Abstract

Focusing inside scattering media is a challenging task with a variety of applications in biomedicine. State of the art methods mostly require invasive feedback inside or behind the sample, limiting practical use. We present a technique for dynamic control and focusing inside scattering media that combines two powerful methods: optical coherence tomography (OCT) and wave-front shaping (WFS). We use OCT as a non-invasive feedback for WFS optimization of a separate, penetrating laser. Energy absorbed in the sample, creates thermal expansions that are used for the feedback mechanism. By maximizing thermal deformations within a selected focal region, we demonstrate enhanced focusing of light through scattering media beyond the ballistic regime and within the penetration range of OCT.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatiotemporal focusing in opaque scattering media by wave front shaping with nonlinear feedback

Jochen Aulbach, Bergin Gjonaj, Patrick Johnson, and Ad Lagendijk
Opt. Express 20(28) 29237-29251 (2012)

Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography

Jaeduck Jang, Jaeguyn Lim, Hyeonseung Yu, Hyun Choi, Jinyong Ha, Jung-Hoon Park, Wang-Yuhl Oh, Wooyoung Jang, SeongDeok Lee, and YongKeun Park
Opt. Express 21(3) 2890-2902 (2013)

References

  • View by:
  • |
  • |
  • |

  1. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
    [Crossref] [PubMed]
  2. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
    [Crossref]
  3. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).
  4. O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
    [Crossref]
  5. I. M. Vellekoop, “Feedback-based wavefront shaping,” Opt. Express 23(9), 12189–12206 (2015).
    [Crossref] [PubMed]
  6. G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
    [Crossref] [PubMed]
  7. S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
    [Crossref] [PubMed]
  8. C.-L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18(12), 12283–12290 (2010).
    [Crossref] [PubMed]
  9. I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
    [Crossref] [PubMed]
  10. X. Tao, O. Azucena, M. Fu, Y. Zuo, D. C. Chen, and J. Kubby, “Adaptive optics microscopy with direct wavefront sensing using fluorescent protein guide stars,” Opt. Lett. 36(17), 3389–3391 (2011).
    [Crossref] [PubMed]
  11. D. B. Conkey, A. M. Caravaca-Aguirre, J. D. Dove, H. Ju, T. W. Murray, and R. Piestun, “Super-resolution photoacoustic imaging through a scattering wall,” Nat. Commun. 6, 9 (2015).
  12. F. Kong, R. H. Silverman, L. Liu, P. V. Chitnis, K. K. Lee, and Y. C. Chen, “Photoacoustic-guided convergence of light through optically diffusive media,” Opt. Lett. 36(11), 2053–2055 (2011).
    [Crossref] [PubMed]
  13. T. Chaigne, O. Katz, C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
    [Crossref]
  14. X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
    [Crossref] [PubMed]
  15. B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
    [Crossref] [PubMed]
  16. C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D Appl. Phys. 36(14), R207–R227 (2003).
    [Crossref]
  17. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  18. J. Schmitt, “Optical Coherence Tomography (OCT): A Review,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999).
    [Crossref]
  19. R. Fiolka, K. Si, and M. Cui, “Complex wavefront corrections for deep tissue focusing using low coherence backscattered light,” Opt. Express 20(15), 16532 (2012).
    [Crossref]
  20. J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J.-H. Park, W.-Y. Oh, W. Jang, S. Lee, and Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21(3), 2890–2902 (2013).
    [Crossref] [PubMed]
  21. H. Yu, J. Jang, J. Lim, J.-H. Park, W. Jang, J.-Y. Kim, and Y. Park, “Depth-enhanced 2-D optical coherence tomography using complex wavefront shaping,” Opt. Express 22(7), 7514–7523 (2014).
    [Crossref] [PubMed]
  22. T. R. Hillman, Y. Choi, N. Lue, Y. Sung, R. R. Dasari, W. Choi, and Z. Yaqoob, “A reflection-mode configuration for enhanced light delivery through turbidity,” SPIE BiOS 8227, 82271T (2012).
  23. A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2, e1600370 (2016).
  24. R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A 24(5), 1373–1383 (2007).
    [Crossref] [PubMed]
  25. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
    [Crossref] [PubMed]
  26. K. Kurokawa, K. Sasaki, S. Makita, M. Yamanari, B. Cense, and Y. Yasuno, “Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography.,” Opt. Express 18(8), 8515–8527 (2010).
    [Crossref] [PubMed]
  27. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms.,” Opt. Lett. 33(2), 156–158 (2008).
    [Crossref] [PubMed]
  28. D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments,” Opt. Express 20(5), 4840–4849 (2012).
    [Crossref] [PubMed]
  29. N. Wadhwa, M. Rubinstein, F. Durand, and W. T. Freeman, “Phase-based video motion processing,” ACM Trans. Graph. 32(4), 1 (2013).
    [Crossref]
  30. D. C. Adler, S.-W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16(7), 4376–4393 (2008).
    [Crossref] [PubMed]
  31. R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt. 15(5), 056005 (2010).
    [Crossref]
  32. S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14(24), 11585–11597 (2006).
    [Crossref] [PubMed]
  33. R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90, 88–91 (2007).
  34. G. M. E. Akkermans, Mesoscopic Physics of Electrons and Photons (Cambridge University Press, 2006).
  35. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
    [Crossref] [PubMed]
  36. N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed. Opt. 16(3), 030503 (2011).
    [Crossref] [PubMed]
  37. T. Lister, P. A. Wright, P. H. Chappell, T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt. 17(9), 0909011 (2012).
    [Crossref] [PubMed]
  38. D. T. D. Van der Zee and M. Essenpreis, “Optical properties of brain tissue,” Proc. SPIE 1888, 454–465 (1993).
  39. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  40. S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, and T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol. 49(1), 111–119 (2004).
    [Crossref] [PubMed]
  41. J. Kim, J. Oh, and T. E. Milner, “Measurement of optical path length change following pulsed laser irradiation using differential phase optical coherence tomography,” J. Biomed. Opt. 11(4), 041122 (2006).
    [Crossref] [PubMed]
  42. G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Depth profiling of photothermal compound concentrations using phase sensitive optical coherence tomography,” J. Biomed. Opt. 16(12), 126003 (2011).
    [Crossref] [PubMed]
  43. J. M. Tucker-Schwartz, T. A. Meyer, C. A. Patil, C. L. Duvall, and M. C. Skala, “In vivo photothermal optical coherence tomography of gold nanorod contrast agents,” Biomed. Opt. Express 3(11), 2881–2895 (2012).
    [Crossref] [PubMed]
  44. S. Makita and Y. Yasuno, “In vivo photothermal optical coherence tomography for non-invasive imaging of endogenous absorption agents,” Biomed. Opt. Express 6(5), 1707–1725 (2015).
    [Crossref] [PubMed]

2016 (1)

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2, e1600370 (2016).

2015 (3)

2014 (1)

2013 (5)

J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J.-H. Park, W.-Y. Oh, W. Jang, S. Lee, and Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21(3), 2890–2902 (2013).
[Crossref] [PubMed]

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

T. Chaigne, O. Katz, C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
[Crossref]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

N. Wadhwa, M. Rubinstein, F. Durand, and W. T. Freeman, “Phase-based video motion processing,” ACM Trans. Graph. 32(4), 1 (2013).
[Crossref]

2012 (8)

T. Lister, P. A. Wright, P. H. Chappell, T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt. 17(9), 0909011 (2012).
[Crossref] [PubMed]

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
[Crossref] [PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

T. R. Hillman, Y. Choi, N. Lue, Y. Sung, R. R. Dasari, W. Choi, and Z. Yaqoob, “A reflection-mode configuration for enhanced light delivery through turbidity,” SPIE BiOS 8227, 82271T (2012).

D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments,” Opt. Express 20(5), 4840–4849 (2012).
[Crossref] [PubMed]

R. Fiolka, K. Si, and M. Cui, “Complex wavefront corrections for deep tissue focusing using low coherence backscattered light,” Opt. Express 20(15), 16532 (2012).
[Crossref]

J. M. Tucker-Schwartz, T. A. Meyer, C. A. Patil, C. L. Duvall, and M. C. Skala, “In vivo photothermal optical coherence tomography of gold nanorod contrast agents,” Biomed. Opt. Express 3(11), 2881–2895 (2012).
[Crossref] [PubMed]

2011 (5)

F. Kong, R. H. Silverman, L. Liu, P. V. Chitnis, K. K. Lee, and Y. C. Chen, “Photoacoustic-guided convergence of light through optically diffusive media,” Opt. Lett. 36(11), 2053–2055 (2011).
[Crossref] [PubMed]

X. Tao, O. Azucena, M. Fu, Y. Zuo, D. C. Chen, and J. Kubby, “Adaptive optics microscopy with direct wavefront sensing using fluorescent protein guide stars,” Opt. Lett. 36(17), 3389–3391 (2011).
[Crossref] [PubMed]

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed. Opt. 16(3), 030503 (2011).
[Crossref] [PubMed]

G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Depth profiling of photothermal compound concentrations using phase sensitive optical coherence tomography,” J. Biomed. Opt. 16(12), 126003 (2011).
[Crossref] [PubMed]

2010 (6)

K. Kurokawa, K. Sasaki, S. Makita, M. Yamanari, B. Cense, and Y. Yasuno, “Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography.,” Opt. Express 18(8), 8515–8527 (2010).
[Crossref] [PubMed]

C.-L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18(12), 12283–12290 (2010).
[Crossref] [PubMed]

R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt. 15(5), 056005 (2010).
[Crossref]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

2008 (2)

2007 (4)

R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A 24(5), 1373–1383 (2007).
[Crossref] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
[Crossref] [PubMed]

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90, 88–91 (2007).

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[Crossref] [PubMed]

2006 (2)

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14(24), 11585–11597 (2006).
[Crossref] [PubMed]

J. Kim, J. Oh, and T. E. Milner, “Measurement of optical path length change following pulsed laser irradiation using differential phase optical coherence tomography,” J. Biomed. Opt. 11(4), 041122 (2006).
[Crossref] [PubMed]

2004 (2)

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
[Crossref] [PubMed]

S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, and T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol. 49(1), 111–119 (2004).
[Crossref] [PubMed]

2003 (1)

C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D Appl. Phys. 36(14), R207–R227 (2003).
[Crossref]

1999 (1)

J. Schmitt, “Optical Coherence Tomography (OCT): A Review,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999).
[Crossref]

1993 (1)

D. T. D. Van der Zee and M. Essenpreis, “Optical properties of brain tissue,” Proc. SPIE 1888, 454–465 (1993).

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Aalders, M. C. G.

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed. Opt. 16(3), 030503 (2011).
[Crossref] [PubMed]

Adler, D. C.

Akkin, T.

S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, and T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol. 49(1), 111–119 (2004).
[Crossref] [PubMed]

Artal, P.

Aubry, A.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2, e1600370 (2016).

Azucena, O.

Badon, A.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2, e1600370 (2016).

Boccara, A. C.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2, e1600370 (2016).

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

Boccara, C.

T. Chaigne, O. Katz, C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
[Crossref]

Bosschaart, N.

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed. Opt. 16(3), 030503 (2011).
[Crossref] [PubMed]

Bossy, E.

T. Chaigne, O. Katz, C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
[Crossref]

Brown, A. N.

Caravaca-Aguirre, A. M.

D. B. Conkey, A. M. Caravaca-Aguirre, J. D. Dove, H. Ju, T. W. Murray, and R. Piestun, “Super-resolution photoacoustic imaging through a scattering wall,” Nat. Commun. 6, 9 (2015).

D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments,” Opt. Express 20(5), 4840–4849 (2012).
[Crossref] [PubMed]

Cense, B.

Chaigne, T.

T. Chaigne, O. Katz, C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
[Crossref]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chappell, P. H.

T. Lister, P. A. Wright, P. H. Chappell, T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt. 17(9), 0909011 (2012).
[Crossref] [PubMed]

T. Lister, P. A. Wright, P. H. Chappell, T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt. 17(9), 0909011 (2012).
[Crossref] [PubMed]

Chen, D. C.

Chen, Y. C.

Chitnis, P. V.

Choi, H.

Choi, S. S.

Choi, W.

T. R. Hillman, Y. Choi, N. Lue, Y. Sung, R. R. Dasari, W. Choi, and Z. Yaqoob, “A reflection-mode configuration for enhanced light delivery through turbidity,” SPIE BiOS 8227, 82271T (2012).

Choi, Y.

T. R. Hillman, Y. Choi, N. Lue, Y. Sung, R. R. Dasari, W. Choi, and Z. Yaqoob, “A reflection-mode configuration for enhanced light delivery through turbidity,” SPIE BiOS 8227, 82271T (2012).

Conkey, D. B.

D. B. Conkey, A. M. Caravaca-Aguirre, J. D. Dove, H. Ju, T. W. Murray, and R. Piestun, “Super-resolution photoacoustic imaging through a scattering wall,” Nat. Commun. 6, 9 (2015).

D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments,” Opt. Express 20(5), 4840–4849 (2012).
[Crossref] [PubMed]

Cui, M.

R. Fiolka, K. Si, and M. Cui, “Complex wavefront corrections for deep tissue focusing using low coherence backscattered light,” Opt. Express 20(15), 16532 (2012).
[Crossref]

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
[Crossref] [PubMed]

Dasari, R. R.

T. R. Hillman, Y. Choi, N. Lue, Y. Sung, R. R. Dasari, W. Choi, and Z. Yaqoob, “A reflection-mode configuration for enhanced light delivery through turbidity,” SPIE BiOS 8227, 82271T (2012).

Dave, D. P.

S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, and T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol. 49(1), 111–119 (2004).
[Crossref] [PubMed]

de Rosny, J.

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[Crossref] [PubMed]

Dove, J. D.

D. B. Conkey, A. M. Caravaca-Aguirre, J. D. Dove, H. Ju, T. W. Murray, and R. Piestun, “Super-resolution photoacoustic imaging through a scattering wall,” Nat. Commun. 6, 9 (2015).

Drexler, W.

Duncan, D. D.

Dunsby, C.

C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D Appl. Phys. 36(14), R207–R227 (2003).
[Crossref]

Durand, F.

N. Wadhwa, M. Rubinstein, F. Durand, and W. T. Freeman, “Phase-based video motion processing,” ACM Trans. Graph. 32(4), 1 (2013).
[Crossref]

Duvall, C. L.

Essenpreis, M.

D. T. D. Van der Zee and M. Essenpreis, “Optical properties of brain tissue,” Proc. SPIE 1888, 454–465 (1993).

Faber, D. J.

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed. Opt. 16(3), 030503 (2011).
[Crossref] [PubMed]

Fercher, A. F.

Fernández, E. J.

Fienup, J. R.

Fink, M.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2, e1600370 (2016).

T. Chaigne, O. Katz, C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[Crossref] [PubMed]

Fiolka, R.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Freeman, W. T.

N. Wadhwa, M. Rubinstein, F. Durand, and W. T. Freeman, “Phase-based video motion processing,” ACM Trans. Graph. 32(4), 1 (2013).
[Crossref]

French, P. M. W.

C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D Appl. Phys. 36(14), R207–R227 (2003).
[Crossref]

Fu, M.

Fujimoto, J. G.

D. C. Adler, S.-W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16(7), 4376–4393 (2008).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Gigan, S.

T. Chaigne, O. Katz, C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
[Crossref]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

Grange, R.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Guan, G.

G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Depth profiling of photothermal compound concentrations using phase sensitive optical coherence tomography,” J. Biomed. Opt. 16(12), 126003 (2011).
[Crossref] [PubMed]

Guizar-Sicairos, M.

Ha, J.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hermann, B.

Hillman, T. R.

T. R. Hillman, Y. Choi, N. Lue, Y. Sung, R. R. Dasari, W. Choi, and Z. Yaqoob, “A reflection-mode configuration for enhanced light delivery through turbidity,” SPIE BiOS 8227, 82271T (2012).

Hinds, M.

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90, 88–91 (2007).

Horstmeyer, R.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

Hsieh, C.-L.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huang, S.-W.

Huang, Z.

G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Depth profiling of photothermal compound concentrations using phase sensitive optical coherence tomography,” J. Biomed. Opt. 16(12), 126003 (2011).
[Crossref] [PubMed]

Huber, R.

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Jang, J.

Jang, W.

Jones, S. M.

Ju, H.

D. B. Conkey, A. M. Caravaca-Aguirre, J. D. Dove, H. Ju, T. W. Murray, and R. Piestun, “Super-resolution photoacoustic imaging through a scattering wall,” Nat. Commun. 6, 9 (2015).

Judkewitz, B.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

Katz, O.

T. Chaigne, O. Katz, C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

Kim, J.

J. Kim, J. Oh, and T. E. Milner, “Measurement of optical path length change following pulsed laser irradiation using differential phase optical coherence tomography,” J. Biomed. Opt. 11(4), 041122 (2006).
[Crossref] [PubMed]

Kim, J.-Y.

Kirkpatrick, S.

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90, 88–91 (2007).

Kirkpatrick, S. J.

Kong, F.

Kubby, J.

Kurokawa, K.

Lagendijk, A.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).

Lee, K. K.

Lee, S.

Lerosey, G.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2, e1600370 (2016).

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[Crossref] [PubMed]

Li, D.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2, e1600370 (2016).

Lim, J.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Lister, T.

T. Lister, P. A. Wright, P. H. Chappell, T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt. 17(9), 0909011 (2012).
[Crossref] [PubMed]

T. Lister, P. A. Wright, P. H. Chappell, T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt. 17(9), 0909011 (2012).
[Crossref] [PubMed]

Liu, H.

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

Liu, L.

Lue, N.

T. R. Hillman, Y. Choi, N. Lue, Y. Sung, R. R. Dasari, W. Choi, and Z. Yaqoob, “A reflection-mode configuration for enhanced light delivery through turbidity,” SPIE BiOS 8227, 82271T (2012).

Makita, S.

Mathy, A.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

Meyer, T. A.

Milner, T. E.

J. Kim, J. Oh, and T. E. Milner, “Measurement of optical path length change following pulsed laser irradiation using differential phase optical coherence tomography,” J. Biomed. Opt. 11(4), 041122 (2006).
[Crossref] [PubMed]

S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, and T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol. 49(1), 111–119 (2004).
[Crossref] [PubMed]

Mosk, A. P.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
[Crossref] [PubMed]

Murray, T. W.

D. B. Conkey, A. M. Caravaca-Aguirre, J. D. Dove, H. Ju, T. W. Murray, and R. Piestun, “Super-resolution photoacoustic imaging through a scattering wall,” Nat. Commun. 6, 9 (2015).

Ntziachristos, V.

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

Nuttall, A. L.

R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt. 15(5), 056005 (2010).
[Crossref]

Oh, J.

J. Kim, J. Oh, and T. E. Milner, “Measurement of optical path length change following pulsed laser irradiation using differential phase optical coherence tomography,” J. Biomed. Opt. 11(4), 041122 (2006).
[Crossref] [PubMed]

Oh, W.-Y.

Oliver, S. S.

Park, J.-H.

Park, Y.

Patil, C. A.

Piestun, R.

D. B. Conkey, A. M. Caravaca-Aguirre, J. D. Dove, H. Ju, T. W. Murray, and R. Piestun, “Super-resolution photoacoustic imaging through a scattering wall,” Nat. Commun. 6, 9 (2015).

D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments,” Opt. Express 20(5), 4840–4849 (2012).
[Crossref] [PubMed]

Popoff, S.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

Prieto, P. M.

Psaltis, D.

Pu, Y.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Reif, R.

G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Depth profiling of photothermal compound concentrations using phase sensitive optical coherence tomography,” J. Biomed. Opt. 16(12), 126003 (2011).
[Crossref] [PubMed]

Rubinstein, M.

N. Wadhwa, M. Rubinstein, F. Durand, and W. T. Freeman, “Phase-based video motion processing,” ACM Trans. Graph. 32(4), 1 (2013).
[Crossref]

Sasaki, K.

Sattmann, H.

Schmitt, J.

J. Schmitt, “Optical Coherence Tomography (OCT): A Review,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999).
[Crossref]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sethuraman, S.

S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, and T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol. 49(1), 111–119 (2004).
[Crossref] [PubMed]

Si, K.

Silberberg, Y.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

Silverman, R. H.

Skala, M. C.

Small, E.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sung, Y.

T. R. Hillman, Y. Choi, N. Lue, Y. Sung, R. R. Dasari, W. Choi, and Z. Yaqoob, “A reflection-mode configuration for enhanced light delivery through turbidity,” SPIE BiOS 8227, 82271T (2012).

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Tao, X.

Telenkov, S. A.

S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, and T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol. 49(1), 111–119 (2004).
[Crossref] [PubMed]

Thurman, S. T.

Tourin, A.

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[Crossref] [PubMed]

Tucker-Schwartz, J. M.

Unterhuber, A.

Van der Zee, D. T. D.

D. T. D. Van der Zee and M. Essenpreis, “Optical properties of brain tissue,” Proc. SPIE 1888, 454–465 (1993).

van Leeuwen, T. G.

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed. Opt. 16(3), 030503 (2011).
[Crossref] [PubMed]

Vellekoop, I. M.

I. M. Vellekoop, “Feedback-based wavefront shaping,” Opt. Express 23(9), 12189–12206 (2015).
[Crossref] [PubMed]

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
[Crossref] [PubMed]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
[Crossref] [PubMed]

Wadhwa, N.

N. Wadhwa, M. Rubinstein, F. Durand, and W. T. Freeman, “Phase-based video motion processing,” ACM Trans. Graph. 32(4), 1 (2013).
[Crossref]

Wang, L. V.

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

Wang, R. K.

G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Depth profiling of photothermal compound concentrations using phase sensitive optical coherence tomography,” J. Biomed. Opt. 16(12), 126003 (2011).
[Crossref] [PubMed]

R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt. 15(5), 056005 (2010).
[Crossref]

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90, 88–91 (2007).

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14(24), 11585–11597 (2006).
[Crossref] [PubMed]

Wang, Y. M.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

Werner, J. S.

Wright, P. A.

T. Lister, P. A. Wright, P. H. Chappell, T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt. 17(9), 0909011 (2012).
[Crossref] [PubMed]

T. Lister, P. A. Wright, P. H. Chappell, T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt. 17(9), 0909011 (2012).
[Crossref] [PubMed]

Xu, X.

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

Yamanari, M.

Yang, C.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
[Crossref] [PubMed]

Yaqoob, Z.

T. R. Hillman, Y. Choi, N. Lue, Y. Sung, R. R. Dasari, W. Choi, and Z. Yaqoob, “A reflection-mode configuration for enhanced light delivery through turbidity,” SPIE BiOS 8227, 82271T (2012).

Yasuno, Y.

Yu, H.

Zawadzki, R. J.

Zuo, Y.

ACM Trans. Graph. (1)

N. Wadhwa, M. Rubinstein, F. Durand, and W. T. Freeman, “Phase-based video motion processing,” ACM Trans. Graph. 32(4), 1 (2013).
[Crossref]

Appl. Phys. Lett. (2)

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
[Crossref] [PubMed]

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90, 88–91 (2007).

Biomed. Opt. Express (2)

IEEE J. Sel. Top. Quantum Electron. (1)

J. Schmitt, “Optical Coherence Tomography (OCT): A Review,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999).
[Crossref]

J. Biomed. Opt. (5)

R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt. 15(5), 056005 (2010).
[Crossref]

J. Kim, J. Oh, and T. E. Milner, “Measurement of optical path length change following pulsed laser irradiation using differential phase optical coherence tomography,” J. Biomed. Opt. 11(4), 041122 (2006).
[Crossref] [PubMed]

G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Depth profiling of photothermal compound concentrations using phase sensitive optical coherence tomography,” J. Biomed. Opt. 16(12), 126003 (2011).
[Crossref] [PubMed]

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed. Opt. 16(3), 030503 (2011).
[Crossref] [PubMed]

T. Lister, P. A. Wright, P. H. Chappell, T. Lister, P. A. Wright, and P. H. Chappell, “Optical properties of human skin,” J. Biomed. Opt. 17(9), 0909011 (2012).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D Appl. Phys. 36(14), R207–R227 (2003).
[Crossref]

Nat. Commun. (2)

D. B. Conkey, A. M. Caravaca-Aguirre, J. D. Dove, H. Ju, T. W. Murray, and R. Piestun, “Super-resolution photoacoustic imaging through a scattering wall,” Nat. Commun. 6, 9 (2015).

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

Nat. Methods (1)

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

Nat. Photonics (6)

T. Chaigne, O. Katz, C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media non-invasively using the photoacoustic transmission matrix,” Nat. Photonics 8(1), 58–64 (2013).
[Crossref]

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

Opt. Express (9)

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14(24), 11585–11597 (2006).
[Crossref] [PubMed]

D. C. Adler, S.-W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16(7), 4376–4393 (2008).
[Crossref] [PubMed]

K. Kurokawa, K. Sasaki, S. Makita, M. Yamanari, B. Cense, and Y. Yasuno, “Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography.,” Opt. Express 18(8), 8515–8527 (2010).
[Crossref] [PubMed]

C.-L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18(12), 12283–12290 (2010).
[Crossref] [PubMed]

I. M. Vellekoop, “Feedback-based wavefront shaping,” Opt. Express 23(9), 12189–12206 (2015).
[Crossref] [PubMed]

J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J.-H. Park, W.-Y. Oh, W. Jang, S. Lee, and Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21(3), 2890–2902 (2013).
[Crossref] [PubMed]

H. Yu, J. Jang, J. Lim, J.-H. Park, W. Jang, J.-Y. Kim, and Y. Park, “Depth-enhanced 2-D optical coherence tomography using complex wavefront shaping,” Opt. Express 22(7), 7514–7523 (2014).
[Crossref] [PubMed]

D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments,” Opt. Express 20(5), 4840–4849 (2012).
[Crossref] [PubMed]

R. Fiolka, K. Si, and M. Cui, “Complex wavefront corrections for deep tissue focusing using low coherence backscattered light,” Opt. Express 20(15), 16532 (2012).
[Crossref]

Opt. Lett. (5)

Phys. Med. Biol. (2)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, and T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol. 49(1), 111–119 (2004).
[Crossref] [PubMed]

Proc. SPIE (1)

D. T. D. Van der Zee and M. Essenpreis, “Optical properties of brain tissue,” Proc. SPIE 1888, 454–465 (1993).

Sci. Adv. (1)

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2, e1600370 (2016).

Science (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[Crossref] [PubMed]

SPIE BiOS (1)

T. R. Hillman, Y. Choi, N. Lue, Y. Sung, R. R. Dasari, W. Choi, and Z. Yaqoob, “A reflection-mode configuration for enhanced light delivery through turbidity,” SPIE BiOS 8227, 82271T (2012).

Other (1)

G. M. E. Akkermans, Mesoscopic Physics of Electrons and Photons (Cambridge University Press, 2006).

Supplementary Material (1)

NameDescription
» Visualization 1: AVI (35160 KB)      Modulated photo-thermal deformation of the sample

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Principle of TEF-WFS: The sample consists of scattering particles (yellow) and absorbing targets (black). OCT imaging monitors the sample which is illuminated by a coincident, green, penetrating laser. Focusing of the green light on an absorber is attained by WFS using a SLM and by monitoring deformation of absorbing targets in the OCT image.

Fig. 2
Fig. 2

Experimental setup for TEF-WFS. The 514nm CW laser source is monitored by the Photodiode (PD), modulated by a mechanical shutter and a SLM, and is focused through a diffuser on the sample. A commercial spectral domain OCT monitors the sample over a region overlapping with the desired focal area of the laser.

Fig. 3
Fig. 3

System characterization results. a- Deformation of the sample as a function of green laser power. b- SNR characterization. Preliminary comparison of a series of random phase patterns with a constant phase pattern. c- Gray scale OCT image. d– Thresholded image and ROI for deformation detection (see Visualization 1).

Fig. 4
Fig. 4

Results of focusing through scattering media using thermal expansion feedback implemented with OCT. a- GA Optimization in the case of high contrast speckles. b- Backside camera image of scattered light without the sample and with a flat SLM phase. c- Backside image using the optimized phase pattern. d- GA Optimization in the case of ballistic and scattering mixture. e- Flat SLM phase. f- Optimized phase pattern. The top right inserts in c and f depict the optimized SLM phase patterns with 144 and 256 macro-pixels respectively. Scale bar is 1mm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

CC{I,T}=IDFT{ZP[ DFT( I )DFT ( T ) * ]}
d= C C x 2 +C C z 2 ,

Metrics