Abstract

The shortwave infrared (SWIR) bands on the existing Earth Observing missions like MODIS have been designed to meet land and atmospheric science requirements. The future geostationary and polar-orbiting ocean color missions, however, require highly sensitive SWIR bands (> 1550nm) to allow for a precise removal of aerosol contributions. This will allow for reasonable retrievals of the remote sensing reflectance (Rrs) using standard NASA atmospheric corrections over turbid coastal waters. Design, fabrication, and maintaining high-performance SWIR bands at very low signal levels bear significant costs on dedicated ocean color missions. This study aims at providing a full analysis of the utility of alternative SWIR bands within the 1600nm atmospheric window if the bands within the 2200nm window were to be excluded due to engineering/cost constraints. Following a series of sensitivity analyses for various spectral band configurations as a function of water vapor amount, we chose spectral bands centered at 1565 and 1675nm as suitable alternative bands within the 1600nm window for a future geostationary imager. The sensitivity of this band combination to different aerosol conditions, calibration uncertainties, and extreme water turbidity were studied and compared with that of all band combinations available on existing polar-orbiting missions. The combination of the alternative channels was shown to be as sensitive to test aerosol models as existing near-infrared (NIR) band combinations (e.g., 748 and 869nm) over clear open ocean waters. It was further demonstrated that while in extremely turbid waters the 1565/1675 band pair yields Rrs retrievals as good as those derived from all other existing SWIR band pairs (> 1550nm), their total calibration uncertainties must be < 1% to meet current science requirements for ocean color retrievals (i.e., Δ Rrs (443) < 5%). We further show that the aerosol removal using the NIR and SWIR bands (available on the existing polar-orbiting missions) can be very sensitive to calibration uncertainties. This requires the need for monitoring the calibration of these bands to ensure consistent multi-mission ocean color products in coastal/inland waters.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improving atmospheric correction for highly productive coastal waters using the short wave infrared retrieval algorithm with water-leaving reflectance constraints at 412 nm

Min Oo, Marco Vargas, Alex Gilerson, Barry Gross, Fred Moshary, and Sam Ahmed
Appl. Opt. 47(21) 3846-3859 (2008)

NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors

Menghua Wang, Wei Shi, Lide Jiang, and Kenneth Voss
Opt. Express 24(18) 20437-20453 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. R. Gordon, “Radiative transfer: a technique for simulating the ocean in satellite remote sensing calculations,” Appl. Opt. 15(8), 1974–1979 (1976).
  2. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
  3. H. R. Gordon, “Removal of atmospheric effects from satellite imagery of the oceans,” Appl. Opt. 17(10), 1631–1636 (1978).
  4. C. D. Mobley, J. Werdell, B. Franz, Z. Ahmad, and S. Bailey, “Atmospheric correction for satellite ocean color radiometry,” Tech Rep. (2016).
  5. M. Wang, "Atmospheric correction for remotely-sensed ocean-colour products," Reports and Monographs of the International Ocean-Colour Coordinating Group (IOCCG) (2010).
  6. H. R. Gordon and D. J. Castaño, “Coastal Zone Color Scanner atmospheric correction algorithm: multiple scattering effects,” Appl. Opt. 26(11), 2111–2122 (1987).
  7. H. R. Gordon, J. W. Brown, and R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 coastal zone color scanner,” Appl. Opt. 27(5), 862–871 (1988).
  8. H. R. Gordon and M. Wang, “Surface-roughness considerations for atmospheric correction of ocean color sensors. I: The Rayleigh-scattering component,” Appl. Opt. 31(21), 4247–4260 (1992).
  9. M. Wang, “Atmospheric correction of ocean color sensors: computing atmospheric diffuse transmittance,” Appl. Opt. 38, 451–455 (1999).
  10. H. Yang and H. R. Gordon, “Remote sensing of ocean color: assessment of water-leaving radiance bidirectional effects on atmospheric diffuse transmittance,” Appl. Opt. 36(30), 7887–7897 (1997).
  11. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic Press, Inc., 1994).
  12. D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39(21), 3582–3591 (2000).
  13. A. R. A. Stumpf, R. P. Gould, Jr., P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters,” (National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD, Patt, F.S., et al., 2003: Algorithm Updates for the Fourth SeaWiFS Data Reprocessing, 2004).
  14. S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express 18(7), 7521–7527 (2010).
  15. K. G. Ruddick, F. Ovidio, and M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39(6), 897–912 (2000).
  16. B.-C. Gao, M. J. Montes, Z. Ahmad, and C. O. Davis, “Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space,” Appl. Opt. 39(6), 887–896 (2000).
  17. M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46(9), 1535–1547 (2007).
  18. W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ. 113(8), 1587–1597 (2009).
  19. M. Wang and W. Shi, “The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing,” Opt. Express 15(24), 15722–15733 (2007).
  20. P. J. Werdell, B. A. Franz, and S. W. Bailey, “Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay,” Remote Sens. Environ. 114(10), 2238–2247 (2010).
  21. M. Wang and W. Shi, “Sensor noise effects of the SWIR bands on MODIS-derived ocean color products,” IEEE Trans. Geosci. Remote Sens. 50(9), 3280–3292 (2012).
  22. Q. Vanhellemont and K. Ruddick, “Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8,” Remote Sens. Environ. 161, 89–106 (2015).
  23. B. A. Franz, S. W. Bailey, N. Kuring, and P. J. Werdell, “Ocean color measurements with the Operational Land Imager on Landsat-8: implementation and evaluation in SeaDAS,” J. Appl. Remote Sens. 9(1), 096070 (2015).
  24. N. Pahlevan, J. R. Schott, B. A. Franz, G. Zibordi, B. Markham, S. Bailey, C. B. Schaaf, M. Ondrusek, S. Greb, and C. M. Strait, “Landsat 8 remote sensing reflectance (R rs) products: Evaluations, intercomparisons, and enhancements,” Remote Sens. Environ. 190, 289–301 (2017).
  25. G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A Network for the Validation of Ocean Color Primary Products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
  26. C. Del Castillo, S. Platnick, and D. Antoine, “Pre-Aerosol, Clouds, and ocean Ecosystem (PACE) Mission Science Definition Team Report,” (NASA Goddard Space Flight Center, 2012).
  27. J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).
  28. C. Hu, L. Feng, Z. Lee, C. O. Davis, A. Mannino, C. R. McClain, and B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51(25), 6045–6062 (2012).
  29. M. Wang, W. Shi, L. Jiang, and K. Voss, “NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors,” Opt. Express 24(18), 20437–20453 (2016).
  30. R. Showstack, “Sentinel satellites initiate new era in earth observation,” Eos (Wash. D.C.) 95(26), 239–240 (2014).
  31. M. Wang and S. W. Bailey, “Correction of Sun glint Contamination on the SeaWiFS Ocean and Atmosphere Products,” Appl. Opt. 40(27), 4790–4798 (2001).
  32. Z. Ahmad, B. A. Franz, C. R. McClain, E. J. Kwiatkowska, J. Werdell, E. P. Shettle, and B. N. Holben, “New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans,” Appl. Opt. 49(29), 5545–5560 (2010).
  33. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. Atmos. 102(D14), 17081–17106 (1997).
  34. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).
  35. O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59(3), 590–608 (2002).
  36. M. Wang and H. R. Gordon, “Calibration of ocean color scanners: how much error is acceptable in the near infrared?” Remote Sens. Environ. 82(2-3), 497–504 (2002).
  37. B. A. Franz, S. W. Bailey, P. J. Werdell, and C. R. McClain, “Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry,” Appl. Opt. 46(22), 5068–5082 (2007).
  38. W. L. Barnes, T. S. Pagano, and V. V. Salomonson, “Prelaunch characteristics of the moderate resolution imaging spectroradiometer (MODIS) on EOS-AM1,” IEEE Trans. Geosci. Remote Sens. 36(4), 1088–1100 (1998).
  39. E. Knaeps, K. Ruddick, D. Doxaran, A. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).
  40. P. D. Kunte, “Sediment concentration and bed form structures of Gulf of Cambay from remote sensing,” Int. J. Remote Sens. 29(8), 2169–2182 (2008).
  41. Z. Lee, S. Shang, G. Lin, J. Chen, and D. Doxaran, “On the modeling of hyperspectral remote-sensing reflectance of high-sediment-load waters in the visible to shortwave-infrared domain,” Appl. Opt. 55(7), 1738–1750 (2016).

2017 (1)

N. Pahlevan, J. R. Schott, B. A. Franz, G. Zibordi, B. Markham, S. Bailey, C. B. Schaaf, M. Ondrusek, S. Greb, and C. M. Strait, “Landsat 8 remote sensing reflectance (R rs) products: Evaluations, intercomparisons, and enhancements,” Remote Sens. Environ. 190, 289–301 (2017).

2016 (2)

2015 (3)

Q. Vanhellemont and K. Ruddick, “Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8,” Remote Sens. Environ. 161, 89–106 (2015).

B. A. Franz, S. W. Bailey, N. Kuring, and P. J. Werdell, “Ocean color measurements with the Operational Land Imager on Landsat-8: implementation and evaluation in SeaDAS,” J. Appl. Remote Sens. 9(1), 096070 (2015).

E. Knaeps, K. Ruddick, D. Doxaran, A. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).

2014 (1)

R. Showstack, “Sentinel satellites initiate new era in earth observation,” Eos (Wash. D.C.) 95(26), 239–240 (2014).

2012 (3)

M. Wang and W. Shi, “Sensor noise effects of the SWIR bands on MODIS-derived ocean color products,” IEEE Trans. Geosci. Remote Sens. 50(9), 3280–3292 (2012).

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

C. Hu, L. Feng, Z. Lee, C. O. Davis, A. Mannino, C. R. McClain, and B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51(25), 6045–6062 (2012).

2010 (3)

2009 (2)

W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ. 113(8), 1587–1597 (2009).

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A Network for the Validation of Ocean Color Primary Products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).

2008 (1)

P. D. Kunte, “Sediment concentration and bed form structures of Gulf of Cambay from remote sensing,” Int. J. Remote Sens. 29(8), 2169–2182 (2008).

2007 (3)

2002 (2)

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59(3), 590–608 (2002).

M. Wang and H. R. Gordon, “Calibration of ocean color scanners: how much error is acceptable in the near infrared?” Remote Sens. Environ. 82(2-3), 497–504 (2002).

2001 (1)

2000 (3)

1999 (1)

1998 (2)

W. L. Barnes, T. S. Pagano, and V. V. Salomonson, “Prelaunch characteristics of the moderate resolution imaging spectroradiometer (MODIS) on EOS-AM1,” IEEE Trans. Geosci. Remote Sens. 36(4), 1088–1100 (1998).

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).

1997 (2)

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. Atmos. 102(D14), 17081–17106 (1997).

H. Yang and H. R. Gordon, “Remote sensing of ocean color: assessment of water-leaving radiance bidirectional effects on atmospheric diffuse transmittance,” Appl. Opt. 36(30), 7887–7897 (1997).

1994 (1)

1992 (1)

1988 (1)

1987 (1)

1978 (1)

1976 (1)

Ahmad, Z.

Al-Saadi, L. T.

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

Bailey, S.

N. Pahlevan, J. R. Schott, B. A. Franz, G. Zibordi, B. Markham, S. Bailey, C. B. Schaaf, M. Ondrusek, S. Greb, and C. M. Strait, “Landsat 8 remote sensing reflectance (R rs) products: Evaluations, intercomparisons, and enhancements,” Remote Sens. Environ. 190, 289–301 (2017).

Bailey, S. W.

B. A. Franz, S. W. Bailey, N. Kuring, and P. J. Werdell, “Ocean color measurements with the Operational Land Imager on Landsat-8: implementation and evaluation in SeaDAS,” J. Appl. Remote Sens. 9(1), 096070 (2015).

P. J. Werdell, B. A. Franz, and S. W. Bailey, “Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay,” Remote Sens. Environ. 114(10), 2238–2247 (2010).

S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express 18(7), 7521–7527 (2010).

B. A. Franz, S. W. Bailey, P. J. Werdell, and C. R. McClain, “Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry,” Appl. Opt. 46(22), 5068–5082 (2007).

M. Wang and S. W. Bailey, “Correction of Sun glint Contamination on the SeaWiFS Ocean and Atmosphere Products,” Appl. Opt. 40(27), 4790–4798 (2001).

Barnes, W. L.

W. L. Barnes, T. S. Pagano, and V. V. Salomonson, “Prelaunch characteristics of the moderate resolution imaging spectroradiometer (MODIS) on EOS-AM1,” IEEE Trans. Geosci. Remote Sens. 36(4), 1088–1100 (1998).

Berthon, J.-F.

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A Network for the Validation of Ocean Color Primary Products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).

Brown, J. W.

Buis, J. P.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).

Castaño, D. J.

Chance, J.

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

Chavez, K.

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

Chen, J.

Chin, F.

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

Coble, M.

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

D’Alimonte, D.

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A Network for the Validation of Ocean Color Primary Products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).

Davis, C. O.

Davis, P.

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

DiGiacomo, C.

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

Dogliotti, A.

E. Knaeps, K. Ruddick, D. Doxaran, A. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).

Doxaran, D.

Z. Lee, S. Shang, G. Lin, J. Chen, and D. Doxaran, “On the modeling of hyperspectral remote-sensing reflectance of high-sediment-load waters in the visible to shortwave-infrared domain,” Appl. Opt. 55(7), 1738–1750 (2016).

E. Knaeps, K. Ruddick, D. Doxaran, A. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).

Dubovik, O.

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59(3), 590–608 (2002).

Eck, T. F.

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59(3), 590–608 (2002).

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).

Edwards, P. M.

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

Eldering, D.

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

Evans, R. H.

Fabbri, B. E.

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A Network for the Validation of Ocean Color Primary Products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).

Feng, H.

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A Network for the Validation of Ocean Color Primary Products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).

Feng, L.

Fishman, J. I.

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

Franz, B. A.

N. Pahlevan, J. R. Schott, B. A. Franz, G. Zibordi, B. Markham, S. Bailey, C. B. Schaaf, M. Ondrusek, S. Greb, and C. M. Strait, “Landsat 8 remote sensing reflectance (R rs) products: Evaluations, intercomparisons, and enhancements,” Remote Sens. Environ. 190, 289–301 (2017).

B. A. Franz, S. W. Bailey, N. Kuring, and P. J. Werdell, “Ocean color measurements with the Operational Land Imager on Landsat-8: implementation and evaluation in SeaDAS,” J. Appl. Remote Sens. 9(1), 096070 (2015).

C. Hu, L. Feng, Z. Lee, C. O. Davis, A. Mannino, C. R. McClain, and B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51(25), 6045–6062 (2012).

S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express 18(7), 7521–7527 (2010).

Z. Ahmad, B. A. Franz, C. R. McClain, E. J. Kwiatkowska, J. Werdell, E. P. Shettle, and B. N. Holben, “New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans,” Appl. Opt. 49(29), 5545–5560 (2010).

P. J. Werdell, B. A. Franz, and S. W. Bailey, “Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay,” Remote Sens. Environ. 114(10), 2238–2247 (2010).

B. A. Franz, S. W. Bailey, P. J. Werdell, and C. R. McClain, “Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry,” Appl. Opt. 46(22), 5068–5082 (2007).

Gao, B.-C.

Giles, D.

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A Network for the Validation of Ocean Color Primary Products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).

Goes, A.

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

Gordon, H. R.

M. Wang and H. R. Gordon, “Calibration of ocean color scanners: how much error is acceptable in the near infrared?” Remote Sens. Environ. 82(2-3), 497–504 (2002).

H. Yang and H. R. Gordon, “Remote sensing of ocean color: assessment of water-leaving radiance bidirectional effects on atmospheric diffuse transmittance,” Appl. Opt. 36(30), 7887–7897 (1997).

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. Atmos. 102(D14), 17081–17106 (1997).

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).

H. R. Gordon and M. Wang, “Surface-roughness considerations for atmospheric correction of ocean color sensors. I: The Rayleigh-scattering component,” Appl. Opt. 31(21), 4247–4260 (1992).

H. R. Gordon, J. W. Brown, and R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 coastal zone color scanner,” Appl. Opt. 27(5), 862–871 (1988).

H. R. Gordon and D. J. Castaño, “Coastal Zone Color Scanner atmospheric correction algorithm: multiple scattering effects,” Appl. Opt. 26(11), 2111–2122 (1987).

H. R. Gordon, “Removal of atmospheric effects from satellite imagery of the oceans,” Appl. Opt. 17(10), 1631–1636 (1978).

H. R. Gordon, “Radiative transfer: a technique for simulating the ocean in satellite remote sensing calculations,” Appl. Opt. 15(8), 1974–1979 (1976).

Greb, S.

N. Pahlevan, J. R. Schott, B. A. Franz, G. Zibordi, B. Markham, S. Bailey, C. B. Schaaf, M. Ondrusek, S. Greb, and C. M. Strait, “Landsat 8 remote sensing reflectance (R rs) products: Evaluations, intercomparisons, and enhancements,” Remote Sens. Environ. 190, 289–301 (2017).

Herman, J.

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

Holben, B.

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A Network for the Validation of Ocean Color Primary Products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59(3), 590–608 (2002).

Holben, B. N.

Z. Ahmad, B. A. Franz, C. R. McClain, E. J. Kwiatkowska, J. Werdell, E. P. Shettle, and B. N. Holben, “New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans,” Appl. Opt. 49(29), 5545–5560 (2010).

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).

Hu, C.

Hu, J.

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

Jacob, C.

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

Jankowiak, I.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).

Jiang, L.

Jordan, D. J.

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

Kaitala, S.

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A Network for the Validation of Ocean Color Primary Products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).

Kaufman, Y. J.

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59(3), 590–608 (2002).

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).

Kawa, C.

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

Key, S. R.

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

King, M. D.

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59(3), 590–608 (2002).

Knaeps, E.

E. Knaeps, K. Ruddick, D. Doxaran, A. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).

Kunte, P. D.

P. D. Kunte, “Sediment concentration and bed form structures of Gulf of Cambay from remote sensing,” Int. J. Remote Sens. 29(8), 2169–2182 (2008).

Kuring, N.

B. A. Franz, S. W. Bailey, N. Kuring, and P. J. Werdell, “Ocean color measurements with the Operational Land Imager on Landsat-8: implementation and evaluation in SeaDAS,” J. Appl. Remote Sens. 9(1), 096070 (2015).

Kwiatkowska, E. J.

Lavenu, F.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).

Lee, Z.

Lin, G.

Liu, R.

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

Lohrenz, X.

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

Mannino, A.

Mannino, S.

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

Maritorena, S.

Markham, B.

N. Pahlevan, J. R. Schott, B. A. Franz, G. Zibordi, B. Markham, S. Bailey, C. B. Schaaf, M. Ondrusek, S. Greb, and C. M. Strait, “Landsat 8 remote sensing reflectance (R rs) products: Evaluations, intercomparisons, and enhancements,” Remote Sens. Environ. 190, 289–301 (2017).

McClain, C. R.

Mélin, F.

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A Network for the Validation of Ocean Color Primary Products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).

Montes, M. J.

Nakajima, T.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).

Natraj, A.

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

Nechad, B.

E. Knaeps, K. Ruddick, D. Doxaran, A. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).

Neil, V.

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

Neu, D.

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

Newchurch, J.

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

Ondrusek, M.

N. Pahlevan, J. R. Schott, B. A. Franz, G. Zibordi, B. Markham, S. Bailey, C. B. Schaaf, M. Ondrusek, S. Greb, and C. M. Strait, “Landsat 8 remote sensing reflectance (R rs) products: Evaluations, intercomparisons, and enhancements,” Remote Sens. Environ. 190, 289–301 (2017).

Ovidio, F.

Pagano, T. S.

W. L. Barnes, T. S. Pagano, and V. V. Salomonson, “Prelaunch characteristics of the moderate resolution imaging spectroradiometer (MODIS) on EOS-AM1,” IEEE Trans. Geosci. Remote Sens. 36(4), 1088–1100 (1998).

Pahlevan, N.

N. Pahlevan, J. R. Schott, B. A. Franz, G. Zibordi, B. Markham, S. Bailey, C. B. Schaaf, M. Ondrusek, S. Greb, and C. M. Strait, “Landsat 8 remote sensing reflectance (R rs) products: Evaluations, intercomparisons, and enhancements,” Remote Sens. Environ. 190, 289–301 (2017).

Pickering, M.

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

Raymaekers, D.

E. Knaeps, K. Ruddick, D. Doxaran, A. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).

Reagan, J. A.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).

Rijkeboer, M.

Robinson, W.

Ruddick, K.

E. Knaeps, K. Ruddick, D. Doxaran, A. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).

Q. Vanhellemont and K. Ruddick, “Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8,” Remote Sens. Environ. 161, 89–106 (2015).

Ruddick, K. G.

Salisbury, K.

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

Salomonson, V. V.

W. L. Barnes, T. S. Pagano, and V. V. Salomonson, “Prelaunch characteristics of the moderate resolution imaging spectroradiometer (MODIS) on EOS-AM1,” IEEE Trans. Geosci. Remote Sens. 36(4), 1088–1100 (1998).

Schaaf, C. B.

N. Pahlevan, J. R. Schott, B. A. Franz, G. Zibordi, B. Markham, S. Bailey, C. B. Schaaf, M. Ondrusek, S. Greb, and C. M. Strait, “Landsat 8 remote sensing reflectance (R rs) products: Evaluations, intercomparisons, and enhancements,” Remote Sens. Environ. 190, 289–301 (2017).

Schott, J. R.

N. Pahlevan, J. R. Schott, B. A. Franz, G. Zibordi, B. Markham, S. Bailey, C. B. Schaaf, M. Ondrusek, S. Greb, and C. M. Strait, “Landsat 8 remote sensing reflectance (R rs) products: Evaluations, intercomparisons, and enhancements,” Remote Sens. Environ. 190, 289–301 (2017).

Schuster, G.

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A Network for the Validation of Ocean Color Primary Products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).

Seppälä, J.

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A Network for the Validation of Ocean Color Primary Products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).

Setzer, A.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).

Shang, S.

Shettle, E. P.

Shi, W.

M. Wang, W. Shi, L. Jiang, and K. Voss, “NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors,” Opt. Express 24(18), 20437–20453 (2016).

M. Wang and W. Shi, “Sensor noise effects of the SWIR bands on MODIS-derived ocean color products,” IEEE Trans. Geosci. Remote Sens. 50(9), 3280–3292 (2012).

W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ. 113(8), 1587–1597 (2009).

M. Wang and W. Shi, “The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing,” Opt. Express 15(24), 15722–15733 (2007).

Showstack, R.

R. Showstack, “Sentinel satellites initiate new era in earth observation,” Eos (Wash. D.C.) 95(26), 239–240 (2014).

Siegel, D. A.

Slutsker, I.

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A Network for the Validation of Ocean Color Primary Products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59(3), 590–608 (2002).

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).

Smirnov, A.

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59(3), 590–608 (2002).

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).

Sosik, J.

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

Sterckx, S.

E. Knaeps, K. Ruddick, D. Doxaran, A. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).

Strait, C. M.

N. Pahlevan, J. R. Schott, B. A. Franz, G. Zibordi, B. Markham, S. Bailey, C. B. Schaaf, M. Ondrusek, S. Greb, and C. M. Strait, “Landsat 8 remote sensing reflectance (R rs) products: Evaluations, intercomparisons, and enhancements,” Remote Sens. Environ. 190, 289–301 (2017).

Subramaniam, H.

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

Tanré, D.

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59(3), 590–608 (2002).

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).

Tzortziou, A.

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

Vandemark, D.

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A Network for the Validation of Ocean Color Primary Products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).

Vanhellemont, Q.

Q. Vanhellemont and K. Ruddick, “Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8,” Remote Sens. Environ. 161, 89–106 (2015).

Vermote, E.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).

Voss, K.

Wang, J.

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

Wang, M.

M. Wang, W. Shi, L. Jiang, and K. Voss, “NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors,” Opt. Express 24(18), 20437–20453 (2016).

M. Wang and W. Shi, “Sensor noise effects of the SWIR bands on MODIS-derived ocean color products,” IEEE Trans. Geosci. Remote Sens. 50(9), 3280–3292 (2012).

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ. 113(8), 1587–1597 (2009).

M. Wang and W. Shi, “The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing,” Opt. Express 15(24), 15722–15733 (2007).

M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46(9), 1535–1547 (2007).

M. Wang and H. R. Gordon, “Calibration of ocean color scanners: how much error is acceptable in the near infrared?” Remote Sens. Environ. 82(2-3), 497–504 (2002).

M. Wang and S. W. Bailey, “Correction of Sun glint Contamination on the SeaWiFS Ocean and Atmosphere Products,” Appl. Opt. 40(27), 4790–4798 (2001).

D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39(21), 3582–3591 (2000).

M. Wang, “Atmospheric correction of ocean color sensors: computing atmospheric diffuse transmittance,” Appl. Opt. 38, 451–455 (1999).

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).

H. R. Gordon and M. Wang, “Surface-roughness considerations for atmospheric correction of ocean color sensors. I: The Rayleigh-scattering component,” Appl. Opt. 31(21), 4247–4260 (1992).

Werdell, J.

Werdell, P. J.

B. A. Franz, S. W. Bailey, N. Kuring, and P. J. Werdell, “Ocean color measurements with the Operational Land Imager on Landsat-8: implementation and evaluation in SeaDAS,” J. Appl. Remote Sens. 9(1), 096070 (2015).

P. J. Werdell, B. A. Franz, and S. W. Bailey, “Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay,” Remote Sens. Environ. 114(10), 2238–2247 (2010).

S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express 18(7), 7521–7527 (2010).

B. A. Franz, S. W. Bailey, P. J. Werdell, and C. R. McClain, “Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry,” Appl. Opt. 46(22), 5068–5082 (2007).

Yang, H.

Zibordi, G.

N. Pahlevan, J. R. Schott, B. A. Franz, G. Zibordi, B. Markham, S. Bailey, C. B. Schaaf, M. Ondrusek, S. Greb, and C. M. Strait, “Landsat 8 remote sensing reflectance (R rs) products: Evaluations, intercomparisons, and enhancements,” Remote Sens. Environ. 190, 289–301 (2017).

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A Network for the Validation of Ocean Color Primary Products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).

Appl. Opt. (17)

H. R. Gordon, “Radiative transfer: a technique for simulating the ocean in satellite remote sensing calculations,” Appl. Opt. 15(8), 1974–1979 (1976).

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).

H. R. Gordon, “Removal of atmospheric effects from satellite imagery of the oceans,” Appl. Opt. 17(10), 1631–1636 (1978).

H. R. Gordon and D. J. Castaño, “Coastal Zone Color Scanner atmospheric correction algorithm: multiple scattering effects,” Appl. Opt. 26(11), 2111–2122 (1987).

H. R. Gordon, J. W. Brown, and R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 coastal zone color scanner,” Appl. Opt. 27(5), 862–871 (1988).

H. R. Gordon and M. Wang, “Surface-roughness considerations for atmospheric correction of ocean color sensors. I: The Rayleigh-scattering component,” Appl. Opt. 31(21), 4247–4260 (1992).

M. Wang, “Atmospheric correction of ocean color sensors: computing atmospheric diffuse transmittance,” Appl. Opt. 38, 451–455 (1999).

H. Yang and H. R. Gordon, “Remote sensing of ocean color: assessment of water-leaving radiance bidirectional effects on atmospheric diffuse transmittance,” Appl. Opt. 36(30), 7887–7897 (1997).

K. G. Ruddick, F. Ovidio, and M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39(6), 897–912 (2000).

B.-C. Gao, M. J. Montes, Z. Ahmad, and C. O. Davis, “Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space,” Appl. Opt. 39(6), 887–896 (2000).

M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46(9), 1535–1547 (2007).

D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39(21), 3582–3591 (2000).

M. Wang and S. W. Bailey, “Correction of Sun glint Contamination on the SeaWiFS Ocean and Atmosphere Products,” Appl. Opt. 40(27), 4790–4798 (2001).

Z. Ahmad, B. A. Franz, C. R. McClain, E. J. Kwiatkowska, J. Werdell, E. P. Shettle, and B. N. Holben, “New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans,” Appl. Opt. 49(29), 5545–5560 (2010).

C. Hu, L. Feng, Z. Lee, C. O. Davis, A. Mannino, C. R. McClain, and B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51(25), 6045–6062 (2012).

B. A. Franz, S. W. Bailey, P. J. Werdell, and C. R. McClain, “Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry,” Appl. Opt. 46(22), 5068–5082 (2007).

Z. Lee, S. Shang, G. Lin, J. Chen, and D. Doxaran, “On the modeling of hyperspectral remote-sensing reflectance of high-sediment-load waters in the visible to shortwave-infrared domain,” Appl. Opt. 55(7), 1738–1750 (2016).

Bull. Am. Meteorol. Soc. (1)

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

Eos (Wash. D.C.) (1)

R. Showstack, “Sentinel satellites initiate new era in earth observation,” Eos (Wash. D.C.) 95(26), 239–240 (2014).

IEEE Trans. Geosci. Remote Sens. (2)

W. L. Barnes, T. S. Pagano, and V. V. Salomonson, “Prelaunch characteristics of the moderate resolution imaging spectroradiometer (MODIS) on EOS-AM1,” IEEE Trans. Geosci. Remote Sens. 36(4), 1088–1100 (1998).

M. Wang and W. Shi, “Sensor noise effects of the SWIR bands on MODIS-derived ocean color products,” IEEE Trans. Geosci. Remote Sens. 50(9), 3280–3292 (2012).

Int. J. Remote Sens. (1)

P. D. Kunte, “Sediment concentration and bed form structures of Gulf of Cambay from remote sensing,” Int. J. Remote Sens. 29(8), 2169–2182 (2008).

J. Appl. Remote Sens. (1)

B. A. Franz, S. W. Bailey, N. Kuring, and P. J. Werdell, “Ocean color measurements with the Operational Land Imager on Landsat-8: implementation and evaluation in SeaDAS,” J. Appl. Remote Sens. 9(1), 096070 (2015).

J. Atmos. Ocean. Technol. (1)

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A Network for the Validation of Ocean Color Primary Products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).

J. Atmos. Sci. (1)

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59(3), 590–608 (2002).

J. Geophys. Res. Atmos. (1)

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. Atmos. 102(D14), 17081–17106 (1997).

Opt. Express (3)

Remote Sens. Environ. (7)

P. J. Werdell, B. A. Franz, and S. W. Bailey, “Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay,” Remote Sens. Environ. 114(10), 2238–2247 (2010).

W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ. 113(8), 1587–1597 (2009).

N. Pahlevan, J. R. Schott, B. A. Franz, G. Zibordi, B. Markham, S. Bailey, C. B. Schaaf, M. Ondrusek, S. Greb, and C. M. Strait, “Landsat 8 remote sensing reflectance (R rs) products: Evaluations, intercomparisons, and enhancements,” Remote Sens. Environ. 190, 289–301 (2017).

Q. Vanhellemont and K. Ruddick, “Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8,” Remote Sens. Environ. 161, 89–106 (2015).

M. Wang and H. R. Gordon, “Calibration of ocean color scanners: how much error is acceptable in the near infrared?” Remote Sens. Environ. 82(2-3), 497–504 (2002).

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).

E. Knaeps, K. Ruddick, D. Doxaran, A. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).

Other (5)

C. Del Castillo, S. Platnick, and D. Antoine, “Pre-Aerosol, Clouds, and ocean Ecosystem (PACE) Mission Science Definition Team Report,” (NASA Goddard Space Flight Center, 2012).

A. R. A. Stumpf, R. P. Gould, Jr., P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters,” (National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD, Patt, F.S., et al., 2003: Algorithm Updates for the Fourth SeaWiFS Data Reprocessing, 2004).

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic Press, Inc., 1994).

C. D. Mobley, J. Werdell, B. Franz, Z. Ahmad, and S. Bailey, “Atmospheric correction for satellite ocean color radiometry,” Tech Rep. (2016).

M. Wang, "Atmospheric correction for remotely-sensed ocean-colour products," Reports and Monographs of the International Ocean-Colour Coordinating Group (IOCCG) (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

The relative spectral response (RSR) functions overlaid on an atmospheric transmission curve and TOA radiance spectrum ( w m 2 s r 1 μ 1 )shown for the two 1600nm and 2200nm atmospheric windows. The spectral responses (unitless) shown are those of MODIS, VIIRS, and OLI as well as two narrow ones (@20nm) towards the sides of the 1600nm window.

Fig. 2
Fig. 2

The % error in TOA radiance as a result of 6% error in water vapor (WV) estimation provided for different band centers and bandwidths (FWHM) within the 1600nm window. With the increase in the bandwidths towards the edges, the water vapor contamination increases. The 20-nm bands centered at 1565 and 1675nm exhibit as much contamination as for a 80-nm band centered at 1620 nm (where the impact of WV absorption is minimal).

Fig. 3
Fig. 3

The % error in TOA radiance as a result of 6% error in water vapor (WV) estimation given for different band centers and bandwidths (FWHM) within the 2200nm window. With the increase in the bandwidths towards the shorter wavelengths, the water vapor contamination increases. An optimal band should be placed in the vicinity of the 2260nm.

Fig. 4
Fig. 4

The median absolute percent difference (APD) and the % retrievals (lower panel) are shown for the evaluation of the performance of AC at ρ w (443) using 17 different band combinations. The performance is merely shown for models 1 through 8 (modified models in [32]). It is evident that the combinations of new channels (shown in red) are sufficiently sensitive to these aerosol models and imaging geometries. Note that the % retrievals are defined as the fraction of the retrievals with errors < 5% (see Eq. (6)).

Fig. 5
Fig. 5

The performance of AC assessed for models 11-16, i.e., AERONET-derived aerosol models. It is evident that the combinations of alternative channels (shown in red) a) perform as well as the 748/869 and b) outperform most other SWIR band combinations. It is worthwhile noting that 748/869 band pair provides most valid retrievals and the lowest mean error.

Fig. 6
Fig. 6

The performance of the AC shown for different band combinations given for nine different aerosol test models. The difference between the retrieved aerosol reflectance and input aerosol reflectance is regarded as the error metric. The NIR band combination (i.e., 748/869nm) indicates most consistent performance across various aerosol models. The analysis is given for a median AOT(869) of 0.1 and a nadir-viewing geometry. The combination of alternative bands within the 1600nm window (e.g., 1565/1675nm) is found to lead to relatively stable errors.

Fig. 7
Fig. 7

The performance of the ACO shown for different band combinations given for nine different aerosol test models. The difference between the retrieved aerosol reflectance and input aerosol reflectance is regarded as the error metric. The analysis is given for a median AOT(869) of 0.1 and at VZA = SZA = 60°. The combination of alternative bands within the 1600nm window (e.g., 1565/1675nm) is found to yield satisfactory results.

Fig. 8
Fig. 8

The median APD (%) shown as a function of solar zenith angles (SZA) for models M1-M8 (left) and M11-M16. The median performance is found to only slightly vary for most band combinations for 30SZA60 except that of the SWIR band pairs (i.e., 1610-2257). The performance of 748-869 is stable across the SZA range. The overall magnitude of the errors is larger for M11-M16 (AERONE-derived models derived nearby coastal areas.

Fig. 9
Fig. 9

The sensitivity of the AC to various calibration uncertainties for seven example band combinations given at Rrs(443). The sensitivity, in general, increases with the band spacing of the band pairs. The combination of the new channels (i.e., 1600nm) shows the largest sensitivity to calibration uncertainties. A 0.5% uncertainty requirement is needed to ensure reasonable performance of AC using the new SWIR channels.

Fig. 10
Fig. 10

The calibration sensitivity analysis obtained by simulating correlated calibration errors for the NIR and SWIR bands of VIIRS reported for Rrs(443). The errors are given for APD (upper) and RMSE. These results are consistent with those illustrated in Fig. 9. The results indicate that the Rrs retrievals using 745/862 bands are sensitive to the total calibration offsets > 1%.

Fig. 11
Fig. 11

The Landsa-8 OLI natural color image is shown alongside the remote-sensing reflectance products derived for the 865 and 1609nm bands. Significant backscattered signals and high (qualitative) correlation between Rrs(865) and Rrs(1609) are evident from the spatial patterns. The image was collected on January 12th 2016.

Fig. 12
Fig. 12

The median absolute percent difference (APD) and the % retrievals (lower panel) are shown for the evaluation of the performance of the atmospheric correction (ACO) over extremely turbid waters (Table 3). It is evident that the combinations of new channels (shown in red) result in similar retrieval errors as those from existing SWIR bands combinations. Note the large errors associated with NIR-SWIR band combinations. No attempt for the removal water-leaving radiance in the NIR has been made here [13].

Fig. 13
Fig. 13

The SSA spectra shown for various aerosol models. M1-M7 are the modified standard models used for AC in operational processing and M11-M16 are those derived from six AERONET stations.

Tables (3)

Tables Icon

Table 1 The specifications of the SWIR bands of MODIS, VIIRS, and OLI SWIR studied here.

Tables Icon

Table 2 The size distribution and microphysical properties of the AERONET-derived test models.

Tables Icon

Table 3 Three sample R rs  ( 1/sr )  spectra utilized to model extremely turbid waters

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

RSR(i)= 1 1+ ( 2| λi | FWHM ) κ
ρ t ={ w }+{ ρ r + ρ a + ρ ar }+{ ρ wc + ρ g }
ε(λ, λ 0 )= ρ as (λ) ρ as ( λ 0 )
ρ as (λ)=[ ω( λ )τ( λ )p( Θ,λ ) ]/( 4cos( SZA )cos(VZA) )
APD i ( λ=443nm,VZA,SZA,AOT )=| ρ as i ρ ˜ as as |/ ρ as i        ×100
% Retrievals=n[ AP D <5% ] / N       ×100
APD i ( λ=443nm,VZA,SZA,AOT )=| ρ as i, α 1,2 ρ as α 1,2 =1   |/ ρ as α 1,2 =1        ×100
RMS E Δ ( λ=443nm )= [ j=1 j=M i=1 i=N ( R rs i, α 1,2 R rs j, α 1,2 =1 ) 2 /N×M ] 1 2
APD i ( λ=443nm,VZA,SZA,AOT )=| ρ as i, R rs 0 ρ as R rs =0   |/ ρ as R rs =0        ×100

Metrics