Abstract

In this paper we report different methods to improve the stray light performance of binary spectrometer gratings fabricated by electron beam lithography. In particular, we report the optimization concerns about spurious stray light peaks, also known as “Rowland ghosts”. As already known these Rowland ghosts arise from a non-optimized stitching process of special subareas needed in order to fabricate large area gratings. One approach to reduce the impact of the stitching errors is the technique of “multi-pass-exposure” (MPE). Furthermore, the potential of a direct improvement of the stitching accuracy via special calibration parameters is examined. In both cases the effects on the stray light performance were determined by angle resolved scattering measurements. The achieved results show that specific calibration parameters of an e-beam writer have a strong influence on the strength of the Rowland ghosts and that their recalibration combined with an adapted writing regime reduces the peaks significantly.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reducing Rowland ghosts in diffraction gratings by dynamic exposure near-field holography

Dakui Lin, Huoyao Chen, Zhengkun Liu, Kay Dietrich, Stefanie Kroker, Thomas Kaesebier, Ying Liu, Ernst-Bernhard Kley, and Yilin Hong
Opt. Lett. 43(4) 811-814 (2018)

Narcissistic ghosts in Rowland-mounted, concave gratings with β = 0°: a cautionary note

Stephan R. McCandliss, Jason B. McPhate, and Paul D. Feldman
Appl. Opt. 37(22) 5070-5074 (1998)

Grating Ghosts of an Unusual Kind

H. P. Palenius, C. E. Magnusson, and P. O. Zetterberg
J. Opt. Soc. Am. 62(12) 1525_1-1526 (1972)

References

  • View by:
  • |
  • |
  • |

  1. O. Schmidt, C. Wirth, D. Nodop, J. Limpert, T. Schreiber, T. Peschel, R. Eberhardt, and A. Tünnermann, “Spectral beam combination of fiber amplified ns-pulses by means of interference filters,” Opt. Express 17(25), 22974–22982 (2009).
    [Crossref] [PubMed]
  2. U. D. Zeitner, F. Fuchs, and E.-B. Kley, “High-performance dielectric diffraction gratings for space applications,” Proc. SPIE 8450, 84502Z (2012).
    [Crossref]
  3. U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E.-B. Kley, “High performance diffraction gratings made by e-beam lithography,” Appl. Phys., A Mater. Sci. Process. 109(4), 789–796 (2012).
    [Crossref]
  4. C. A. Palmer, E. G. Loewen, and R. G. L. Thermo, Diffraction grating Handbook (Newport Corporation, 2005).
  5. B. Harnisch, A. Deep, R. Wink, and C. Coatantiec, “Grating Scattering BRDF and Imaging Performances – A Test Survey performed in the frame of the FLEX Mission, ” in Proceedings of the International Conference on Space Optics (ICSO) (2012).
  6. S. Kraft, U. Del Bello, B. Harnisch, M. Bouvet, M. Drusch, and J.-L. Bézy, “Fluorescence Imaging Spectrometer of the Earth Explorer Mission Candidate FLEX,” Proc. SPIE 8889, 88890T (2013).
    [Crossref]
  7. E.-B. Kley, “Continuous profile writing by electron and optical lithography,” Microelectron. Eng. 34(3), 261–298 (1997).
    [Crossref]
  8. W. Freese, T. Kämpfe, W. Rockstroh, E.-B. Kley, and A. Tünnermann, “Optimized electron beam writing strategy for fabricating computer-generated holograms based on an effective medium approach,” Opt. Express 19(9), 8684–8692 (2011).
    [Crossref] [PubMed]
  9. B. Guldimann, A. Deep, and R. Vink, “Overview on grating developments at ESA,” in CEAS Space Journal 7.4, 433–451 (Springer, 2015).
  10. M. Heusinger, T. Flügel-Paul, and U. D. Zeitner, “Large-scale segmentation errors in optical gratings and their unique effect onto optical scattering spectra,” Appl. Phys. B 122(8), 222 (2016).
    [Crossref]
  11. C. N. Berglund, J. R. Thomas, and J. T. Poreda, “Multiphase printing for E-beam lithography,” U.S. patent No. 5, 103, 101 (1992).

2016 (1)

M. Heusinger, T. Flügel-Paul, and U. D. Zeitner, “Large-scale segmentation errors in optical gratings and their unique effect onto optical scattering spectra,” Appl. Phys. B 122(8), 222 (2016).
[Crossref]

2013 (1)

S. Kraft, U. Del Bello, B. Harnisch, M. Bouvet, M. Drusch, and J.-L. Bézy, “Fluorescence Imaging Spectrometer of the Earth Explorer Mission Candidate FLEX,” Proc. SPIE 8889, 88890T (2013).
[Crossref]

2012 (2)

U. D. Zeitner, F. Fuchs, and E.-B. Kley, “High-performance dielectric diffraction gratings for space applications,” Proc. SPIE 8450, 84502Z (2012).
[Crossref]

U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E.-B. Kley, “High performance diffraction gratings made by e-beam lithography,” Appl. Phys., A Mater. Sci. Process. 109(4), 789–796 (2012).
[Crossref]

2011 (1)

2009 (1)

1997 (1)

E.-B. Kley, “Continuous profile writing by electron and optical lithography,” Microelectron. Eng. 34(3), 261–298 (1997).
[Crossref]

Benkenstein, T.

U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E.-B. Kley, “High performance diffraction gratings made by e-beam lithography,” Appl. Phys., A Mater. Sci. Process. 109(4), 789–796 (2012).
[Crossref]

Bézy, J.-L.

S. Kraft, U. Del Bello, B. Harnisch, M. Bouvet, M. Drusch, and J.-L. Bézy, “Fluorescence Imaging Spectrometer of the Earth Explorer Mission Candidate FLEX,” Proc. SPIE 8889, 88890T (2013).
[Crossref]

Bouvet, M.

S. Kraft, U. Del Bello, B. Harnisch, M. Bouvet, M. Drusch, and J.-L. Bézy, “Fluorescence Imaging Spectrometer of the Earth Explorer Mission Candidate FLEX,” Proc. SPIE 8889, 88890T (2013).
[Crossref]

Coatantiec, C.

B. Harnisch, A. Deep, R. Wink, and C. Coatantiec, “Grating Scattering BRDF and Imaging Performances – A Test Survey performed in the frame of the FLEX Mission, ” in Proceedings of the International Conference on Space Optics (ICSO) (2012).

Deep, A.

B. Harnisch, A. Deep, R. Wink, and C. Coatantiec, “Grating Scattering BRDF and Imaging Performances – A Test Survey performed in the frame of the FLEX Mission, ” in Proceedings of the International Conference on Space Optics (ICSO) (2012).

Del Bello, U.

S. Kraft, U. Del Bello, B. Harnisch, M. Bouvet, M. Drusch, and J.-L. Bézy, “Fluorescence Imaging Spectrometer of the Earth Explorer Mission Candidate FLEX,” Proc. SPIE 8889, 88890T (2013).
[Crossref]

Drusch, M.

S. Kraft, U. Del Bello, B. Harnisch, M. Bouvet, M. Drusch, and J.-L. Bézy, “Fluorescence Imaging Spectrometer of the Earth Explorer Mission Candidate FLEX,” Proc. SPIE 8889, 88890T (2013).
[Crossref]

Eberhardt, R.

Flügel-Paul, T.

M. Heusinger, T. Flügel-Paul, and U. D. Zeitner, “Large-scale segmentation errors in optical gratings and their unique effect onto optical scattering spectra,” Appl. Phys. B 122(8), 222 (2016).
[Crossref]

Freese, W.

Fuchs, F.

U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E.-B. Kley, “High performance diffraction gratings made by e-beam lithography,” Appl. Phys., A Mater. Sci. Process. 109(4), 789–796 (2012).
[Crossref]

U. D. Zeitner, F. Fuchs, and E.-B. Kley, “High-performance dielectric diffraction gratings for space applications,” Proc. SPIE 8450, 84502Z (2012).
[Crossref]

Harnisch, B.

S. Kraft, U. Del Bello, B. Harnisch, M. Bouvet, M. Drusch, and J.-L. Bézy, “Fluorescence Imaging Spectrometer of the Earth Explorer Mission Candidate FLEX,” Proc. SPIE 8889, 88890T (2013).
[Crossref]

B. Harnisch, A. Deep, R. Wink, and C. Coatantiec, “Grating Scattering BRDF and Imaging Performances – A Test Survey performed in the frame of the FLEX Mission, ” in Proceedings of the International Conference on Space Optics (ICSO) (2012).

Harzendorf, T.

U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E.-B. Kley, “High performance diffraction gratings made by e-beam lithography,” Appl. Phys., A Mater. Sci. Process. 109(4), 789–796 (2012).
[Crossref]

Heusinger, M.

M. Heusinger, T. Flügel-Paul, and U. D. Zeitner, “Large-scale segmentation errors in optical gratings and their unique effect onto optical scattering spectra,” Appl. Phys. B 122(8), 222 (2016).
[Crossref]

Kämpfe, T.

Kley, E.-B.

U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E.-B. Kley, “High performance diffraction gratings made by e-beam lithography,” Appl. Phys., A Mater. Sci. Process. 109(4), 789–796 (2012).
[Crossref]

U. D. Zeitner, F. Fuchs, and E.-B. Kley, “High-performance dielectric diffraction gratings for space applications,” Proc. SPIE 8450, 84502Z (2012).
[Crossref]

W. Freese, T. Kämpfe, W. Rockstroh, E.-B. Kley, and A. Tünnermann, “Optimized electron beam writing strategy for fabricating computer-generated holograms based on an effective medium approach,” Opt. Express 19(9), 8684–8692 (2011).
[Crossref] [PubMed]

E.-B. Kley, “Continuous profile writing by electron and optical lithography,” Microelectron. Eng. 34(3), 261–298 (1997).
[Crossref]

Kraft, S.

S. Kraft, U. Del Bello, B. Harnisch, M. Bouvet, M. Drusch, and J.-L. Bézy, “Fluorescence Imaging Spectrometer of the Earth Explorer Mission Candidate FLEX,” Proc. SPIE 8889, 88890T (2013).
[Crossref]

Limpert, J.

Michaelis, D.

U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E.-B. Kley, “High performance diffraction gratings made by e-beam lithography,” Appl. Phys., A Mater. Sci. Process. 109(4), 789–796 (2012).
[Crossref]

Nodop, D.

Oliva, M.

U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E.-B. Kley, “High performance diffraction gratings made by e-beam lithography,” Appl. Phys., A Mater. Sci. Process. 109(4), 789–796 (2012).
[Crossref]

Peschel, T.

Rockstroh, W.

Schmidt, O.

Schreiber, T.

Tünnermann, A.

Wink, R.

B. Harnisch, A. Deep, R. Wink, and C. Coatantiec, “Grating Scattering BRDF and Imaging Performances – A Test Survey performed in the frame of the FLEX Mission, ” in Proceedings of the International Conference on Space Optics (ICSO) (2012).

Wirth, C.

Zeitner, U. D.

M. Heusinger, T. Flügel-Paul, and U. D. Zeitner, “Large-scale segmentation errors in optical gratings and their unique effect onto optical scattering spectra,” Appl. Phys. B 122(8), 222 (2016).
[Crossref]

U. D. Zeitner, F. Fuchs, and E.-B. Kley, “High-performance dielectric diffraction gratings for space applications,” Proc. SPIE 8450, 84502Z (2012).
[Crossref]

U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E.-B. Kley, “High performance diffraction gratings made by e-beam lithography,” Appl. Phys., A Mater. Sci. Process. 109(4), 789–796 (2012).
[Crossref]

Appl. Phys. B (1)

M. Heusinger, T. Flügel-Paul, and U. D. Zeitner, “Large-scale segmentation errors in optical gratings and their unique effect onto optical scattering spectra,” Appl. Phys. B 122(8), 222 (2016).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

U. D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, and E.-B. Kley, “High performance diffraction gratings made by e-beam lithography,” Appl. Phys., A Mater. Sci. Process. 109(4), 789–796 (2012).
[Crossref]

Microelectron. Eng. (1)

E.-B. Kley, “Continuous profile writing by electron and optical lithography,” Microelectron. Eng. 34(3), 261–298 (1997).
[Crossref]

Opt. Express (2)

Proc. SPIE (2)

U. D. Zeitner, F. Fuchs, and E.-B. Kley, “High-performance dielectric diffraction gratings for space applications,” Proc. SPIE 8450, 84502Z (2012).
[Crossref]

S. Kraft, U. Del Bello, B. Harnisch, M. Bouvet, M. Drusch, and J.-L. Bézy, “Fluorescence Imaging Spectrometer of the Earth Explorer Mission Candidate FLEX,” Proc. SPIE 8889, 88890T (2013).
[Crossref]

Other (4)

C. A. Palmer, E. G. Loewen, and R. G. L. Thermo, Diffraction grating Handbook (Newport Corporation, 2005).

B. Harnisch, A. Deep, R. Wink, and C. Coatantiec, “Grating Scattering BRDF and Imaging Performances – A Test Survey performed in the frame of the FLEX Mission, ” in Proceedings of the International Conference on Space Optics (ICSO) (2012).

B. Guldimann, A. Deep, and R. Vink, “Overview on grating developments at ESA,” in CEAS Space Journal 7.4, 433–451 (Springer, 2015).

C. N. Berglund, J. R. Thomas, and J. T. Poreda, “Multiphase printing for E-beam lithography,” U.S. patent No. 5, 103, 101 (1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Simplified illustration of the working principle and the stitching process in EBL using the variable shaped beam exposure method.
Fig. 2
Fig. 2 Left: Typical ARS measurement (λ = 633 nm) in transmission around the −1st and 0th diffraction order (DO) of a non-optimized spectrometer grating fabricated by EBL. Right: Illustration of the measurement constellation and the grating geometry.
Fig. 3
Fig. 3 SEM-image of (a) the cross-section of the fused silica grating (with the platinum necessary for the cross-section preparation) and (b) the resist structure (FEP171) of the examined grating. The scale bars are 250 nm.
Fig. 4
Fig. 4 Left: ARS measurement (λ = 633 nm) in reflection around the −1st DO (at Δθ = 0°) of two gratings that were fabricated in the 1-pass- and 4-pass-regime, respectively. Right: Illustration of the measurement constellation and the grating geometry.
Fig. 5
Fig. 5 Left: ARS measurement (λ = 633 nm) in reflection around the −1st DO (at Δθ = 0°) of two gratings fabricated with different STR-overlap. Right: Illustration of the measurement constellation and the grating geometry.
Fig. 6
Fig. 6 Left: ARS measurement (λ = 633 nm) in reflection around the −1st DO (at Δθ = 0°) of two gratings fabricated with different SUB-overlap. Right: Illustration of the measurement constellation and the grating geometry.
Fig. 7
Fig. 7 Dependency of the 1st SUB-ghost next to the −1st DO on the parameter Δsub.
Fig. 8
Fig. 8 Left: Comparison of the ARS measurements (λ = 633 nm) around the −1st transmitted DO (at Δθ = 0°) of two gratings that were fabricated before and after the fabrication process optimization. Right: Illustration of the measurement constellation and the grating geometry.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

AR S exp ( θ S )= I S I 0 Ω = η Ω .
p sub =52p = 34 .684 μm p str =18 p sub = 624 .312 μm.

Metrics