Abstract

When light emitters are being placed in close proximity to a plasmonic system, not only the emission but also the excitation can be strongly enhanced and both yield the surface plasmon polariton (SPP) mediated fluorescence enhancement. Here, we combine the rate equation model and coupled mode theory to formulate the excitation rate of light emitters located on a periodic metallic array. The rate is expressed in terms of quantities that can be measured by angle- and polarization-resolved reflectivity and photoluminescence spectroscopy. As a demonstration, we have studied the excitation rate of CdSeTe quantum dots deposited on a 2D Au nanohole array as a function of the propagation direction of the (−1,0) Bloch-like SPPs. At the excitation wavelength of 633 nm, we find the rate remains almost constant at ~44 ps−1 regardless of the propagation direction of SPPs, which move from the Γ-X towards the Γ-M direction in the first Brillouin zone, and the crossing of the (−1,0) and (0,-1) SPPs along the Γ-M direction where two bright and dark modes are formed. The results are supported by the finite-difference time-domain simulations. We conclude the excitation rate is an intrinsic parameter and the enhanced excitation of the quantum dots arises entirely from field enhancement.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Remote multi-color excitation using femtosecond propagating surface plasmon polaritons in gold films

Yong Wang, Xuejun Liu, Desiré Whitmore, Wendong Xing, and Eric O. Potma
Opt. Express 19(14) 13454-13463 (2011)

References

  • View by:
  • |
  • |
  • |

  1. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
    [Crossref] [PubMed]
  2. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  3. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  4. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
    [Crossref]
  5. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
    [Crossref]
  6. G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
    [Crossref] [PubMed]
  7. I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
    [Crossref]
  8. D. Y. Lei, J. Li, and H. C. Ong, “Tunable surface plasmon mediated emission from semiconductors by using metal alloys,” Appl. Phys. Lett. 91(2), 021112 (2007).
    [Crossref]
  9. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
    [Crossref] [PubMed]
  10. Y. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93(5), 053106 (2008).
    [Crossref]
  11. L. Fornasari, F. Floris, M. Patrini, G. Canazza, G. Guizzetti, D. Comoretto, and F. Marabelli, “Fluorescence excitation enhancement by Bloch surface wave in all-polymer one-dimensional photonic structure,” Appl. Phys. Lett. 105(5), 053303 (2014).
    [Crossref]
  12. Z. L. Cao and H. C. Ong, “Determination of coupling rate of light emitter to surface plasmon polaritons supported on nanohole array,” Appl. Phys. Lett. 102(24), 241109 (2013).
    [Crossref]
  13. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2011).
  14. Z. Cao, H. Y. Lo, and H. C. Ong, “Determination of absorption and radiative decay rates of surface plasmon polaritons from nanohole array,” Opt. Lett. 37(24), 5166–5168 (2012).
    [Crossref] [PubMed]
  15. M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9(7), 427–435 (2015).
    [Crossref]
  16. C. Y. Chen, D. M. Yeh, Y. C. Lu, and C. C. Yang, “Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure,” Appl. Phys. Lett. 89(20), 203113 (2006).
    [Crossref]
  17. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  18. T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation Engineering of Optical Antennas for Maximum Field Enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
    [Crossref] [PubMed]
  19. Z. Cao, L. Zhang, C. Y. Chan, and H. C. Ong, “Interplay between absorption and radiative decay rates of surface plasmon polaritons for field enhancement in periodic arrays,” Opt. Lett. 39(3), 501–504 (2014).
    [Crossref] [PubMed]
  20. Z. L. Cao, L. Y. Yiu, Z. Q. Zhang, C. T. Chan, and H. C. Ong, “Understanding the role of surface plasmon polaritons in two-dimensional achiral nanohole arrays for polarization conversion,” https://arxiv.org/abs/1608.07027 .
  21. J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, “Wavelength dependent birefringence of surface plasmon polaritonic crystals,” Phys. Rev. B 70(23), 233403 (2004).
    [Crossref]
  22. C. Sauvan, C. Billaudeau, S. Collin, N. Bardou, F. Pardo, J.-L. Pelouard, and P. Lalanne, “Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array,” Appl. Phys. Lett. 92(1), 011125 (2008).
    [Crossref]
  23. Z. L. Cao and H. C. Ong, “Determination of the absorption and radiative decay rates of dark and bright plasmonic modes,” Opt. Express 22(13), 16112–16129 (2014).
    [Crossref] [PubMed]
  24. Z. L. Cao and H. C. Ong, “Momentum-dependent group velocity of surface plasmon polaritons in two-dimensional metallic nanohole array,” Opt. Express 24(12), 12489–12500 (2016).
    [Crossref] [PubMed]
  25. J. D. Jackson, Calssical Electrodynamics (John Wiley & Sons, 1999).
  26. C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
    [Crossref] [PubMed]
  27. C. Y. Chan, Z. L. Cao, and H. C. Ong, “Study of coupling efficiency of molecules to surface plasmon polaritons in surface-enhanced Raman scattering (SERS),” Opt. Express 21(12), 14674–14682 (2013).
    [Crossref] [PubMed]
  28. J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-Resolved Surface-Enhanced Raman Scattering on Metallic Nanostructured Plasmonic Crystals,” Nano Lett. 5(11), 2262–2267 (2005).
    [Crossref] [PubMed]
  29. G. Lozano, T. Barten, G. Grzela, and J. G. Rivas, “Directional absorption by phased arrays of plasmonic nanoantennae probed with time-reversed Fourier microscopy,” New J. Phys. 16(1), 013040 (2014).
    [Crossref]
  30. G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire Antenna Absorption Probed with Time-Reversed Fourier Microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
    [Crossref] [PubMed]

2016 (1)

2015 (2)

G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
[Crossref] [PubMed]

M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9(7), 427–435 (2015).
[Crossref]

2014 (5)

Z. Cao, L. Zhang, C. Y. Chan, and H. C. Ong, “Interplay between absorption and radiative decay rates of surface plasmon polaritons for field enhancement in periodic arrays,” Opt. Lett. 39(3), 501–504 (2014).
[Crossref] [PubMed]

L. Fornasari, F. Floris, M. Patrini, G. Canazza, G. Guizzetti, D. Comoretto, and F. Marabelli, “Fluorescence excitation enhancement by Bloch surface wave in all-polymer one-dimensional photonic structure,” Appl. Phys. Lett. 105(5), 053303 (2014).
[Crossref]

G. Lozano, T. Barten, G. Grzela, and J. G. Rivas, “Directional absorption by phased arrays of plasmonic nanoantennae probed with time-reversed Fourier microscopy,” New J. Phys. 16(1), 013040 (2014).
[Crossref]

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire Antenna Absorption Probed with Time-Reversed Fourier Microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref] [PubMed]

Z. L. Cao and H. C. Ong, “Determination of the absorption and radiative decay rates of dark and bright plasmonic modes,” Opt. Express 22(13), 16112–16129 (2014).
[Crossref] [PubMed]

2013 (2)

C. Y. Chan, Z. L. Cao, and H. C. Ong, “Study of coupling efficiency of molecules to surface plasmon polaritons in surface-enhanced Raman scattering (SERS),” Opt. Express 21(12), 14674–14682 (2013).
[Crossref] [PubMed]

Z. L. Cao and H. C. Ong, “Determination of coupling rate of light emitter to surface plasmon polaritons supported on nanohole array,” Appl. Phys. Lett. 102(24), 241109 (2013).
[Crossref]

2012 (2)

2011 (1)

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation Engineering of Optical Antennas for Maximum Field Enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

2010 (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

2009 (1)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

2008 (4)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[Crossref] [PubMed]

Y. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93(5), 053106 (2008).
[Crossref]

C. Sauvan, C. Billaudeau, S. Collin, N. Bardou, F. Pardo, J.-L. Pelouard, and P. Lalanne, “Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array,” Appl. Phys. Lett. 92(1), 011125 (2008).
[Crossref]

2007 (1)

D. Y. Lei, J. Li, and H. C. Ong, “Tunable surface plasmon mediated emission from semiconductors by using metal alloys,” Appl. Phys. Lett. 91(2), 021112 (2007).
[Crossref]

2006 (1)

C. Y. Chen, D. M. Yeh, Y. C. Lu, and C. C. Yang, “Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure,” Appl. Phys. Lett. 89(20), 203113 (2006).
[Crossref]

2005 (2)

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[Crossref] [PubMed]

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-Resolved Surface-Enhanced Raman Scattering on Metallic Nanostructured Plasmonic Crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

2004 (2)

J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, “Wavelength dependent birefringence of surface plasmon polaritonic crystals,” Phys. Rev. B 70(23), 233403 (2004).
[Crossref]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

1999 (1)

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[Crossref]

Abdelsalam, M. E.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-Resolved Surface-Enhanced Raman Scattering on Metallic Nanostructured Plasmonic Crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

Akselrod, G. M.

G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
[Crossref] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Argyropoulos, C.

G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
[Crossref] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Bardou, N.

C. Sauvan, C. Billaudeau, S. Collin, N. Bardou, F. Pardo, J.-L. Pelouard, and P. Lalanne, “Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array,” Appl. Phys. Lett. 92(1), 011125 (2008).
[Crossref]

Barten, T.

G. Lozano, T. Barten, G. Grzela, and J. G. Rivas, “Directional absorption by phased arrays of plasmonic nanoantennae probed with time-reversed Fourier microscopy,” New J. Phys. 16(1), 013040 (2014).
[Crossref]

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire Antenna Absorption Probed with Time-Reversed Fourier Microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref] [PubMed]

Bartlett, P. N.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-Resolved Surface-Enhanced Raman Scattering on Metallic Nanostructured Plasmonic Crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

Baumberg, J. J.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-Resolved Surface-Enhanced Raman Scattering on Metallic Nanostructured Plasmonic Crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

Billaudeau, C.

C. Sauvan, C. Billaudeau, S. Collin, N. Bardou, F. Pardo, J.-L. Pelouard, and P. Lalanne, “Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array,” Appl. Phys. Lett. 92(1), 011125 (2008).
[Crossref]

Bokor, J.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation Engineering of Optical Antennas for Maximum Field Enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Boroditsky, M.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[Crossref]

Cabrini, S.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation Engineering of Optical Antennas for Maximum Field Enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Canazza, G.

L. Fornasari, F. Floris, M. Patrini, G. Canazza, G. Guizzetti, D. Comoretto, and F. Marabelli, “Fluorescence excitation enhancement by Bloch surface wave in all-polymer one-dimensional photonic structure,” Appl. Phys. Lett. 105(5), 053303 (2014).
[Crossref]

Cao, Z.

Cao, Z. L.

Catchpole, K. R.

Chan, C. Y.

Chen, C. Y.

C. Y. Chen, D. M. Yeh, Y. C. Lu, and C. C. Yang, “Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure,” Appl. Phys. Lett. 89(20), 203113 (2006).
[Crossref]

Chen, Y.

Y. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93(5), 053106 (2008).
[Crossref]

Choo, H.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation Engineering of Optical Antennas for Maximum Field Enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Cintra, S.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-Resolved Surface-Enhanced Raman Scattering on Metallic Nanostructured Plasmonic Crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

Collin, S.

C. Sauvan, C. Billaudeau, S. Collin, N. Bardou, F. Pardo, J.-L. Pelouard, and P. Lalanne, “Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array,” Appl. Phys. Lett. 92(1), 011125 (2008).
[Crossref]

Comoretto, D.

L. Fornasari, F. Floris, M. Patrini, G. Canazza, G. Guizzetti, D. Comoretto, and F. Marabelli, “Fluorescence excitation enhancement by Bloch surface wave in all-polymer one-dimensional photonic structure,” Appl. Phys. Lett. 105(5), 053303 (2014).
[Crossref]

DenBaars, S. P.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[Crossref]

Dhuey, S.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation Engineering of Optical Antennas for Maximum Field Enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Elliott, J.

J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, “Wavelength dependent birefringence of surface plasmon polaritonic crystals,” Phys. Rev. B 70(23), 233403 (2004).
[Crossref]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Floris, F.

L. Fornasari, F. Floris, M. Patrini, G. Canazza, G. Guizzetti, D. Comoretto, and F. Marabelli, “Fluorescence excitation enhancement by Bloch surface wave in all-polymer one-dimensional photonic structure,” Appl. Phys. Lett. 105(5), 053303 (2014).
[Crossref]

Fornasari, L.

L. Fornasari, F. Floris, M. Patrini, G. Canazza, G. Guizzetti, D. Comoretto, and F. Marabelli, “Fluorescence excitation enhancement by Bloch surface wave in all-polymer one-dimensional photonic structure,” Appl. Phys. Lett. 105(5), 053303 (2014).
[Crossref]

Ginger, D. S.

Y. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93(5), 053106 (2008).
[Crossref]

Gontijo, I.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[Crossref]

Grzela, G.

G. Lozano, T. Barten, G. Grzela, and J. G. Rivas, “Directional absorption by phased arrays of plasmonic nanoantennae probed with time-reversed Fourier microscopy,” New J. Phys. 16(1), 013040 (2014).
[Crossref]

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire Antenna Absorption Probed with Time-Reversed Fourier Microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref] [PubMed]

Guizzetti, G.

L. Fornasari, F. Floris, M. Patrini, G. Canazza, G. Guizzetti, D. Comoretto, and F. Marabelli, “Fluorescence excitation enhancement by Bloch surface wave in all-polymer one-dimensional photonic structure,” Appl. Phys. Lett. 105(5), 053303 (2014).
[Crossref]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Hoang, T. B.

G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
[Crossref] [PubMed]

Jamshidi, A.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation Engineering of Optical Antennas for Maximum Field Enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Jen-La Plante, I.

Y. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93(5), 053106 (2008).
[Crossref]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Kelf, T. A.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-Resolved Surface-Enhanced Raman Scattering on Metallic Nanostructured Plasmonic Crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

Keller, S.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[Crossref]

Kim, D. S.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[Crossref] [PubMed]

Kim, J.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[Crossref] [PubMed]

Kim, M.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation Engineering of Optical Antennas for Maximum Field Enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Kong, J.

G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
[Crossref] [PubMed]

Lakhani, A.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation Engineering of Optical Antennas for Maximum Field Enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Lalanne, P.

C. Sauvan, C. Billaudeau, S. Collin, N. Bardou, F. Pardo, J.-L. Pelouard, and P. Lalanne, “Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array,” Appl. Phys. Lett. 92(1), 011125 (2008).
[Crossref]

Lei, D. Y.

D. Y. Lei, J. Li, and H. C. Ong, “Tunable surface plasmon mediated emission from semiconductors by using metal alloys,” Appl. Phys. Lett. 91(2), 021112 (2007).
[Crossref]

Li, J.

D. Y. Lei, J. Li, and H. C. Ong, “Tunable surface plasmon mediated emission from semiconductors by using metal alloys,” Appl. Phys. Lett. 91(2), 021112 (2007).
[Crossref]

Lienau, C.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[Crossref] [PubMed]

Lin, Y.

G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
[Crossref] [PubMed]

Ling, X.

G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
[Crossref] [PubMed]

Lo, H. Y.

Lozano, G.

G. Lozano, T. Barten, G. Grzela, and J. G. Rivas, “Directional absorption by phased arrays of plasmonic nanoantennae probed with time-reversed Fourier microscopy,” New J. Phys. 16(1), 013040 (2014).
[Crossref]

Lu, Y. C.

C. Y. Chen, D. M. Yeh, Y. C. Lu, and C. C. Yang, “Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure,” Appl. Phys. Lett. 89(20), 203113 (2006).
[Crossref]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Marabelli, F.

L. Fornasari, F. Floris, M. Patrini, G. Canazza, G. Guizzetti, D. Comoretto, and F. Marabelli, “Fluorescence excitation enhancement by Bloch surface wave in all-polymer one-dimensional photonic structure,” Appl. Phys. Lett. 105(5), 053303 (2014).
[Crossref]

Mikkelsen, M. H.

G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
[Crossref] [PubMed]

Ming, T.

G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
[Crossref] [PubMed]

Mishra, U. K.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[Crossref]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Mullen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Munechika, K.

Y. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93(5), 053106 (2008).
[Crossref]

Munro, A. M.

Y. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93(5), 053106 (2008).
[Crossref]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Ong, H. C.

Paniagua-Domínguez, R.

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire Antenna Absorption Probed with Time-Reversed Fourier Microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref] [PubMed]

Pardo, F.

C. Sauvan, C. Billaudeau, S. Collin, N. Bardou, F. Pardo, J.-L. Pelouard, and P. Lalanne, “Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array,” Appl. Phys. Lett. 92(1), 011125 (2008).
[Crossref]

Park, D. J.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[Crossref] [PubMed]

Patrini, M.

L. Fornasari, F. Floris, M. Patrini, G. Canazza, G. Guizzetti, D. Comoretto, and F. Marabelli, “Fluorescence excitation enhancement by Bloch surface wave in all-polymer one-dimensional photonic structure,” Appl. Phys. Lett. 105(5), 053303 (2014).
[Crossref]

Pelouard, J.-L.

C. Sauvan, C. Billaudeau, S. Collin, N. Bardou, F. Pardo, J.-L. Pelouard, and P. Lalanne, “Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array,” Appl. Phys. Lett. 92(1), 011125 (2008).
[Crossref]

Pelton, M.

M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9(7), 427–435 (2015).
[Crossref]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[Crossref] [PubMed]

Rivas, J. G.

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire Antenna Absorption Probed with Time-Reversed Fourier Microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref] [PubMed]

G. Lozano, T. Barten, G. Grzela, and J. G. Rivas, “Directional absorption by phased arrays of plasmonic nanoantennae probed with time-reversed Fourier microscopy,” New J. Phys. 16(1), 013040 (2014).
[Crossref]

Ropers, C.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[Crossref] [PubMed]

Russell, A. E.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-Resolved Surface-Enhanced Raman Scattering on Metallic Nanostructured Plasmonic Crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

Sánchez-Gil, J. A.

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire Antenna Absorption Probed with Time-Reversed Fourier Microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref] [PubMed]

Sauvan, C.

C. Sauvan, C. Billaudeau, S. Collin, N. Bardou, F. Pardo, J.-L. Pelouard, and P. Lalanne, “Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array,” Appl. Phys. Lett. 92(1), 011125 (2008).
[Crossref]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Schuck, P. J.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation Engineering of Optical Antennas for Maximum Field Enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Schwartzberg, A. M.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation Engineering of Optical Antennas for Maximum Field Enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Seok, T. J.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation Engineering of Optical Antennas for Maximum Field Enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Skrabalak, S. E.

Y. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93(5), 053106 (2008).
[Crossref]

Smith, D. R.

G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
[Crossref] [PubMed]

Smolyaninov, I. I.

J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, “Wavelength dependent birefringence of surface plasmon polaritonic crystals,” Phys. Rev. B 70(23), 233403 (2004).
[Crossref]

Steinmeyer, G.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[Crossref] [PubMed]

Stibenz, G.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[Crossref] [PubMed]

Sugawara, Y.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-Resolved Surface-Enhanced Raman Scattering on Metallic Nanostructured Plasmonic Crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

van Dam, D.

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire Antenna Absorption Probed with Time-Reversed Fourier Microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Wu, M. C.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation Engineering of Optical Antennas for Maximum Field Enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

Xia, Y.

Y. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93(5), 053106 (2008).
[Crossref]

Yablonovitch, E.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation Engineering of Optical Antennas for Maximum Field Enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[Crossref]

Yang, C. C.

C. Y. Chen, D. M. Yeh, Y. C. Lu, and C. C. Yang, “Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure,” Appl. Phys. Lett. 89(20), 203113 (2006).
[Crossref]

Yeh, D. M.

C. Y. Chen, D. M. Yeh, Y. C. Lu, and C. C. Yang, “Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure,” Appl. Phys. Lett. 89(20), 203113 (2006).
[Crossref]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, “Wavelength dependent birefringence of surface plasmon polaritonic crystals,” Phys. Rev. B 70(23), 233403 (2004).
[Crossref]

Zhang, L.

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Zheludev, N. I.

J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, “Wavelength dependent birefringence of surface plasmon polaritonic crystals,” Phys. Rev. B 70(23), 233403 (2004).
[Crossref]

Appl. Phys. Lett. (6)

D. Y. Lei, J. Li, and H. C. Ong, “Tunable surface plasmon mediated emission from semiconductors by using metal alloys,” Appl. Phys. Lett. 91(2), 021112 (2007).
[Crossref]

Y. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93(5), 053106 (2008).
[Crossref]

L. Fornasari, F. Floris, M. Patrini, G. Canazza, G. Guizzetti, D. Comoretto, and F. Marabelli, “Fluorescence excitation enhancement by Bloch surface wave in all-polymer one-dimensional photonic structure,” Appl. Phys. Lett. 105(5), 053303 (2014).
[Crossref]

Z. L. Cao and H. C. Ong, “Determination of coupling rate of light emitter to surface plasmon polaritons supported on nanohole array,” Appl. Phys. Lett. 102(24), 241109 (2013).
[Crossref]

C. Y. Chen, D. M. Yeh, Y. C. Lu, and C. C. Yang, “Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure,” Appl. Phys. Lett. 89(20), 203113 (2006).
[Crossref]

C. Sauvan, C. Billaudeau, S. Collin, N. Bardou, F. Pardo, J.-L. Pelouard, and P. Lalanne, “Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array,” Appl. Phys. Lett. 92(1), 011125 (2008).
[Crossref]

Nano Lett. (4)

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation Engineering of Optical Antennas for Maximum Field Enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[Crossref] [PubMed]

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-Resolved Surface-Enhanced Raman Scattering on Metallic Nanostructured Plasmonic Crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire Antenna Absorption Probed with Time-Reversed Fourier Microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref] [PubMed]

G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
[Crossref] [PubMed]

Nat. Mater. (3)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Nat. Photonics (3)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9(7), 427–435 (2015).
[Crossref]

New J. Phys. (1)

G. Lozano, T. Barten, G. Grzela, and J. G. Rivas, “Directional absorption by phased arrays of plasmonic nanoantennae probed with time-reversed Fourier microscopy,” New J. Phys. 16(1), 013040 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. B (2)

J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, “Wavelength dependent birefringence of surface plasmon polaritonic crystals,” Phys. Rev. B 70(23), 233403 (2004).
[Crossref]

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[Crossref]

Phys. Rev. Lett. (1)

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[Crossref] [PubMed]

Other (4)

Z. L. Cao, L. Y. Yiu, Z. Q. Zhang, C. T. Chan, and H. C. Ong, “Understanding the role of surface plasmon polaritons in two-dimensional achiral nanohole arrays for polarization conversion,” https://arxiv.org/abs/1608.07027 .

J. D. Jackson, Calssical Electrodynamics (John Wiley & Sons, 1999).

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) The schematic of surface plasmon mediated emission fluorescence. The emitters contain a ground state (S0) and two excited states (S1 and S2). Excitation occurs from S0 to S2 by light source at λex with power Po whereas emission arises from the decay from S1 to S0 at λem. Both incoming and outgoing SPPs, SPPsin and SPPsout, can take part in the process. They have their respective absorption and radiative decay rates, Γabs and Γrad. Direct excitation has efficiency η and direction emission has nonradiative and radiative emission rates Γnr and Γr. (b) The schematic for the best coupling condition. Inset: the SEM image of the array. (c) The absorption and emission spectra of the CdSeTe quantum dots.
Fig. 2
Fig. 2 (a) The schematic of the angle- and polarization resolved reflectivity and photoluminescence spectroscopy. (b) The p-polarized specular reflectivity mapping of the array taken at φ = 0°. The dash line, obtained from the phase matching equation, indicates the excitation of (−1,0) SPPs. (c) The reflectivity spectrum (dot) extracted from θ = 18.5° and φ = 0° together with the best fit (solid line) for parametric determination.
Fig. 3
Fig. 3 The detection scans of the array taken at φ = 0° and θ = (a) 0° without the incoming 633 nm SPPs and (b) 18.5° with the incoming SPPs. (c) The incident scan of the array taken at φ = 0° and a fixed detection angle = 0°. The band at 690 nm is from the direct emission. (d) The line incident scan taken from the direct emission at 690 nm.
Fig. 4
Fig. 4 The (a) p-polarized (Rpp) and (b) orthogonal (Rps) reflectivity spectra with the nondegenerate incoming SPPs located at 633 nm taken from φ = 5° – 35°. The best fits are indicated by the dash lines for parametric determination. The spectra are vertically shifted for visualization. (c) The line incident scans taken from the direct emission at 690 nm at detection angle = 0° and the corresponding φ.
Fig. 5
Fig. 5 (a) The comparison between the fitted α and the values deduced from Eq. (5). (b) The plot of Γex with φ, including the bright and dark modes.
Fig. 6
Fig. 6 The (a) Rpp and (b) Rss reflectivity spectra for the dark and bright modes taken at φ = 45° together with the best fits (dash lines). (c) The line incident scans taken from the direct emission at 690 nm for the dark and bright modes.
Fig. 7
Fig. 7 (a) The FDTD simulated p-polarized reflectivity spectra with and without the dielectric layer calculated at θ = 18.5° and φ = 0° together with the experimental spectrum. Inset: the unit cell for the FDTD simulation. (b) The electric field intensity spectra calculated at 633 nm for φ = 0° - 45°. (c) The comparison between the direct emission power ratio P d w / P d w/o (solid squares), the calculated electric field intensity enhancement | E SPP | 2 / | E w/o | 2 (open circles), and cos2α (open triangles).

Tables (1)

Tables Icon

Table 1 Parametric determination of nondegenerate and degenerate SPP modes for different φ.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

2π λ ex ε a ε m ε m + ε a = ( 2π λ ex sinθcosφ+ 2mπ P ) 2 + ( 2π λ ex sinθsinφ+ 2nπ P ) 2
d[ EM ] dt = Γ ex | a | 2 [ EM ]( Γ r + Γ nr + BZ Γ c ( k SPP out ) d k SPP out )
Γ ex =η( P d w P d w/o ) P o | a | 2 .
Γ ex =η( P d w P d w/o ) Γ tot in 2 4 κ 2 Γ rad in .
tanα=tanβcosθ.
[ R pp R ps ]=[ | r p + κ ' 2 cos 2 α Γ rad in i( ω ω ex )+ Γ tot in /2 | 2 η | κ ' 2 cosαsinα Γ rad in i( ω ω ex )+ Γ tot in /2 | 2 ].

Metrics