossref]

S. G. Jo, D. H. Park, B. G. Kim, S. Seo, S. J. Lee, J. Kim, J. Kim, and J. Joo, “Dual-mode waveguiding of Raman and luminescence signals in a crystalline organic microplate,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6077–6083 (2014).
[Crossref]

D. H. Park, M. S. Kim, and J. Joo, “Hybrid nanostructures using π-conjugated polymers and nanoscale metals: synthesis, characteristics, and optoelectronic applications,” Chem. Soc. Rev. 39(7), 2439–2452 (2010).
[Crossref] [PubMed]

Park, H.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Peng, A.

Y. S. Zhao, A. Peng, H. Fu, Y. Ma, and J. Yao, “Nanowire waveguides and ultraviolet lasers based on small organic molecules,” Adv. Mater. 20(9), 1661–1665 (2008).
[Crossref]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Pitarke, J. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007).
[Crossref]

Qiu, C.-W.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref] [PubMed]

Schiffrin, D. J.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system,” J. Chem. Soc. Chem. Commun. 0(7), 801–802 (1994).
[Crossref]

Seo, S.

S. G. Jo, D. H. Park, B. G. Kim, S. Seo, S. J. Lee, J. Kim, J. Kim, and J. Joo, “Dual-mode waveguiding of Raman and luminescence signals in a crystalline organic microplate,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6077–6083 (2014).
[Crossref]

Silkin, V. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007).
[Crossref]

Sirbuly, D. J.

D. J. Sirbuly, A. Tao, M. Law, R. Fan, and P. Yang, “Multifunctional nanowire evanescent wave optical sensors,” Adv. Mater. 19(1), 61–66 (2007).
[Crossref]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Rev. Sec. Phys. Lett. 408, 131–314 (2005).

Suh, Y. D.

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Sun, M.

L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, and M. Sun, “Visualized method of chemical enhancement mechanism on SERS and TERS,” J. Raman Spectrosc. 45(7), 533–540 (2014).
[Crossref]

Sun, S.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Sun, Y.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[Crossref]

Tang, B.

L. Heng, X. Wang, D. Tian, J. Zhai, B. Tang, and L. Jiang, “Optical waveguides based on single-crystalline organic micro-tiles,” Adv. Mater. 22(42), 4716–4720 (2010).
[Crossref] [PubMed]

Tang, W.

J. Yoo, X. Ma, W. Tang, and G. C. Yi, “Metal-lined semiconductor nanotubes for surface plasmon-mediated luminescence enhancement,” Nano Lett. 13(5), 2134–2140 (2013).
[Crossref] [PubMed]

Tao, A.

D. J. Sirbuly, A. Tao, M. Law, R. Fan, and P. Yang, “Multifunctional nanowire evanescent wave optical sensors,” Adv. Mater. 19(1), 61–66 (2007).
[Crossref]

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[Crossref]

Tao, Z.

Tian, D.

L. Heng, X. Wang, D. Tian, J. Zhai, B. Tang, and L. Jiang, “Optical waveguides based on single-crystalline organic micro-tiles,” Adv. Mater. 22(42), 4716–4720 (2010).
[Crossref] [PubMed]

Tsai, D. P.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Vanduyne, R. P.

D. L. Jeanmaire and R. P. Vanduyne, “Surface Raman spectroelectrochemistry Part 1. Heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[Crossref]

Walker, M.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system,” J. Chem. Soc. Chem. Commun. 0(7), 801–802 (1994).
[Crossref]

Wang, C. M.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Wang, H.

H. Wang, L. Xu, R. Zhang, Z. Ge, W. Zhang, J. Xu, Z. Ma, and K. Chen, “Controllable photoluminescence enhancement of CdTe/CdS quantum dots thin films incorporation with Au nanoparticles,” Nanoscale Res. Lett. 10(1), 128 (2015).
[Crossref] [PubMed]

Wang, W.

H. Wei, F. Hao, Y. Huang, W. Wang, P. Nordlander, and H. Xu, “Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems,” Nano Lett. 8(8), 2497–2502 (2008).
[Crossref] [PubMed]

Wang, X.

L. Heng, X. Wang, D. Tian, J. Zhai, B. Tang, and L. Jiang, “Optical waveguides based on single-crystalline organic micro-tiles,” Adv. Mater. 22(42), 4716–4720 (2010).
[Crossref] [PubMed]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Wang, Z.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref] [PubMed]

Wee, A. T. S.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref] [PubMed]

Wei, H.

H. Wei and H. Xu, “Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy,” Nanoscale 5(22), 10794–10805 (2013).
[Crossref] [PubMed]

H. Wei, F. Hao, Y. Huang, W. Wang, P. Nordlander, and H. Xu, “Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems,” Nano Lett. 8(8), 2497–2502 (2008).
[Crossref] [PubMed]

Whyman, R.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system,” J. Chem. Soc. Chem. Commun. 0(7), 801–802 (1994).
[Crossref]

Xia, J.

L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, and M. Sun, “Visualized method of chemical enhancement mechanism on SERS and TERS,” J. Raman Spectrosc. 45(7), 533–540 (2014).
[Crossref]

Xia, L.

L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, and M. Sun, “Visualized method of chemical enhancement mechanism on SERS and TERS,” J. Raman Spectrosc. 45(7), 533–540 (2014).
[Crossref]

Xia, Y.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[Crossref]

Xiao, S.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Xu, H.

L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, and M. Sun, “Visualized method of chemical enhancement mechanism on SERS and TERS,” J. Raman Spectrosc. 45(7), 533–540 (2014).
[Crossref]

H. Wei and H. Xu, “Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy,” Nanoscale 5(22), 10794–10805 (2013).
[Crossref] [PubMed]

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: A route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

H. Wei, F. Hao, Y. Huang, W. Wang, P. Nordlander, and H. Xu, “Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems,” Nano Lett. 8(8), 2497–2502 (2008).
[Crossref] [PubMed]

Xu, H. X.

H. X. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Xu, J.

H. Wang, L. Xu, R. Zhang, Z. Ge, W. Zhang, J. Xu, Z. Ma, and K. Chen, “Controllable photoluminescence enhancement of CdTe/CdS quantum dots thin films incorporation with Au nanoparticles,” Nanoscale Res. Lett. 10(1), 128 (2015).
[Crossref] [PubMed]

Xu, L.

H. Wang, L. Xu, R. Zhang, Z. Ge, W. Zhang, J. Xu, Z. Ma, and K. Chen, “Controllable photoluminescence enhancement of CdTe/CdS quantum dots thin films incorporation with Au nanoparticles,” Nanoscale Res. Lett. 10(1), 128 (2015).
[Crossref] [PubMed]

Yang, J. K. W.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref] [PubMed]

Yang, K. Y.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Yang, P.

D. J. Sirbuly, A. Tao, M. Law, R. Fan, and P. Yang, “Multifunctional nanowire evanescent wave optical sensors,” Adv. Mater. 19(1), 61–66 (2007).
[Crossref]

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[Crossref]

Yao, J.

Y. S. Zhao, A. Peng, H. Fu, Y. Ma, and J. Yao, “Nanowire waveguides and ultraviolet lasers based on small organic molecules,” Adv. Mater. 20(9), 1661–1665 (2008).
[Crossref]

Yi, G. C.

J. Yoo, X. Ma, W. Tang, and G. C. Yi, “Metal-lined semiconductor nanotubes for surface plasmon-mediated luminescence enhancement,” Nano Lett. 13(5), 2134–2140 (2013).
[Crossref] [PubMed]

Yoo, J.

J. Yoo, X. Ma, W. Tang, and G. C. Yi, “Metal-lined semiconductor nanotubes for surface plasmon-mediated luminescence enhancement,” Nano Lett. 13(5), 2134–2140 (2013).
[Crossref] [PubMed]

Yu, C. L.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Rev. Sec. Phys. Lett. 408, 131–314 (2005).

Zhai, J.

L. Heng, X. Wang, D. Tian, J. Zhai, B. Tang, and L. Jiang, “Optical waveguides based on single-crystalline organic micro-tiles,” Adv. Mater. 22(42), 4716–4720 (2010).
[Crossref] [PubMed]

Zhang, L.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref] [PubMed]

Zhang, R.

H. Wang, L. Xu, R. Zhang, Z. Ge, W. Zhang, J. Xu, Z. Ma, and K. Chen, “Controllable photoluminescence enhancement of CdTe/CdS quantum dots thin films incorporation with Au nanoparticles,” Nanoscale Res. Lett. 10(1), 128 (2015).
[Crossref] [PubMed]

Zhang, S.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: A route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

Zhang, W.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref] [PubMed]

H. Wang, L. Xu, R. Zhang, Z. Ge, W. Zhang, J. Xu, Z. Ma, and K. Chen, “Controllable photoluminescence enhancement of CdTe/CdS quantum dots thin films incorporation with Au nanoparticles,” Nanoscale Res. Lett. 10(1), 128 (2015).
[Crossref] [PubMed]

W. Zhang, F. Ding, and S. Y. Chou, “Large enhancement of upconversion luminescence of NaYF4:Yb3+/Er3+ nanocrystal by 3D plasmonic nano-antennas,” Adv. Mater. 24(35), OP236–OP241 (2012).
[Crossref] [PubMed]

Zhang, Z.

J. Pan, J. Chen, D. Zhao, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, and W. Lei, “Surface plasmon-enhanced quantum dot light-emitting diodes by incorporating gold nanoparticles,” Opt. Express 24(2), A33–A43 (2016).
[Crossref] [PubMed]

L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, and M. Sun, “Visualized method of chemical enhancement mechanism on SERS and TERS,” J. Raman Spectrosc. 45(7), 533–540 (2014).
[Crossref]

Zhao, D.

Zhao, W.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref] [PubMed]

Zhao, X.

L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, and M. Sun, “Visualized method of chemical enhancement mechanism on SERS and TERS,” J. Raman Spectrosc. 45(7), 533–540 (2014).
[Crossref]

Zhao, Y. S.

Y. S. Zhao, A. Peng, H. Fu, Y. Ma, and J. Yao, “Nanowire waveguides and ultraviolet lasers based on small organic molecules,” Adv. Mater. 20(9), 1661–1665 (2008).
[Crossref]

Zhou, L.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Zibrov, A. S.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

J. R. Lombardi and R. L. Birke, “A unified view of surface-enhanced Raman scattering,” Acc. Chem. Res. 42(6), 734–742 (2009).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

E. H. Cho, B. G. Kim, S. Jun, J. Lee, D. H. Park, K. S. Lee, J. Kim, J. Kim, and J. Joo, “Remote biosensing with polychromatic optical waveguide using blue light-emitting organic nanowires hybridized with quantum dots,” Adv. Funct. Mater. 24(24), 3684–3691 (2014).
[Crossref]

Adv. Mater. (4)

L. Heng, X. Wang, D. Tian, J. Zhai, B. Tang, and L. Jiang, “Optical waveguides based on single-crystalline organic micro-tiles,” Adv. Mater. 22(42), 4716–4720 (2010).
[Crossref] [PubMed]

Y. S. Zhao, A. Peng, H. Fu, Y. Ma, and J. Yao, “Nanowire waveguides and ultraviolet lasers based on small organic molecules,” Adv. Mater. 20(9), 1661–1665 (2008).
[Crossref]

D. J. Sirbuly, A. Tao, M. Law, R. Fan, and P. Yang, “Multifunctional nanowire evanescent wave optical sensors,” Adv. Mater. 19(1), 61–66 (2007).
[Crossref]

W. Zhang, F. Ding, and S. Y. Chou, “Large enhancement of upconversion luminescence of NaYF4:Yb3+/Er3+ nanocrystal by 3D plasmonic nano-antennas,” Adv. Mater. 24(35), OP236–OP241 (2012).
[Crossref] [PubMed]

Anal. Chem. (1)

C. J. L. Constantino, T. Lemma, P. A. Antunes, and R. Aroca, “Single-molecule detection using surface-enhanced resonance Raman scattering and Langmuir-Blodgett monolayers,” Anal. Chem. 73(15), 3674–3678 (2001).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Chem. Soc. Rev. (1)

D. H. Park, M. S. Kim, and J. Joo, “Hybrid nanostructures using π-conjugated polymers and nanoscale metals: synthesis, characteristics, and optoelectronic applications,” Chem. Soc. Rev. 39(7), 2439–2452 (2010).
[Crossref] [PubMed]

J. Appl. Phys. (1)

R. R. Lunt, N. C. Giebink, A. A. Belak, J. B. Benziger, and S. R. Forrest, “Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching,” J. Appl. Phys. 105(5), 053711 (2009).
[Crossref]

J. Chem. Soc. Chem. Commun. (1)

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system,” J. Chem. Soc. Chem. Commun. 0(7), 801–802 (1994).
[Crossref]

J. Electroanal. Chem. (1)

D. L. Jeanmaire and R. P. Vanduyne, “Surface Raman spectroelectrochemistry Part 1. Heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

S. G. Jo, D. H. Park, B. G. Kim, S. Seo, S. J. Lee, J. Kim, J. Kim, and J. Joo, “Dual-mode waveguiding of Raman and luminescence signals in a crystalline organic microplate,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(30), 6077–6083 (2014).
[Crossref]

J. Phys. Chem. C (1)

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: A comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

J. Raman Spectrosc. (3)

C. V. Pagba, S. M. Lane, and S. W. Hogiu, “Raman and surface-enhanced Raman spectroscopic studies of the 15-mer DNA thrombin-binding aptamer,” J. Raman Spectrosc. 41, 241–247 (2010).

A. Otto, “The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering,” J. Raman Spectrosc. 36(6-7), 497–509 (2005).
[Crossref]

L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, and M. Sun, “Visualized method of chemical enhancement mechanism on SERS and TERS,” J. Raman Spectrosc. 45(7), 533–540 (2014).
[Crossref]

Nano Lett. (6)

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12(3), 1333–1339 (2012).
[Crossref] [PubMed]

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

J. Yoo, X. Ma, W. Tang, and G. C. Yi, “Metal-lined semiconductor nanotubes for surface plasmon-mediated luminescence enhancement,” Nano Lett. 13(5), 2134–2140 (2013).
[Crossref] [PubMed]

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: A route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[Crossref]

H. Wei, F. Hao, Y. Huang, W. Wang, P. Nordlander, and H. Xu, “Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems,” Nano Lett. 8(8), 2497–2502 (2008).
[Crossref] [PubMed]

Nanoscale (1)

H. Wei and H. Xu, “Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy,” Nanoscale 5(22), 10794–10805 (2013).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

H. Wang, L. Xu, R. Zhang, Z. Ge, W. Zhang, J. Xu, Z. Ma, and K. Chen, “Controllable photoluminescence enhancement of CdTe/CdS quantum dots thin films incorporation with Au nanoparticles,” Nanoscale Res. Lett. 10(1), 128 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref] [PubMed]

Nat. Mater. (2)

M. Käll, “Plasmonic nanosensors: Inverse sensitivity,” Nat. Mater. 11(7), 570–571 (2012).
[Crossref] [PubMed]

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Nat. Photonics (2)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

Nature (1)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. B (1)

Y. Ito, K. Matsuda, and Y. Kanemitsu, “Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces,” Phys. Rev. B 75(3), 033309 (2007).
[Crossref]

Phys. Rev. Lett. (2)

H. X. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. Das, P. Bhattacharya, J. Heo, A. Banerjee, and W. Guo, “Polariton Bose-Einstein condensate at room temperature in an Al(Ga)N nanowire-dielectric microcavity with a spatial potential trap,” Proc. Natl. Acad. Sci. U.S.A. 110(8), 2735–2740 (2013).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007).
[Crossref]

Rev. Sec. Phys. Lett. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Rev. Sec. Phys. Lett. 408, 131–314 (2005).

Sci. China Chem. (1)

Y. Z. Huang and B. Dong, “pH Dependent plasmon-driven surface-catalysis reactions of p,p′-dimercaptoazobenzene produced from para-aminothiophenol and 4-nitrobenzenethiol,” Sci. China Chem. 55(12), 2567–2572 (2012).
[Crossref]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) SEM image of TSDB MR. The inset shows a schematic chemical structure of TSDB molecule. (b) HR-TEM image of hybrid MR of TSDB attached with Au-NPs. The small black dots represent the functionalized Au-NPs. The inset shows a schematic structure of the functionalized (dodecanethiol, C12H25SH) Au-NP. (c) HR-S/TEM image of hybrid MR of TSDB/Au-NPs. (d) Magnification of the HR-S/TEM image of the hybrid MR corresponding to yellow box region in Fig. 1(c). (e) UV-Vis absorption spectrum of TSDB MR (blue curve) in ethanol, and Au-NPs (black curve) in hexane. LCM PL spectrum of TSDB MR (red curve; λex = 405 nm, laser power = 3 μW, exposed time = 47.5 ms).

Fig. 2
Fig. 2

(a) Optical microscopy, and (b) CCD images of the pristine TSDB MR. LCM PL mapping images of (c) the pristine TSDB MR, and (d) the hybrid MR of TSDB/Au-NPs (λex = 405 nm). The color scale bar in the middle represents the LCM PL intensity. (e) LCM PL spectra of the pristine TSDB MR (black curve) and the hybrid MR of TSDB/Au-NPs (red curve) (λex = 405 nm, laser power = 3 μW, exposed time = 47.5 ms). (f) Schematic illustration of energy transfer mechanism of SP of the hybrid MR of TSDB/Au-NPs.

Fig. 3
Fig. 3

LCM Raman mapping images (λex = 488 nm) of (a) pristine TSDB MR, and (b) hybrid MR of TSDB/Au-NPs. The color scale bar in the middle represents the Raman intensity. LCM Raman spectra (λex = 488 nm) of (c) pristine TSDB MR, and (d) hybrid MR of TSDB/Au-NPs. The numbers of 01, 02, 03, and 04 indicate the positions of the measurement of the spectrum for Figs. 3 (a) and (b). Simultaneous comparison of LCM Raman spectra of the pristine TSDB MR (black curve) and the hybrid MR of TSDB/Au-NPs (red curve) by using the (e) 488 nm, and (f) 514 nm excitation lasers.

Fig. 4
Fig. 4

(a) Schematic illustration of the SERS waveguiding experiment for the hybrid MR of TSDB/Au-NPs using the LCM system. Output (i.e. waveguided) LCM Raman spectra through (b) pristine TSDB MR, and (c) hybrid MR of the TSDB/Au-NPs, with various propagation distances. The numerical values in the inset represent the propagation distance.

Fig. 5
Fig. 5

(a) Microscopic image of polystyrene (PS) NW. Inset: Schematic chemical structure of PS. (b) Output (i.e., waveguided) LCM Raman spectra along PS NW. (c) Magnified output LCM Raman spectra along PS NW. Inset: Propagation distance.

Fig. 6
Fig. 6

Magnification of output LCM Raman spectra of the -C = C- aromatic mode with various propagation distances along (a) pristine TSDB MR, and (b) hybrid MR of TSDB/Au-NPs. Output LCM Raman intensities of the C-Br (black markers), -CF3 (red markers), and -C = C- aromatic (blue markers) modes as a function of propagation distance along the (c) pristine TSDB MR, and (d) hybrid MR of TSDB/Au-NPs.

Tables (2)

Tables Icon

Table 1 Enhancement factors (EFs) of Raman characteristic modes of TSDB with different excitation conditions.

Tables Icon

Table 2 Enhancement factor (EF) of Raman modes of -C = C- aromatic and –CF3 stretching modes using Eq. (1). The SERS EFs were obtained from the conditions of λex = 488 nm with the power of 200 μW and exposed time of 10 s.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

EF=  I SERS / N Surf I RS / N vol ,
N surf = Scattered Area Molecule Area ×n( attached number )× The number density of AuNPs The number density of TSDB molecules ,
N vol = Scattered Volume Molecule Volume ×N( all number in molecule ).
I R = I R0  exp( α R x ),

Metrics