Abstract

Speed-of-sound and optical absorption reflect the structure and function of tissues from different aspects. A dual-mode microscopy system based on a concentric annular ultrasound array is proposed to simultaneously acquire the long depth-of-field images of speed-of-sound and optical absorption of inhomogeneous samples. First, speed-of-sound is decoded from the signal delay between each element of the annular array. The measured speed-of-sound could not only be used as an image contrast, but also improve the resolution and accuracy of spatial location of photoacoustic image in inhomogeneous acoustic media. Secondly, benefitting from dynamic focusing of annular array and the measured speed-of-sound, it is achieved an advanced acoustic-resolution photoacoustic microscopy with a precise position and a long depth-of-field. The performance of the dual-mode imaging system has been experimentally examined by using a custom-made annular array. The proposed dual-mode microscopy might have the significances in monitoring the biological physiological and pathological processes.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging

K. Daoudi, P.J. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen
Opt. Express 22(21) 26365-26374 (2014)

Photoacoustic clutter reduction by inversion of a linear scatter model using plane wave ultrasound measurements

Hans-Martin Schwab, Martin F. Beckmann, and Georg Schmitz
Biomed. Opt. Express 7(4) 1468-1478 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
    [Crossref] [PubMed]
  2. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref] [PubMed]
  3. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
    [Crossref] [PubMed]
  4. Z. Yang, J. Chen, J. Yao, R. Lin, J. Meng, C. Liu, J. Yang, X. Li, L. Wang, and L. Song, “Multi-parametric quantitative microvascular imaging with optical-resolution photoacoustic microscopy in vivo,” Opt. Express 22(2), 1500–1511 (2014).
    [Crossref] [PubMed]
  5. J. Xia and L. V. Wang, “Small-animal whole-body photoacoustic tomography: a review,” IEEE Trans. Biomed. Eng. 61(5), 1380–1389 (2014).
    [Crossref] [PubMed]
  6. B. Ning, M. J. Kennedy, A. J. Dixon, N. Sun, R. Cao, B. T. Soetikno, R. Chen, Q. Zhou, K. Kirk Shung, J. A. Hossack, and S. Hu, “Simultaneous photoacoustic microscopy of microvascular anatomy, oxygen saturation, and blood flow,” Opt. Lett. 40(6), 910–913 (2015).
    [Crossref] [PubMed]
  7. L. Li, C. Dai, Q. Li, Q. Zhao, X. Jiang, X. Chai, and C. Zhou, “Fast subcellular optical coherence photoacoustic microscopy for pigment cell imaging,” Opt. Lett. 40(19), 4448–4451 (2015).
    [Crossref] [PubMed]
  8. P. Hajireza, J. Sorge, M. Brett, and R. Zemp, “In vivo optical resolution photoacoustic microscopy using glancing angle-deposited nanostructured Fabry-Perot etalons,” Opt. Lett. 40(7), 1350–1353 (2015).
    [Crossref] [PubMed]
  9. C. Tian, Z. Xie, M. L. Fabiilli, and X. Wang, “Imaging and sensing based on dual-pulse nonlinear photoacoustic contrast: a preliminary study on fatty liver,” Opt. Lett. 40(10), 2253–2256 (2015).
    [Crossref] [PubMed]
  10. Y. Sun and B. O’Neill, “Imaging high-intensity focused ultrasound-induced tissue denaturation by multispectral photoacoustic method: an ex vivo study,” Appl. Opt. 52(8), 1764–1770 (2013).
    [Crossref] [PubMed]
  11. Y. Sun, E. Sobel, and H. Jiang, “Quantitative three-dimensional photoacoustic tomography of the finger joints: an in vivo study,” J. Biomed. Opt. 14(6), 064002 (2009).
    [Crossref] [PubMed]
  12. J. Staley, P. Grogan, A. K. Samadi, H. Cui, M. S. Cohen, and X. Yang, “Growth of melanoma brain tumors monitored by photoacoustic microscopy,” J. Biomed. Opt. 15(4), 040510 (2010).
    [Crossref] [PubMed]
  13. L. Xi, S. R. Grobmyer, L. Wu, R. Chen, G. Zhou, L. G. Gutwein, J. Sun, W. Liao, Q. Zhou, H. Xie, and H. Jiang, “Evaluation of breast tumor margins in vivo with intraoperative photoacoustic imaging,” Opt. Express 20(8), 8726–8731 (2012).
    [Crossref] [PubMed]
  14. J. Xia, G. Li, L. Wang, M. Nasiriavanaki, K. Maslov, J. A. Engelbach, J. R. Garbow, and L. V. Wang, “Wide-field two-dimensional multifocal optical-resolution photoacoustic-computed microscopy,” Opt. Lett. 38(24), 5236–5239 (2013).
    [Crossref] [PubMed]
  15. J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
    [Crossref] [PubMed]
  16. L. Yao, L. Xi, and H. Jiang, “Photoacoustic computed microscopy,” Sci. Rep. 4, 4960 (2014).
    [Crossref] [PubMed]
  17. L. Xi, C. Duan, H. Xie, and H. Jiang, “Combining Optical-resolution Photoacoustic Microscopy with Optical Coherence Tomography in a Miniature Probe,” in Biomedical Optics 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper BS3A.62.
  18. G. Wissmeyer, D. Soliman, R. Shnaiderman, A. Rosenthal, and V. Ntziachristos, “All-optical optoacoustic microscope based on wideband pulse interferometry,” Opt. Lett. 41(9), 1953–1956 (2016).
    [Crossref] [PubMed]
  19. L. Xi, J. Sun, Y. Zhu, L. Wu, H. Xie, and H. Jiang, “Photoacoustic imaging based on MEMS mirror scanning,” Biomed. Opt. Express 1(5), 1278–1283 (2010).
    [Crossref] [PubMed]
  20. X. Gao, C. Tao, X. Wang, and X. Liu, “Quantitative imaging of microvasculature in deep tissue with a spectrum-based photo-acoustic microscopy,” Opt. Lett. 40(6), 970–973 (2015).
    [Crossref] [PubMed]
  21. D. Wang, Y. Wang, W. Wang, D. Luo, U. Chitgupi, J. Geng, Y. Zhou, L. Wang, J. F. Lovell, and J. Xia, “Deep tissue photoacoustic computed tomography with a fast and compact laser system,” Biomed. Opt. Express 8(1), 112–123 (2016).
    [Crossref] [PubMed]
  22. R. Cheng, J. Shao, X. Gao, C. Tao, J. Ge, and X. Liu, “Noninvasive assessment of early dental lesion using a dual-contrast phototacoustic tomography,” Sci. Rep. 6(1), 21798 (2016).
    [Crossref] [PubMed]
  23. S. Wang, C. Tao, X. Gao, X. Wang, and X. Liu, “Quantitatively photoacoustic examination of abnormal particles hidden in a mixture of particles with non-uniform sizes,” Opt. Express 23(25), 32253 (2015).
    [Crossref]
  24. L. Liu, C. Tao, X. Liu, M. Deng, S. Wang, and J. Liu, “Photoacoustic tomography from weak and noisy signals by using a pulse decomposition algorithm in the time-domain,” Opt. Express 23(21), 26969–26977 (2015).
    [Crossref] [PubMed]
  25. X. Jin, C. Li, and L. V. Wang, “Effects of acoustic heterogeneities on transcranial brain imaging with microwave-induced thermoacoustic tomography,” Med. Phys. 35(7), 3205–3214 (2008).
    [Crossref] [PubMed]
  26. J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
    [Crossref] [PubMed]
  27. G. Paltauf, S. Gratt, K. Passler, R. Nuster, and P. Burgholzer, “Photoacoustic imaging with limited diffraction beam transducers,” Proc. SPIE 7177, 77170S (2009).
    [Crossref]
  28. S. Gratt, K. Passler, R. Nuster, and G. Paltauf, “Photoacoustic section imaging with an integrating cylindrical detector,” Biomed. Opt. Express 2(11), 2973–2981 (2011).
    [Crossref] [PubMed]
  29. R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J. Biomed. Opt. 9(6), 1327–1335 (2004).
    [Crossref] [PubMed]
  30. K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Piezoelectric annular array for large depth of field photoacoustic imaging,” Biomed. Opt. Express 2(9), 2655–2664 (2011).
    [Crossref] [PubMed]
  31. X. L. Dean-Ben, R. Ma, D. Razansky, and V. Ntziachristos, “Statistical approach for optoacoustic image reconstruction in the presence of strong acoustic heterogeneities,” IEEE Trans. Med. Imaging 30(2), 401–408 (2011).
    [Crossref] [PubMed]
  32. X. L. Deán-Ben, V. Ntziachristos, and D. Razansky, “Statistical optoacoustic image reconstruction using a-priori knowledge on the location of acoustic distortions,” Appl. Phys. Lett. 98(17), 171110 (2011).
    [Crossref]
  33. H. Jiang, Z. Yuan, and X. Gu, “Spatially varying optical and acoustic property reconstruction using finite-element-based photoacoustic tomography,” J. Opt. Soc. Am. A 23(4), 878–888 (2006).
    [Crossref] [PubMed]
  34. C. Yoon, J. Kang, S. Han, Y. Yoo, T. K. Song, and J. H. Chang, “Enhancement of photoacoustic image quality by sound speed correction: ex vivo evaluation,” Opt. Express 20(3), 3082–3090 (2012).
    [Crossref] [PubMed]
  35. R. G. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Reflection mode photoacoustic measurement of speed of sound,” Opt. Express 15(6), 3291–3300 (2007).
    [Crossref] [PubMed]
  36. P. C. Li and M. L. Li, “Adaptive imaging using the generalized coherence factor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(2), 128–141 (2003).
    [Crossref] [PubMed]

2016 (4)

2015 (8)

S. Wang, C. Tao, X. Gao, X. Wang, and X. Liu, “Quantitatively photoacoustic examination of abnormal particles hidden in a mixture of particles with non-uniform sizes,” Opt. Express 23(25), 32253 (2015).
[Crossref]

L. Liu, C. Tao, X. Liu, M. Deng, S. Wang, and J. Liu, “Photoacoustic tomography from weak and noisy signals by using a pulse decomposition algorithm in the time-domain,” Opt. Express 23(21), 26969–26977 (2015).
[Crossref] [PubMed]

X. Gao, C. Tao, X. Wang, and X. Liu, “Quantitative imaging of microvasculature in deep tissue with a spectrum-based photo-acoustic microscopy,” Opt. Lett. 40(6), 970–973 (2015).
[Crossref] [PubMed]

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

B. Ning, M. J. Kennedy, A. J. Dixon, N. Sun, R. Cao, B. T. Soetikno, R. Chen, Q. Zhou, K. Kirk Shung, J. A. Hossack, and S. Hu, “Simultaneous photoacoustic microscopy of microvascular anatomy, oxygen saturation, and blood flow,” Opt. Lett. 40(6), 910–913 (2015).
[Crossref] [PubMed]

L. Li, C. Dai, Q. Li, Q. Zhao, X. Jiang, X. Chai, and C. Zhou, “Fast subcellular optical coherence photoacoustic microscopy for pigment cell imaging,” Opt. Lett. 40(19), 4448–4451 (2015).
[Crossref] [PubMed]

P. Hajireza, J. Sorge, M. Brett, and R. Zemp, “In vivo optical resolution photoacoustic microscopy using glancing angle-deposited nanostructured Fabry-Perot etalons,” Opt. Lett. 40(7), 1350–1353 (2015).
[Crossref] [PubMed]

C. Tian, Z. Xie, M. L. Fabiilli, and X. Wang, “Imaging and sensing based on dual-pulse nonlinear photoacoustic contrast: a preliminary study on fatty liver,” Opt. Lett. 40(10), 2253–2256 (2015).
[Crossref] [PubMed]

2014 (3)

Z. Yang, J. Chen, J. Yao, R. Lin, J. Meng, C. Liu, J. Yang, X. Li, L. Wang, and L. Song, “Multi-parametric quantitative microvascular imaging with optical-resolution photoacoustic microscopy in vivo,” Opt. Express 22(2), 1500–1511 (2014).
[Crossref] [PubMed]

J. Xia and L. V. Wang, “Small-animal whole-body photoacoustic tomography: a review,” IEEE Trans. Biomed. Eng. 61(5), 1380–1389 (2014).
[Crossref] [PubMed]

L. Yao, L. Xi, and H. Jiang, “Photoacoustic computed microscopy,” Sci. Rep. 4, 4960 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (4)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

L. Xi, S. R. Grobmyer, L. Wu, R. Chen, G. Zhou, L. G. Gutwein, J. Sun, W. Liao, Q. Zhou, H. Xie, and H. Jiang, “Evaluation of breast tumor margins in vivo with intraoperative photoacoustic imaging,” Opt. Express 20(8), 8726–8731 (2012).
[Crossref] [PubMed]

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref] [PubMed]

C. Yoon, J. Kang, S. Han, Y. Yoo, T. K. Song, and J. H. Chang, “Enhancement of photoacoustic image quality by sound speed correction: ex vivo evaluation,” Opt. Express 20(3), 3082–3090 (2012).
[Crossref] [PubMed]

2011 (4)

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Piezoelectric annular array for large depth of field photoacoustic imaging,” Biomed. Opt. Express 2(9), 2655–2664 (2011).
[Crossref] [PubMed]

X. L. Dean-Ben, R. Ma, D. Razansky, and V. Ntziachristos, “Statistical approach for optoacoustic image reconstruction in the presence of strong acoustic heterogeneities,” IEEE Trans. Med. Imaging 30(2), 401–408 (2011).
[Crossref] [PubMed]

X. L. Deán-Ben, V. Ntziachristos, and D. Razansky, “Statistical optoacoustic image reconstruction using a-priori knowledge on the location of acoustic distortions,” Appl. Phys. Lett. 98(17), 171110 (2011).
[Crossref]

S. Gratt, K. Passler, R. Nuster, and G. Paltauf, “Photoacoustic section imaging with an integrating cylindrical detector,” Biomed. Opt. Express 2(11), 2973–2981 (2011).
[Crossref] [PubMed]

2010 (2)

J. Staley, P. Grogan, A. K. Samadi, H. Cui, M. S. Cohen, and X. Yang, “Growth of melanoma brain tumors monitored by photoacoustic microscopy,” J. Biomed. Opt. 15(4), 040510 (2010).
[Crossref] [PubMed]

L. Xi, J. Sun, Y. Zhu, L. Wu, H. Xie, and H. Jiang, “Photoacoustic imaging based on MEMS mirror scanning,” Biomed. Opt. Express 1(5), 1278–1283 (2010).
[Crossref] [PubMed]

2009 (2)

Y. Sun, E. Sobel, and H. Jiang, “Quantitative three-dimensional photoacoustic tomography of the finger joints: an in vivo study,” J. Biomed. Opt. 14(6), 064002 (2009).
[Crossref] [PubMed]

G. Paltauf, S. Gratt, K. Passler, R. Nuster, and P. Burgholzer, “Photoacoustic imaging with limited diffraction beam transducers,” Proc. SPIE 7177, 77170S (2009).
[Crossref]

2008 (1)

X. Jin, C. Li, and L. V. Wang, “Effects of acoustic heterogeneities on transcranial brain imaging with microwave-induced thermoacoustic tomography,” Med. Phys. 35(7), 3205–3214 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (2)

H. Jiang, Z. Yuan, and X. Gu, “Spatially varying optical and acoustic property reconstruction using finite-element-based photoacoustic tomography,” J. Opt. Soc. Am. A 23(4), 878–888 (2006).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

2004 (1)

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J. Biomed. Opt. 9(6), 1327–1335 (2004).
[Crossref] [PubMed]

2003 (1)

P. C. Li and M. L. Li, “Adaptive imaging using the generalized coherence factor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(2), 128–141 (2003).
[Crossref] [PubMed]

Brett, M.

Burgholzer, P.

K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Piezoelectric annular array for large depth of field photoacoustic imaging,” Biomed. Opt. Express 2(9), 2655–2664 (2011).
[Crossref] [PubMed]

G. Paltauf, S. Gratt, K. Passler, R. Nuster, and P. Burgholzer, “Photoacoustic imaging with limited diffraction beam transducers,” Proc. SPIE 7177, 77170S (2009).
[Crossref]

Cao, R.

Chai, X.

Chang, J. H.

Chen, J.

Chen, R.

Cheng, R.

R. Cheng, J. Shao, X. Gao, C. Tao, J. Ge, and X. Liu, “Noninvasive assessment of early dental lesion using a dual-contrast phototacoustic tomography,” Sci. Rep. 6(1), 21798 (2016).
[Crossref] [PubMed]

Chitgupi, U.

Cohen, M. S.

J. Staley, P. Grogan, A. K. Samadi, H. Cui, M. S. Cohen, and X. Yang, “Growth of melanoma brain tumors monitored by photoacoustic microscopy,” J. Biomed. Opt. 15(4), 040510 (2010).
[Crossref] [PubMed]

Cui, H.

J. Staley, P. Grogan, A. K. Samadi, H. Cui, M. S. Cohen, and X. Yang, “Growth of melanoma brain tumors monitored by photoacoustic microscopy,” J. Biomed. Opt. 15(4), 040510 (2010).
[Crossref] [PubMed]

Dai, C.

de Mul, F. F. M.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J. Biomed. Opt. 9(6), 1327–1335 (2004).
[Crossref] [PubMed]

Dean-Ben, X. L.

X. L. Dean-Ben, R. Ma, D. Razansky, and V. Ntziachristos, “Statistical approach for optoacoustic image reconstruction in the presence of strong acoustic heterogeneities,” IEEE Trans. Med. Imaging 30(2), 401–408 (2011).
[Crossref] [PubMed]

Deán-Ben, X. L.

X. L. Deán-Ben, V. Ntziachristos, and D. Razansky, “Statistical optoacoustic image reconstruction using a-priori knowledge on the location of acoustic distortions,” Appl. Phys. Lett. 98(17), 171110 (2011).
[Crossref]

Deng, M.

Dixon, A. J.

Engelbach, J. A.

Fabiilli, M. L.

Gao, X.

Garbow, J. R.

Ge, J.

R. Cheng, J. Shao, X. Gao, C. Tao, J. Ge, and X. Liu, “Noninvasive assessment of early dental lesion using a dual-contrast phototacoustic tomography,” Sci. Rep. 6(1), 21798 (2016).
[Crossref] [PubMed]

Geng, J.

Gratt, S.

Grobmyer, S. R.

Grogan, P.

J. Staley, P. Grogan, A. K. Samadi, H. Cui, M. S. Cohen, and X. Yang, “Growth of melanoma brain tumors monitored by photoacoustic microscopy,” J. Biomed. Opt. 15(4), 040510 (2010).
[Crossref] [PubMed]

Gu, X.

Gutwein, L. G.

Hajireza, P.

Han, S.

Hondebrink, E.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J. Biomed. Opt. 9(6), 1327–1335 (2004).
[Crossref] [PubMed]

Hossack, J. A.

Hu, S.

Huang, C. H.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Jiang, H.

Jiang, X.

Jin, X.

X. Jin, C. Li, and L. V. Wang, “Effects of acoustic heterogeneities on transcranial brain imaging with microwave-induced thermoacoustic tomography,” Med. Phys. 35(7), 3205–3214 (2008).
[Crossref] [PubMed]

Jose, J.

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref] [PubMed]

Kang, J.

Kennedy, M. J.

Kirk Shung, K.

Kolkman, R. G.

Kolkman, R. G. M.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J. Biomed. Opt. 9(6), 1327–1335 (2004).
[Crossref] [PubMed]

Li, C.

X. Jin, C. Li, and L. V. Wang, “Effects of acoustic heterogeneities on transcranial brain imaging with microwave-induced thermoacoustic tomography,” Med. Phys. 35(7), 3205–3214 (2008).
[Crossref] [PubMed]

Li, G.

Li, L.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

L. Li, C. Dai, Q. Li, Q. Zhao, X. Jiang, X. Chai, and C. Zhou, “Fast subcellular optical coherence photoacoustic microscopy for pigment cell imaging,” Opt. Lett. 40(19), 4448–4451 (2015).
[Crossref] [PubMed]

Li, M. L.

P. C. Li and M. L. Li, “Adaptive imaging using the generalized coherence factor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(2), 128–141 (2003).
[Crossref] [PubMed]

Li, P. C.

P. C. Li and M. L. Li, “Adaptive imaging using the generalized coherence factor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(2), 128–141 (2003).
[Crossref] [PubMed]

Li, Q.

Li, X.

Liao, W.

Lin, R.

Liu, C.

Liu, J.

Liu, L.

Liu, X.

Lovell, J. F.

Luo, D.

Ma, R.

X. L. Dean-Ben, R. Ma, D. Razansky, and V. Ntziachristos, “Statistical approach for optoacoustic image reconstruction in the presence of strong acoustic heterogeneities,” IEEE Trans. Med. Imaging 30(2), 401–408 (2011).
[Crossref] [PubMed]

Manohar, S.

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref] [PubMed]

Maslov, K.

J. Xia, G. Li, L. Wang, M. Nasiriavanaki, K. Maslov, J. A. Engelbach, J. R. Garbow, and L. V. Wang, “Wide-field two-dimensional multifocal optical-resolution photoacoustic-computed microscopy,” Opt. Lett. 38(24), 5236–5239 (2013).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Maslov, K. I.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Meng, J.

Nasiriavanaki, M.

Ning, B.

Ntziachristos, V.

G. Wissmeyer, D. Soliman, R. Shnaiderman, A. Rosenthal, and V. Ntziachristos, “All-optical optoacoustic microscope based on wideband pulse interferometry,” Opt. Lett. 41(9), 1953–1956 (2016).
[Crossref] [PubMed]

X. L. Dean-Ben, R. Ma, D. Razansky, and V. Ntziachristos, “Statistical approach for optoacoustic image reconstruction in the presence of strong acoustic heterogeneities,” IEEE Trans. Med. Imaging 30(2), 401–408 (2011).
[Crossref] [PubMed]

X. L. Deán-Ben, V. Ntziachristos, and D. Razansky, “Statistical optoacoustic image reconstruction using a-priori knowledge on the location of acoustic distortions,” Appl. Phys. Lett. 98(17), 171110 (2011).
[Crossref]

Nuster, R.

O’Neill, B.

Paltauf, G.

Passler, K.

Razansky, D.

X. L. Deán-Ben, V. Ntziachristos, and D. Razansky, “Statistical optoacoustic image reconstruction using a-priori knowledge on the location of acoustic distortions,” Appl. Phys. Lett. 98(17), 171110 (2011).
[Crossref]

X. L. Dean-Ben, R. Ma, D. Razansky, and V. Ntziachristos, “Statistical approach for optoacoustic image reconstruction in the presence of strong acoustic heterogeneities,” IEEE Trans. Med. Imaging 30(2), 401–408 (2011).
[Crossref] [PubMed]

Rosenthal, A.

Samadi, A. K.

J. Staley, P. Grogan, A. K. Samadi, H. Cui, M. S. Cohen, and X. Yang, “Growth of melanoma brain tumors monitored by photoacoustic microscopy,” J. Biomed. Opt. 15(4), 040510 (2010).
[Crossref] [PubMed]

Shao, J.

R. Cheng, J. Shao, X. Gao, C. Tao, J. Ge, and X. Liu, “Noninvasive assessment of early dental lesion using a dual-contrast phototacoustic tomography,” Sci. Rep. 6(1), 21798 (2016).
[Crossref] [PubMed]

Shnaiderman, R.

Slump, C. H.

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref] [PubMed]

Sobel, E.

Y. Sun, E. Sobel, and H. Jiang, “Quantitative three-dimensional photoacoustic tomography of the finger joints: an in vivo study,” J. Biomed. Opt. 14(6), 064002 (2009).
[Crossref] [PubMed]

Soetikno, B. T.

Soliman, D.

Song, L.

Song, T. K.

Sorge, J.

Staley, J.

J. Staley, P. Grogan, A. K. Samadi, H. Cui, M. S. Cohen, and X. Yang, “Growth of melanoma brain tumors monitored by photoacoustic microscopy,” J. Biomed. Opt. 15(4), 040510 (2010).
[Crossref] [PubMed]

Steenbergen, W.

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref] [PubMed]

R. G. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Reflection mode photoacoustic measurement of speed of sound,” Opt. Express 15(6), 3291–3300 (2007).
[Crossref] [PubMed]

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J. Biomed. Opt. 9(6), 1327–1335 (2004).
[Crossref] [PubMed]

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Sun, J.

Sun, N.

Sun, Y.

Y. Sun and B. O’Neill, “Imaging high-intensity focused ultrasound-induced tissue denaturation by multispectral photoacoustic method: an ex vivo study,” Appl. Opt. 52(8), 1764–1770 (2013).
[Crossref] [PubMed]

Y. Sun, E. Sobel, and H. Jiang, “Quantitative three-dimensional photoacoustic tomography of the finger joints: an in vivo study,” J. Biomed. Opt. 14(6), 064002 (2009).
[Crossref] [PubMed]

Tao, C.

Tian, C.

van Leeuwen, T. G.

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref] [PubMed]

R. G. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Reflection mode photoacoustic measurement of speed of sound,” Opt. Express 15(6), 3291–3300 (2007).
[Crossref] [PubMed]

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J. Biomed. Opt. 9(6), 1327–1335 (2004).
[Crossref] [PubMed]

Wang, D.

Wang, L.

Wang, L. V.

L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
[Crossref] [PubMed]

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

J. Xia and L. V. Wang, “Small-animal whole-body photoacoustic tomography: a review,” IEEE Trans. Biomed. Eng. 61(5), 1380–1389 (2014).
[Crossref] [PubMed]

J. Xia, G. Li, L. Wang, M. Nasiriavanaki, K. Maslov, J. A. Engelbach, J. R. Garbow, and L. V. Wang, “Wide-field two-dimensional multifocal optical-resolution photoacoustic-computed microscopy,” Opt. Lett. 38(24), 5236–5239 (2013).
[Crossref] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

X. Jin, C. Li, and L. V. Wang, “Effects of acoustic heterogeneities on transcranial brain imaging with microwave-induced thermoacoustic tomography,” Med. Phys. 35(7), 3205–3214 (2008).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Wang, S.

Wang, W.

Wang, X.

Wang, Y.

Willemink, R. G.

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref] [PubMed]

Wissmeyer, G.

Wong, T. T.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Wu, L.

Xi, L.

Xia, J.

Xie, H.

Xie, Z.

Yang, J.

Yang, J. M.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Yang, X.

J. Staley, P. Grogan, A. K. Samadi, H. Cui, M. S. Cohen, and X. Yang, “Growth of melanoma brain tumors monitored by photoacoustic microscopy,” J. Biomed. Opt. 15(4), 040510 (2010).
[Crossref] [PubMed]

Yang, Z.

Yao, J.

L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
[Crossref] [PubMed]

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Z. Yang, J. Chen, J. Yao, R. Lin, J. Meng, C. Liu, J. Yang, X. Li, L. Wang, and L. Song, “Multi-parametric quantitative microvascular imaging with optical-resolution photoacoustic microscopy in vivo,” Opt. Express 22(2), 1500–1511 (2014).
[Crossref] [PubMed]

Yao, L.

L. Yao, L. Xi, and H. Jiang, “Photoacoustic computed microscopy,” Sci. Rep. 4, 4960 (2014).
[Crossref] [PubMed]

Yoo, Y.

Yoon, C.

Yuan, Z.

Zemp, R.

Zhang, H. F.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Zhao, Q.

Zhou, C.

Zhou, G.

Zhou, Q.

Zhou, Y.

Zhu, Y.

Zou, J.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

X. L. Deán-Ben, V. Ntziachristos, and D. Razansky, “Statistical optoacoustic image reconstruction using a-priori knowledge on the location of acoustic distortions,” Appl. Phys. Lett. 98(17), 171110 (2011).
[Crossref]

Biomed. Opt. Express (4)

IEEE Trans. Biomed. Eng. (1)

J. Xia and L. V. Wang, “Small-animal whole-body photoacoustic tomography: a review,” IEEE Trans. Biomed. Eng. 61(5), 1380–1389 (2014).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (1)

X. L. Dean-Ben, R. Ma, D. Razansky, and V. Ntziachristos, “Statistical approach for optoacoustic image reconstruction in the presence of strong acoustic heterogeneities,” IEEE Trans. Med. Imaging 30(2), 401–408 (2011).
[Crossref] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

P. C. Li and M. L. Li, “Adaptive imaging using the generalized coherence factor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(2), 128–141 (2003).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture,” J. Biomed. Opt. 9(6), 1327–1335 (2004).
[Crossref] [PubMed]

Y. Sun, E. Sobel, and H. Jiang, “Quantitative three-dimensional photoacoustic tomography of the finger joints: an in vivo study,” J. Biomed. Opt. 14(6), 064002 (2009).
[Crossref] [PubMed]

J. Staley, P. Grogan, A. K. Samadi, H. Cui, M. S. Cohen, and X. Yang, “Growth of melanoma brain tumors monitored by photoacoustic microscopy,” J. Biomed. Opt. 15(4), 040510 (2010).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Med. Phys. (2)

X. Jin, C. Li, and L. V. Wang, “Effects of acoustic heterogeneities on transcranial brain imaging with microwave-induced thermoacoustic tomography,” Med. Phys. 35(7), 3205–3214 (2008).
[Crossref] [PubMed]

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Nat. Methods (2)

L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
[Crossref] [PubMed]

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (7)

G. Wissmeyer, D. Soliman, R. Shnaiderman, A. Rosenthal, and V. Ntziachristos, “All-optical optoacoustic microscope based on wideband pulse interferometry,” Opt. Lett. 41(9), 1953–1956 (2016).
[Crossref] [PubMed]

B. Ning, M. J. Kennedy, A. J. Dixon, N. Sun, R. Cao, B. T. Soetikno, R. Chen, Q. Zhou, K. Kirk Shung, J. A. Hossack, and S. Hu, “Simultaneous photoacoustic microscopy of microvascular anatomy, oxygen saturation, and blood flow,” Opt. Lett. 40(6), 910–913 (2015).
[Crossref] [PubMed]

L. Li, C. Dai, Q. Li, Q. Zhao, X. Jiang, X. Chai, and C. Zhou, “Fast subcellular optical coherence photoacoustic microscopy for pigment cell imaging,” Opt. Lett. 40(19), 4448–4451 (2015).
[Crossref] [PubMed]

P. Hajireza, J. Sorge, M. Brett, and R. Zemp, “In vivo optical resolution photoacoustic microscopy using glancing angle-deposited nanostructured Fabry-Perot etalons,” Opt. Lett. 40(7), 1350–1353 (2015).
[Crossref] [PubMed]

C. Tian, Z. Xie, M. L. Fabiilli, and X. Wang, “Imaging and sensing based on dual-pulse nonlinear photoacoustic contrast: a preliminary study on fatty liver,” Opt. Lett. 40(10), 2253–2256 (2015).
[Crossref] [PubMed]

J. Xia, G. Li, L. Wang, M. Nasiriavanaki, K. Maslov, J. A. Engelbach, J. R. Garbow, and L. V. Wang, “Wide-field two-dimensional multifocal optical-resolution photoacoustic-computed microscopy,” Opt. Lett. 38(24), 5236–5239 (2013).
[Crossref] [PubMed]

X. Gao, C. Tao, X. Wang, and X. Liu, “Quantitative imaging of microvasculature in deep tissue with a spectrum-based photo-acoustic microscopy,” Opt. Lett. 40(6), 970–973 (2015).
[Crossref] [PubMed]

Proc. SPIE (1)

G. Paltauf, S. Gratt, K. Passler, R. Nuster, and P. Burgholzer, “Photoacoustic imaging with limited diffraction beam transducers,” Proc. SPIE 7177, 77170S (2009).
[Crossref]

Sci. Rep. (2)

R. Cheng, J. Shao, X. Gao, C. Tao, J. Ge, and X. Liu, “Noninvasive assessment of early dental lesion using a dual-contrast phototacoustic tomography,” Sci. Rep. 6(1), 21798 (2016).
[Crossref] [PubMed]

L. Yao, L. Xi, and H. Jiang, “Photoacoustic computed microscopy,” Sci. Rep. 4, 4960 (2014).
[Crossref] [PubMed]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Other (1)

L. Xi, C. Duan, H. Xie, and H. Jiang, “Combining Optical-resolution Photoacoustic Microscopy with Optical Coherence Tomography in a Miniature Probe,” in Biomedical Optics 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper BS3A.62.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The annular US transducer array. The planform and cross section of the array is shown in the left and right respectively. N is the number of element in the annular US transducer array. rn and wn are the radius and width of the n-th element. The transducer is scanning along the x-y plane.

Fig. 2
Fig. 2

Process of the SOS estimation and PA image reconstruction. (a) PA signals detected by the annular array. (b) The cross-correlation ρ1, n curve between p1 and pn (n = 2, …,7), where τn corresponds to the maximum of ρ1, n . (c) Linear fitting of rn2-tn2. (d) Reconstruction PA images. The left image is obtained by using an imprecise preset SOS of 1600 m/s and a focused US transducer with a focal length of 20 mm. The right image is obtained with the measured SOS of 1400.2 m/s and an annular US array. The dashed line marks the actual depth of the optical absorber.

Fig. 3
Fig. 3

Imaging multiple optical absorbers at different depth. (a) Estimated SOS at different depth. (b) PA image obtained by using a priori SOS of 1500 m/s and a focused transducer with a focal length of 30 mm. (c) PA image obtained by using the annular US array and the measured SOS. In (b) and (c), the dashed lines mark the accurate positions of six optical absorbers.

Fig. 4
Fig. 4

Quantitative comparison of the images quality between the classic PAM and the proposed method. (a) position error of optical absorbers. (b) FWHM in the x direction at different depth.

Fig. 5
Fig. 5

Application of the proposed dual-mode microscopy to the samples with inhomogeneous SOS distribution. (a-c) the sample has different SOS in the left part (1400 m/s) and right part (1600 m/s). (d-e) the sample has layered SOS distribution: 1400 m/s, 1500 m/s and 1600 m/s from the top to the bottom. (a) and (d) PA images obtained by using a focused transducer with a preset SOS of 1500 m/s and a focal length of 20 mm and 35 mm. (b) and (e) PA images obtained by using the annular array and the measured SOS. (c) and (f) SOS images obtained by the annular array.

Fig. 6
Fig. 6

Experimental setup. (a) Schematic diagram of the experimental setup. (b) The custom-made annular US array. (c) The custom-made preamplifier with a gain of 40 dB.

Fig. 7
Fig. 7

Experimental results. (a) PA image of hairs with a fixed focal length and a preset SOS of 1500 m/s. (b) PA image of hairs obtained by using the custom-made annular array and the measured SOS. (c) SOS image in the phantom, which is obtained by using the custom-made annular array and Eqs. 2 - 4.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A ( r ; z ) = n = 1 N β ( t n ) H [ p n ( r , t n ) ] with t n 2 = ( z 2 + r n 2 ) / C 2 ( r ; z ) ,
r n 2 = C 2 t n 2 z 2 ,
maximum = cov [ p n ( r , t 1 τ ) , p 1 ( r , t 1 ) ] | τ = τ n .
c 1 = C ( r , z 1 ) , c m = ( t ( z m ) C ( r , z m ) t ( z m 1 ) C ( r , z m 1 ) ) / ( t ( z m ) t ( z m 1 ) ) ,

Metrics