Abstract

Absorption tomography is an imaging technique that has been used simultaneously to image multiple scalar parameters, such as temperature and species concentration for combustion diagnostics. Practical combustors, such as internal combustion engines and gas turbine engines, only allow limited optical access, and typically a few (ca. 20-40) beams are available to probe the domain of interest. With such limited spatial sampling, it is non-trivial to optimize beam arrangement for a faithful reconstruction. Previous efforts on beam optimization rely on either heuristic/empirical methods lacking rigorous mathematical derivation or were derived by assuming certain prior information in the tomographic inversion. This paper aims to develop an approach that is expected to be especially useful when prior information is not easily available or intended to be included in the inversion processes. We demonstrate that the orthogonality between rows of the weight matrix directly correlates with reconstruction fidelity and can be used as an effective predictor for beam optimization. A systematic comparison between our method and the existing ones in the literature suggests the validity of our method. We expect this method to be valuable for not only the absorption tomography but also other tomographic modalities.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of 3D computed tomography of chemiluminescence with a restricted field of view

Hecong Liu, Tao Yu, Man Zhang, and Weiwei Cai
Appl. Opt. 56(25) 7107-7115 (2017)

Benchmark evaluation of inversion algorithms for tomographic absorption spectroscopy

Tao Yu and Weiwei Cai
Appl. Opt. 56(8) 2183-2194 (2017)

Bayesian approach to the design of chemical species tomography experiments

Samuel J. Grauer, Paul J. Hadwin, and Kyle J. Daun
Appl. Opt. 55(21) 5772-5782 (2016)

References

  • View by:
  • |
  • |
  • |

  1. areJ. Ballester and T. García-Armingol, “Diagnostic techniques for the monitoring and control of practical flames,” Prog. Energ. Combust. 36(4), 375–411 (2010).
    [Crossref]
  2. L. A. Rahn, “Laser-based combustion diagnostics,” Opt. Photonics News 7(9), 23–29 (1996).
    [Crossref]
  3. V. A. Miller, V. A. Troutman, M. G. Mungal, and R. K. Hanson, “20 kHz toluene planar laser-induced fluorescence imaging of a jet in nearly sonic crossflow,” Appl. Phys. B 117(1), 401–410 (2014).
    [Crossref]
  4. P. S. Hsu, N. Jiang, J. R. Gord, and S. Roy, “Fiber-coupled, 10 kHz simultaneous OH planar laser-induced fluorescence/particle-image velocimetry,” Opt. Lett. 38(2), 130–132 (2013).
    [Crossref] [PubMed]
  5. M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91(3-4), 669–675 (2008).
    [Crossref]
  6. W. Cai and C. F. Kaminski, “Multiplexed absorption tomography with calibration-free wavelength modulation spectroscopy,” Appl. Phys. Lett. 104(15), 154106 (2014).
    [Crossref]
  7. W. Cai and C. F. Kaminski, “A tomographic technique for the simultaneous imaging of temperature, chemical species, and pressure in reactive flows using absorption spectroscopy with frequency-agile lasers,” Appl. Phys. Lett. 104(3), 034101 (2014).
    [Crossref]
  8. S. Shi, J. Wang, J. Ding, Z. Zhao, and T. H. New, “Parametric study on light field volumetric particle image velocimetry,” Flow Meas. Instrum. 49, 70–88 (2016).
    [Crossref]
  9. P. M. Lillo, M. L. Greene, and V. Sick, “Plenoptic single-Shot 3D imaging of in-cylinder fuel spray geometry,” Z. Phys. Chem. 229, 549–560 (2014).
  10. W. Cai and C. Kaminski, “A numerical investigation of high-resolution multispectral absorption tomography for flow thermometry,” Appl. Phys. B 119(1), 29–35 (2015).
  11. W. Cai, X. Li, and L. Ma, “Practical aspects of implementing three-dimensional tomography inversion for volumetric flame imaging,” Appl. Opt. 52(33), 8106–8116 (2013).
    [Crossref] [PubMed]
  12. W. Cai, X. Li, F. Li, and L. Ma, “Numerical and experimental validation of a three-dimensional combustion diagnostic based on tomographic chemiluminescence,” Opt. Express 21(6), 7050–7064 (2013).
    [Crossref] [PubMed]
  13. M. P. Wood and K. B. Ozanyan, “Simultaneous temperature, concentration, and pressure imaging of water vapor in a turbine engine,” IEEE Sens. J. 15(1), 545–551 (2015).
    [Crossref]
  14. G. T. Herman, Image Reconstruction from Projections (Springer-Verlag, 1979).
  15. M. Allen, E. Furlong, and R. Hanson, “Tunable diode laser sensing and combustion control,” in Applied Combustion Diagnostics, K. Kohse-Hoinghaus, and J. B. Jeffries, eds., (Taylor & Francis, 2002), pp. 479–498.
  16. C. Kim, M. Kim, J. Abell, W. Bewley, C. Merritt, C. Canedy, I. Vurgaftman, and J. Meyer, “Mid-IR distributed-feedback interband cascade lasers,” in SPIE OPTO, (International Society for Optics and Photonics, 2013), pp. 86311–86318.
  17. S. Dupont, Z. Qu, S.-S. Kiwanuka, L. E. Hooper, J. C. Knight, S. R. Keiding, and C. F. Kaminski, “Ultra-high repetition rate absorption spectroscopy with low noise supercontinuum radiation generated in an all-normal dispersion fibre,” Laser Phys. Lett. 11(7), 075601 (2014).
    [Crossref]
  18. G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 20, 27–30 (2016).
  19. Y. Wang, M. G. Soskind, W. Wang, and G. Wysocki, “High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers,” Appl. Phys. Lett. 104(3), 031114 (2014).
    [Crossref]
  20. S. O’Hagan, T. Pinto, P. Ewart, and G. A. D. Ritchie, “Multi-mode absorption spectroscopy using a quantum cascade laser for simultaneous detection of NO and H2O,” Appl. Phys. B 122, 1–10 (2016).
  21. W. Cai and C. F. Kaminski, “Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows,” Prog. Energ. Combust. 59, 1–31 (2017).
    [Crossref]
  22. X. An, M. S. Brittelle, P. T. Lauzier, J. R. Gord, S. Roy, G. H. Chen, and S. T. Sanders, “Demonstration of temperature imaging by H2O absorption spectroscopy using compressed sensing tomography,” Appl. Opt. 54(31), 9190–9199 (2015).
    [Crossref] [PubMed]
  23. P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, and T. Litt, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158(1), 2–10 (2010).
    [Crossref]
  24. S. A. Tsekenis, N. Tait, and H. McCann, “Spatially resolved and observer-free experimental quantification of spatial resolution in tomographic images,” Rev. Sci. Instrum. 86(3), 035104 (2015).
    [Crossref] [PubMed]
  25. N. Terzija, J. L. Davidson, C. A. Garciastewart, P. Wright, K. B. Ozanyan, S. Pegrum, T. J. Litt, and H. Mccann, “Image optimization for chemical species tomography with an irregular and sparse beam array,” Meas. Sci. Technol. 19(9), 094007 (2008).
    [Crossref]
  26. J. Song, Y. Hong, H. Pan, and G. Wang, “Beam arrangement on two-dimensional temperature reconstruction based on laser absorption spectroscopy,” in International Symposium on Photoelectronic Detection & Imaging (2013).
    [Crossref]
  27. D. Mccormick, M. G. Twynstra, K. J. Daun, and H. Mccann, “Optimising laser absorption tomography beam arrays for imaging chemical species in gas turbine engine exhaust plumes,” in International Society for Industrial Process Tomography (2014).
  28. M. G. Twynstra and K. J. Daun, “Laser-absorption tomography beam arrangement optimization using resolution matrices,” Appl. Opt. 51(29), 7059–7068 (2012).
    [Crossref] [PubMed]
  29. M. P. Wood and K. B. Ozanyan, “Optimisation of a tomography sensor for imaging of temperature in a gas turbine engine,” IEEE Sensors 2013, pp. 1–4.
  30. S. J. Grauer, P. J. Hadwin, and K. J. Daun, “Bayesian approach to the design of chemical species tomography experiments,” Appl. Opt. 55(21), 5772–5782 (2016).
    [Crossref] [PubMed]
  31. A. Guha and I. Schoegl, “Tomographic laser absorption spectroscopy using Tikhonov regularization,” Appl. Opt. 53(34), 8095–8103 (2014).
    [Crossref] [PubMed]
  32. K. J. Daun, S. J. Grauer, and P. J. Hadwin, “Chemical species tomography of turbulent flows: Discrete ill-posed and rank deficient problems and the use of prior information,” J. Quant. Spectrosc. Radiat. Transf. 172, 58–74 (2016).
    [Crossref]
  33. P. C. Hansen, “Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion,” in Society for Industrial and Applied Mathematics (SIAM, 1999).
  34. K. J. Daun, S. L. Waslander, and B. B. Tulloch, “Infrared species tomography of a transient flow field using Kalman filtering,” Appl. Opt. 50(6), 891–900 (2011).
    [Crossref] [PubMed]
  35. L. Ingber, “Simulated annealing - practice versus theory,” Math. Comput. 18, 29–57 (1993).
  36. A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continuous-variables with the simulated annealing algorithm,” ACM Trans. Math. Softw. 13(3), 262–280 (1987).
    [Crossref]
  37. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).
    [Crossref] [PubMed]
  38. M. Tsuzuki and T. Martins, Simulated Annealing: Strategies, Potential Uses & Advantages (Nova Science Publishers, 2014).
  39. W. Cai and L. Ma, “Applications of critical temperature in minimizing functions of continuous variables with simulated annealing algorithm,” Comput. Phys. Commun. 181(1), 11–16 (2010).
    [Crossref]
  40. S. Bejaoui, S. Batut, E. Therssen, N. Lamoureux, P. Desgroux, and F. Liu, “Measurements and modeling of laser-induced incandescence of soot at different heights in a flat premixed flame,” Appl. Phys. B 118(3), 449–469 (2015).
    [Crossref]
  41. R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29(3), 471–481 (1970).
    [Crossref] [PubMed]
  42. K. Sun, “Ultilization of multiple harmonics of wavelength modulation spectroscopy for practical gas sensing,” Ph.D. thesis (Stanford University, 2013).
  43. M. S. Irandoost, M. Ashjaee, M. H. Askari, and S. Ahmadi, “Temperature measurement of axisymmetric partially premixed methane/air flame in a co-annular burner using Mach–Zehnder interferometry,” Opt. Lasers Eng. 74, 94–102 (2015).
    [Crossref]
  44. B. Zhang, M. Zhao, Z. Liu, and Z. Wu, “Flame four-dimensional deflection tomography with compressed-sensing-revision reconstruction,” Opt. Lasers Eng. 83, 23–31 (2016).
    [Crossref]

2017 (1)

W. Cai and C. F. Kaminski, “Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows,” Prog. Energ. Combust. 59, 1–31 (2017).
[Crossref]

2016 (6)

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 20, 27–30 (2016).

S. Shi, J. Wang, J. Ding, Z. Zhao, and T. H. New, “Parametric study on light field volumetric particle image velocimetry,” Flow Meas. Instrum. 49, 70–88 (2016).
[Crossref]

S. O’Hagan, T. Pinto, P. Ewart, and G. A. D. Ritchie, “Multi-mode absorption spectroscopy using a quantum cascade laser for simultaneous detection of NO and H2O,” Appl. Phys. B 122, 1–10 (2016).

K. J. Daun, S. J. Grauer, and P. J. Hadwin, “Chemical species tomography of turbulent flows: Discrete ill-posed and rank deficient problems and the use of prior information,” J. Quant. Spectrosc. Radiat. Transf. 172, 58–74 (2016).
[Crossref]

S. J. Grauer, P. J. Hadwin, and K. J. Daun, “Bayesian approach to the design of chemical species tomography experiments,” Appl. Opt. 55(21), 5772–5782 (2016).
[Crossref] [PubMed]

B. Zhang, M. Zhao, Z. Liu, and Z. Wu, “Flame four-dimensional deflection tomography with compressed-sensing-revision reconstruction,” Opt. Lasers Eng. 83, 23–31 (2016).
[Crossref]

2015 (6)

M. S. Irandoost, M. Ashjaee, M. H. Askari, and S. Ahmadi, “Temperature measurement of axisymmetric partially premixed methane/air flame in a co-annular burner using Mach–Zehnder interferometry,” Opt. Lasers Eng. 74, 94–102 (2015).
[Crossref]

S. Bejaoui, S. Batut, E. Therssen, N. Lamoureux, P. Desgroux, and F. Liu, “Measurements and modeling of laser-induced incandescence of soot at different heights in a flat premixed flame,” Appl. Phys. B 118(3), 449–469 (2015).
[Crossref]

S. A. Tsekenis, N. Tait, and H. McCann, “Spatially resolved and observer-free experimental quantification of spatial resolution in tomographic images,” Rev. Sci. Instrum. 86(3), 035104 (2015).
[Crossref] [PubMed]

X. An, M. S. Brittelle, P. T. Lauzier, J. R. Gord, S. Roy, G. H. Chen, and S. T. Sanders, “Demonstration of temperature imaging by H2O absorption spectroscopy using compressed sensing tomography,” Appl. Opt. 54(31), 9190–9199 (2015).
[Crossref] [PubMed]

W. Cai and C. Kaminski, “A numerical investigation of high-resolution multispectral absorption tomography for flow thermometry,” Appl. Phys. B 119(1), 29–35 (2015).

M. P. Wood and K. B. Ozanyan, “Simultaneous temperature, concentration, and pressure imaging of water vapor in a turbine engine,” IEEE Sens. J. 15(1), 545–551 (2015).
[Crossref]

2014 (7)

S. Dupont, Z. Qu, S.-S. Kiwanuka, L. E. Hooper, J. C. Knight, S. R. Keiding, and C. F. Kaminski, “Ultra-high repetition rate absorption spectroscopy with low noise supercontinuum radiation generated in an all-normal dispersion fibre,” Laser Phys. Lett. 11(7), 075601 (2014).
[Crossref]

Y. Wang, M. G. Soskind, W. Wang, and G. Wysocki, “High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers,” Appl. Phys. Lett. 104(3), 031114 (2014).
[Crossref]

P. M. Lillo, M. L. Greene, and V. Sick, “Plenoptic single-Shot 3D imaging of in-cylinder fuel spray geometry,” Z. Phys. Chem. 229, 549–560 (2014).

W. Cai and C. F. Kaminski, “Multiplexed absorption tomography with calibration-free wavelength modulation spectroscopy,” Appl. Phys. Lett. 104(15), 154106 (2014).
[Crossref]

W. Cai and C. F. Kaminski, “A tomographic technique for the simultaneous imaging of temperature, chemical species, and pressure in reactive flows using absorption spectroscopy with frequency-agile lasers,” Appl. Phys. Lett. 104(3), 034101 (2014).
[Crossref]

V. A. Miller, V. A. Troutman, M. G. Mungal, and R. K. Hanson, “20 kHz toluene planar laser-induced fluorescence imaging of a jet in nearly sonic crossflow,” Appl. Phys. B 117(1), 401–410 (2014).
[Crossref]

A. Guha and I. Schoegl, “Tomographic laser absorption spectroscopy using Tikhonov regularization,” Appl. Opt. 53(34), 8095–8103 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (1)

2011 (1)

2010 (3)

W. Cai and L. Ma, “Applications of critical temperature in minimizing functions of continuous variables with simulated annealing algorithm,” Comput. Phys. Commun. 181(1), 11–16 (2010).
[Crossref]

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, and T. Litt, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158(1), 2–10 (2010).
[Crossref]

areJ. Ballester and T. García-Armingol, “Diagnostic techniques for the monitoring and control of practical flames,” Prog. Energ. Combust. 36(4), 375–411 (2010).
[Crossref]

2008 (2)

M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91(3-4), 669–675 (2008).
[Crossref]

N. Terzija, J. L. Davidson, C. A. Garciastewart, P. Wright, K. B. Ozanyan, S. Pegrum, T. J. Litt, and H. Mccann, “Image optimization for chemical species tomography with an irregular and sparse beam array,” Meas. Sci. Technol. 19(9), 094007 (2008).
[Crossref]

1996 (1)

L. A. Rahn, “Laser-based combustion diagnostics,” Opt. Photonics News 7(9), 23–29 (1996).
[Crossref]

1993 (1)

L. Ingber, “Simulated annealing - practice versus theory,” Math. Comput. 18, 29–57 (1993).

1987 (1)

A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continuous-variables with the simulated annealing algorithm,” ACM Trans. Math. Softw. 13(3), 262–280 (1987).
[Crossref]

1983 (1)

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).
[Crossref] [PubMed]

1970 (1)

R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29(3), 471–481 (1970).
[Crossref] [PubMed]

Ahmadi, S.

M. S. Irandoost, M. Ashjaee, M. H. Askari, and S. Ahmadi, “Temperature measurement of axisymmetric partially premixed methane/air flame in a co-annular burner using Mach–Zehnder interferometry,” Opt. Lasers Eng. 74, 94–102 (2015).
[Crossref]

An, X.

Ashjaee, M.

M. S. Irandoost, M. Ashjaee, M. H. Askari, and S. Ahmadi, “Temperature measurement of axisymmetric partially premixed methane/air flame in a co-annular burner using Mach–Zehnder interferometry,” Opt. Lasers Eng. 74, 94–102 (2015).
[Crossref]

Askari, M. H.

M. S. Irandoost, M. Ashjaee, M. H. Askari, and S. Ahmadi, “Temperature measurement of axisymmetric partially premixed methane/air flame in a co-annular burner using Mach–Zehnder interferometry,” Opt. Lasers Eng. 74, 94–102 (2015).
[Crossref]

Ballester, J.

areJ. Ballester and T. García-Armingol, “Diagnostic techniques for the monitoring and control of practical flames,” Prog. Energ. Combust. 36(4), 375–411 (2010).
[Crossref]

Batut, S.

S. Bejaoui, S. Batut, E. Therssen, N. Lamoureux, P. Desgroux, and F. Liu, “Measurements and modeling of laser-induced incandescence of soot at different heights in a flat premixed flame,” Appl. Phys. B 118(3), 449–469 (2015).
[Crossref]

Bejaoui, S.

S. Bejaoui, S. Batut, E. Therssen, N. Lamoureux, P. Desgroux, and F. Liu, “Measurements and modeling of laser-induced incandescence of soot at different heights in a flat premixed flame,” Appl. Phys. B 118(3), 449–469 (2015).
[Crossref]

Bendahmane, A.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 20, 27–30 (2016).

Bender, R.

R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29(3), 471–481 (1970).
[Crossref] [PubMed]

Brittelle, M. S.

Cai, W.

W. Cai and C. F. Kaminski, “Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows,” Prog. Energ. Combust. 59, 1–31 (2017).
[Crossref]

W. Cai and C. Kaminski, “A numerical investigation of high-resolution multispectral absorption tomography for flow thermometry,” Appl. Phys. B 119(1), 29–35 (2015).

W. Cai and C. F. Kaminski, “Multiplexed absorption tomography with calibration-free wavelength modulation spectroscopy,” Appl. Phys. Lett. 104(15), 154106 (2014).
[Crossref]

W. Cai and C. F. Kaminski, “A tomographic technique for the simultaneous imaging of temperature, chemical species, and pressure in reactive flows using absorption spectroscopy with frequency-agile lasers,” Appl. Phys. Lett. 104(3), 034101 (2014).
[Crossref]

W. Cai, X. Li, F. Li, and L. Ma, “Numerical and experimental validation of a three-dimensional combustion diagnostic based on tomographic chemiluminescence,” Opt. Express 21(6), 7050–7064 (2013).
[Crossref] [PubMed]

W. Cai, X. Li, and L. Ma, “Practical aspects of implementing three-dimensional tomography inversion for volumetric flame imaging,” Appl. Opt. 52(33), 8106–8116 (2013).
[Crossref] [PubMed]

W. Cai and L. Ma, “Applications of critical temperature in minimizing functions of continuous variables with simulated annealing algorithm,” Comput. Phys. Commun. 181(1), 11–16 (2010).
[Crossref]

Chen, G. H.

Colbourne, S.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, and T. Litt, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158(1), 2–10 (2010).
[Crossref]

Corana, A.

A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continuous-variables with the simulated annealing algorithm,” ACM Trans. Math. Softw. 13(3), 262–280 (1987).
[Crossref]

Crossley, S. D.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, and T. Litt, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158(1), 2–10 (2010).
[Crossref]

Daun, K. J.

Davidson, J. L.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, and T. Litt, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158(1), 2–10 (2010).
[Crossref]

N. Terzija, J. L. Davidson, C. A. Garciastewart, P. Wright, K. B. Ozanyan, S. Pegrum, T. J. Litt, and H. Mccann, “Image optimization for chemical species tomography with an irregular and sparse beam array,” Meas. Sci. Technol. 19(9), 094007 (2008).
[Crossref]

Desgroux, P.

S. Bejaoui, S. Batut, E. Therssen, N. Lamoureux, P. Desgroux, and F. Liu, “Measurements and modeling of laser-induced incandescence of soot at different heights in a flat premixed flame,” Appl. Phys. B 118(3), 449–469 (2015).
[Crossref]

Ding, J.

S. Shi, J. Wang, J. Ding, Z. Zhao, and T. H. New, “Parametric study on light field volumetric particle image velocimetry,” Flow Meas. Instrum. 49, 70–88 (2016).
[Crossref]

Dupont, S.

S. Dupont, Z. Qu, S.-S. Kiwanuka, L. E. Hooper, J. C. Knight, S. R. Keiding, and C. F. Kaminski, “Ultra-high repetition rate absorption spectroscopy with low noise supercontinuum radiation generated in an all-normal dispersion fibre,” Laser Phys. Lett. 11(7), 075601 (2014).
[Crossref]

Ewart, P.

S. O’Hagan, T. Pinto, P. Ewart, and G. A. D. Ritchie, “Multi-mode absorption spectroscopy using a quantum cascade laser for simultaneous detection of NO and H2O,” Appl. Phys. B 122, 1–10 (2016).

García-Armingol, T.

areJ. Ballester and T. García-Armingol, “Diagnostic techniques for the monitoring and control of practical flames,” Prog. Energ. Combust. 36(4), 375–411 (2010).
[Crossref]

Garcia-Castillo, S.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, and T. Litt, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158(1), 2–10 (2010).
[Crossref]

Garciastewart, C. A.

N. Terzija, J. L. Davidson, C. A. Garciastewart, P. Wright, K. B. Ozanyan, S. Pegrum, T. J. Litt, and H. Mccann, “Image optimization for chemical species tomography with an irregular and sparse beam array,” Meas. Sci. Technol. 19(9), 094007 (2008).
[Crossref]

Garcia-Stewart, C.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, and T. Litt, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158(1), 2–10 (2010).
[Crossref]

Gelatt, C. D.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).
[Crossref] [PubMed]

Gord, J. R.

Gordon, R.

R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29(3), 471–481 (1970).
[Crossref] [PubMed]

Grauer, S. J.

S. J. Grauer, P. J. Hadwin, and K. J. Daun, “Bayesian approach to the design of chemical species tomography experiments,” Appl. Opt. 55(21), 5772–5782 (2016).
[Crossref] [PubMed]

K. J. Daun, S. J. Grauer, and P. J. Hadwin, “Chemical species tomography of turbulent flows: Discrete ill-posed and rank deficient problems and the use of prior information,” J. Quant. Spectrosc. Radiat. Transf. 172, 58–74 (2016).
[Crossref]

Greene, M. L.

P. M. Lillo, M. L. Greene, and V. Sick, “Plenoptic single-Shot 3D imaging of in-cylinder fuel spray geometry,” Z. Phys. Chem. 229, 549–560 (2014).

Guha, A.

Hadwin, P. J.

S. J. Grauer, P. J. Hadwin, and K. J. Daun, “Bayesian approach to the design of chemical species tomography experiments,” Appl. Opt. 55(21), 5772–5782 (2016).
[Crossref] [PubMed]

K. J. Daun, S. J. Grauer, and P. J. Hadwin, “Chemical species tomography of turbulent flows: Discrete ill-posed and rank deficient problems and the use of prior information,” J. Quant. Spectrosc. Radiat. Transf. 172, 58–74 (2016).
[Crossref]

Hänsch, T. W.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 20, 27–30 (2016).

Hanson, R. K.

V. A. Miller, V. A. Troutman, M. G. Mungal, and R. K. Hanson, “20 kHz toluene planar laser-induced fluorescence imaging of a jet in nearly sonic crossflow,” Appl. Phys. B 117(1), 401–410 (2014).
[Crossref]

Herman, G. T.

R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29(3), 471–481 (1970).
[Crossref] [PubMed]

Hong, Y.

J. Song, Y. Hong, H. Pan, and G. Wang, “Beam arrangement on two-dimensional temperature reconstruction based on laser absorption spectroscopy,” in International Symposium on Photoelectronic Detection & Imaging (2013).
[Crossref]

Hooper, L. E.

S. Dupont, Z. Qu, S.-S. Kiwanuka, L. E. Hooper, J. C. Knight, S. R. Keiding, and C. F. Kaminski, “Ultra-high repetition rate absorption spectroscopy with low noise supercontinuum radiation generated in an all-normal dispersion fibre,” Laser Phys. Lett. 11(7), 075601 (2014).
[Crossref]

Hovhannisyan, T.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 20, 27–30 (2016).

Hsu, P. S.

Ingber, L.

L. Ingber, “Simulated annealing - practice versus theory,” Math. Comput. 18, 29–57 (1993).

Irandoost, M. S.

M. S. Irandoost, M. Ashjaee, M. H. Askari, and S. Ahmadi, “Temperature measurement of axisymmetric partially premixed methane/air flame in a co-annular burner using Mach–Zehnder interferometry,” Opt. Lasers Eng. 74, 94–102 (2015).
[Crossref]

Jiang, N.

Kaminski, C.

W. Cai and C. Kaminski, “A numerical investigation of high-resolution multispectral absorption tomography for flow thermometry,” Appl. Phys. B 119(1), 29–35 (2015).

Kaminski, C. F.

W. Cai and C. F. Kaminski, “Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows,” Prog. Energ. Combust. 59, 1–31 (2017).
[Crossref]

W. Cai and C. F. Kaminski, “A tomographic technique for the simultaneous imaging of temperature, chemical species, and pressure in reactive flows using absorption spectroscopy with frequency-agile lasers,” Appl. Phys. Lett. 104(3), 034101 (2014).
[Crossref]

S. Dupont, Z. Qu, S.-S. Kiwanuka, L. E. Hooper, J. C. Knight, S. R. Keiding, and C. F. Kaminski, “Ultra-high repetition rate absorption spectroscopy with low noise supercontinuum radiation generated in an all-normal dispersion fibre,” Laser Phys. Lett. 11(7), 075601 (2014).
[Crossref]

W. Cai and C. F. Kaminski, “Multiplexed absorption tomography with calibration-free wavelength modulation spectroscopy,” Appl. Phys. Lett. 104(15), 154106 (2014).
[Crossref]

Keiding, S. R.

S. Dupont, Z. Qu, S.-S. Kiwanuka, L. E. Hooper, J. C. Knight, S. R. Keiding, and C. F. Kaminski, “Ultra-high repetition rate absorption spectroscopy with low noise supercontinuum radiation generated in an all-normal dispersion fibre,” Laser Phys. Lett. 11(7), 075601 (2014).
[Crossref]

Kirkpatrick, S.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).
[Crossref] [PubMed]

Kiwanuka, S.-S.

S. Dupont, Z. Qu, S.-S. Kiwanuka, L. E. Hooper, J. C. Knight, S. R. Keiding, and C. F. Kaminski, “Ultra-high repetition rate absorption spectroscopy with low noise supercontinuum radiation generated in an all-normal dispersion fibre,” Laser Phys. Lett. 11(7), 075601 (2014).
[Crossref]

Knight, J. C.

S. Dupont, Z. Qu, S.-S. Kiwanuka, L. E. Hooper, J. C. Knight, S. R. Keiding, and C. F. Kaminski, “Ultra-high repetition rate absorption spectroscopy with low noise supercontinuum radiation generated in an all-normal dispersion fibre,” Laser Phys. Lett. 11(7), 075601 (2014).
[Crossref]

Lamoureux, N.

S. Bejaoui, S. Batut, E. Therssen, N. Lamoureux, P. Desgroux, and F. Liu, “Measurements and modeling of laser-induced incandescence of soot at different heights in a flat premixed flame,” Appl. Phys. B 118(3), 449–469 (2015).
[Crossref]

Lauzier, P. T.

Li, F.

Li, X.

Lillo, P. M.

P. M. Lillo, M. L. Greene, and V. Sick, “Plenoptic single-Shot 3D imaging of in-cylinder fuel spray geometry,” Z. Phys. Chem. 229, 549–560 (2014).

Litt, T.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, and T. Litt, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158(1), 2–10 (2010).
[Crossref]

Litt, T. J.

N. Terzija, J. L. Davidson, C. A. Garciastewart, P. Wright, K. B. Ozanyan, S. Pegrum, T. J. Litt, and H. Mccann, “Image optimization for chemical species tomography with an irregular and sparse beam array,” Meas. Sci. Technol. 19(9), 094007 (2008).
[Crossref]

Liu, F.

S. Bejaoui, S. Batut, E. Therssen, N. Lamoureux, P. Desgroux, and F. Liu, “Measurements and modeling of laser-induced incandescence of soot at different heights in a flat premixed flame,” Appl. Phys. B 118(3), 449–469 (2015).
[Crossref]

Liu, Z.

B. Zhang, M. Zhao, Z. Liu, and Z. Wu, “Flame four-dimensional deflection tomography with compressed-sensing-revision reconstruction,” Opt. Lasers Eng. 83, 23–31 (2016).
[Crossref]

Luong, M.

M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91(3-4), 669–675 (2008).
[Crossref]

Ma, L.

Marchesi, M.

A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continuous-variables with the simulated annealing algorithm,” ACM Trans. Math. Softw. 13(3), 262–280 (1987).
[Crossref]

Martini, C.

A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continuous-variables with the simulated annealing algorithm,” ACM Trans. Math. Softw. 13(3), 262–280 (1987).
[Crossref]

McCann, H.

S. A. Tsekenis, N. Tait, and H. McCann, “Spatially resolved and observer-free experimental quantification of spatial resolution in tomographic images,” Rev. Sci. Instrum. 86(3), 035104 (2015).
[Crossref] [PubMed]

N. Terzija, J. L. Davidson, C. A. Garciastewart, P. Wright, K. B. Ozanyan, S. Pegrum, T. J. Litt, and H. Mccann, “Image optimization for chemical species tomography with an irregular and sparse beam array,” Meas. Sci. Technol. 19(9), 094007 (2008).
[Crossref]

Miller, V. A.

V. A. Miller, V. A. Troutman, M. G. Mungal, and R. K. Hanson, “20 kHz toluene planar laser-induced fluorescence imaging of a jet in nearly sonic crossflow,” Appl. Phys. B 117(1), 401–410 (2014).
[Crossref]

Millot, G.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 20, 27–30 (2016).

Mungal, M. G.

V. A. Miller, V. A. Troutman, M. G. Mungal, and R. K. Hanson, “20 kHz toluene planar laser-induced fluorescence imaging of a jet in nearly sonic crossflow,” Appl. Phys. B 117(1), 401–410 (2014).
[Crossref]

New, T. H.

S. Shi, J. Wang, J. Ding, Z. Zhao, and T. H. New, “Parametric study on light field volumetric particle image velocimetry,” Flow Meas. Instrum. 49, 70–88 (2016).
[Crossref]

O’Hagan, S.

S. O’Hagan, T. Pinto, P. Ewart, and G. A. D. Ritchie, “Multi-mode absorption spectroscopy using a quantum cascade laser for simultaneous detection of NO and H2O,” Appl. Phys. B 122, 1–10 (2016).

Ozanyan, K. B.

M. P. Wood and K. B. Ozanyan, “Simultaneous temperature, concentration, and pressure imaging of water vapor in a turbine engine,” IEEE Sens. J. 15(1), 545–551 (2015).
[Crossref]

N. Terzija, J. L. Davidson, C. A. Garciastewart, P. Wright, K. B. Ozanyan, S. Pegrum, T. J. Litt, and H. Mccann, “Image optimization for chemical species tomography with an irregular and sparse beam array,” Meas. Sci. Technol. 19(9), 094007 (2008).
[Crossref]

Pan, H.

J. Song, Y. Hong, H. Pan, and G. Wang, “Beam arrangement on two-dimensional temperature reconstruction based on laser absorption spectroscopy,” in International Symposium on Photoelectronic Detection & Imaging (2013).
[Crossref]

Pegrum, S.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, and T. Litt, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158(1), 2–10 (2010).
[Crossref]

N. Terzija, J. L. Davidson, C. A. Garciastewart, P. Wright, K. B. Ozanyan, S. Pegrum, T. J. Litt, and H. Mccann, “Image optimization for chemical species tomography with an irregular and sparse beam array,” Meas. Sci. Technol. 19(9), 094007 (2008).
[Crossref]

Picqué, N.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 20, 27–30 (2016).

Pinto, T.

S. O’Hagan, T. Pinto, P. Ewart, and G. A. D. Ritchie, “Multi-mode absorption spectroscopy using a quantum cascade laser for simultaneous detection of NO and H2O,” Appl. Phys. B 122, 1–10 (2016).

Pitois, S.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 20, 27–30 (2016).

Qu, Z.

S. Dupont, Z. Qu, S.-S. Kiwanuka, L. E. Hooper, J. C. Knight, S. R. Keiding, and C. F. Kaminski, “Ultra-high repetition rate absorption spectroscopy with low noise supercontinuum radiation generated in an all-normal dispersion fibre,” Laser Phys. Lett. 11(7), 075601 (2014).
[Crossref]

Rahn, L. A.

L. A. Rahn, “Laser-based combustion diagnostics,” Opt. Photonics News 7(9), 23–29 (1996).
[Crossref]

Ridella, S.

A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continuous-variables with the simulated annealing algorithm,” ACM Trans. Math. Softw. 13(3), 262–280 (1987).
[Crossref]

Ritchie, G. A. D.

S. O’Hagan, T. Pinto, P. Ewart, and G. A. D. Ritchie, “Multi-mode absorption spectroscopy using a quantum cascade laser for simultaneous detection of NO and H2O,” Appl. Phys. B 122, 1–10 (2016).

Roy, S.

Sanders, S. T.

Schoegl, I.

Schulz, C.

M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91(3-4), 669–675 (2008).
[Crossref]

Shi, S.

S. Shi, J. Wang, J. Ding, Z. Zhao, and T. H. New, “Parametric study on light field volumetric particle image velocimetry,” Flow Meas. Instrum. 49, 70–88 (2016).
[Crossref]

Sick, V.

P. M. Lillo, M. L. Greene, and V. Sick, “Plenoptic single-Shot 3D imaging of in-cylinder fuel spray geometry,” Z. Phys. Chem. 229, 549–560 (2014).

M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91(3-4), 669–675 (2008).
[Crossref]

Song, J.

J. Song, Y. Hong, H. Pan, and G. Wang, “Beam arrangement on two-dimensional temperature reconstruction based on laser absorption spectroscopy,” in International Symposium on Photoelectronic Detection & Imaging (2013).
[Crossref]

Soskind, M. G.

Y. Wang, M. G. Soskind, W. Wang, and G. Wysocki, “High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers,” Appl. Phys. Lett. 104(3), 031114 (2014).
[Crossref]

Tait, N.

S. A. Tsekenis, N. Tait, and H. McCann, “Spatially resolved and observer-free experimental quantification of spatial resolution in tomographic images,” Rev. Sci. Instrum. 86(3), 035104 (2015).
[Crossref] [PubMed]

Terzija, N.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, and T. Litt, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158(1), 2–10 (2010).
[Crossref]

N. Terzija, J. L. Davidson, C. A. Garciastewart, P. Wright, K. B. Ozanyan, S. Pegrum, T. J. Litt, and H. Mccann, “Image optimization for chemical species tomography with an irregular and sparse beam array,” Meas. Sci. Technol. 19(9), 094007 (2008).
[Crossref]

Therssen, E.

S. Bejaoui, S. Batut, E. Therssen, N. Lamoureux, P. Desgroux, and F. Liu, “Measurements and modeling of laser-induced incandescence of soot at different heights in a flat premixed flame,” Appl. Phys. B 118(3), 449–469 (2015).
[Crossref]

Troutman, V. A.

V. A. Miller, V. A. Troutman, M. G. Mungal, and R. K. Hanson, “20 kHz toluene planar laser-induced fluorescence imaging of a jet in nearly sonic crossflow,” Appl. Phys. B 117(1), 401–410 (2014).
[Crossref]

Tsekenis, S. A.

S. A. Tsekenis, N. Tait, and H. McCann, “Spatially resolved and observer-free experimental quantification of spatial resolution in tomographic images,” Rev. Sci. Instrum. 86(3), 035104 (2015).
[Crossref] [PubMed]

Tulloch, B. B.

Turner, P.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, and T. Litt, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158(1), 2–10 (2010).
[Crossref]

Twynstra, M. G.

Vecchi, M. P.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).
[Crossref] [PubMed]

Wang, G.

J. Song, Y. Hong, H. Pan, and G. Wang, “Beam arrangement on two-dimensional temperature reconstruction based on laser absorption spectroscopy,” in International Symposium on Photoelectronic Detection & Imaging (2013).
[Crossref]

Wang, J.

S. Shi, J. Wang, J. Ding, Z. Zhao, and T. H. New, “Parametric study on light field volumetric particle image velocimetry,” Flow Meas. Instrum. 49, 70–88 (2016).
[Crossref]

Wang, W.

Y. Wang, M. G. Soskind, W. Wang, and G. Wysocki, “High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers,” Appl. Phys. Lett. 104(3), 031114 (2014).
[Crossref]

Wang, Y.

Y. Wang, M. G. Soskind, W. Wang, and G. Wysocki, “High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers,” Appl. Phys. Lett. 104(3), 031114 (2014).
[Crossref]

Waslander, S. L.

Wood, M. P.

M. P. Wood and K. B. Ozanyan, “Simultaneous temperature, concentration, and pressure imaging of water vapor in a turbine engine,” IEEE Sens. J. 15(1), 545–551 (2015).
[Crossref]

Wright, P.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, and T. Litt, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158(1), 2–10 (2010).
[Crossref]

N. Terzija, J. L. Davidson, C. A. Garciastewart, P. Wright, K. B. Ozanyan, S. Pegrum, T. J. Litt, and H. Mccann, “Image optimization for chemical species tomography with an irregular and sparse beam array,” Meas. Sci. Technol. 19(9), 094007 (2008).
[Crossref]

Wu, Z.

B. Zhang, M. Zhao, Z. Liu, and Z. Wu, “Flame four-dimensional deflection tomography with compressed-sensing-revision reconstruction,” Opt. Lasers Eng. 83, 23–31 (2016).
[Crossref]

Wysocki, G.

Y. Wang, M. G. Soskind, W. Wang, and G. Wysocki, “High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers,” Appl. Phys. Lett. 104(3), 031114 (2014).
[Crossref]

Yan, M.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 20, 27–30 (2016).

Zhang, B.

B. Zhang, M. Zhao, Z. Liu, and Z. Wu, “Flame four-dimensional deflection tomography with compressed-sensing-revision reconstruction,” Opt. Lasers Eng. 83, 23–31 (2016).
[Crossref]

Zhang, R.

M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91(3-4), 669–675 (2008).
[Crossref]

Zhao, M.

B. Zhang, M. Zhao, Z. Liu, and Z. Wu, “Flame four-dimensional deflection tomography with compressed-sensing-revision reconstruction,” Opt. Lasers Eng. 83, 23–31 (2016).
[Crossref]

Zhao, Z.

S. Shi, J. Wang, J. Ding, Z. Zhao, and T. H. New, “Parametric study on light field volumetric particle image velocimetry,” Flow Meas. Instrum. 49, 70–88 (2016).
[Crossref]

ACM Trans. Math. Softw. (1)

A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continuous-variables with the simulated annealing algorithm,” ACM Trans. Math. Softw. 13(3), 262–280 (1987).
[Crossref]

Appl. Opt. (6)

Appl. Phys. B (5)

W. Cai and C. Kaminski, “A numerical investigation of high-resolution multispectral absorption tomography for flow thermometry,” Appl. Phys. B 119(1), 29–35 (2015).

S. O’Hagan, T. Pinto, P. Ewart, and G. A. D. Ritchie, “Multi-mode absorption spectroscopy using a quantum cascade laser for simultaneous detection of NO and H2O,” Appl. Phys. B 122, 1–10 (2016).

V. A. Miller, V. A. Troutman, M. G. Mungal, and R. K. Hanson, “20 kHz toluene planar laser-induced fluorescence imaging of a jet in nearly sonic crossflow,” Appl. Phys. B 117(1), 401–410 (2014).
[Crossref]

M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91(3-4), 669–675 (2008).
[Crossref]

S. Bejaoui, S. Batut, E. Therssen, N. Lamoureux, P. Desgroux, and F. Liu, “Measurements and modeling of laser-induced incandescence of soot at different heights in a flat premixed flame,” Appl. Phys. B 118(3), 449–469 (2015).
[Crossref]

Appl. Phys. Lett. (3)

W. Cai and C. F. Kaminski, “Multiplexed absorption tomography with calibration-free wavelength modulation spectroscopy,” Appl. Phys. Lett. 104(15), 154106 (2014).
[Crossref]

W. Cai and C. F. Kaminski, “A tomographic technique for the simultaneous imaging of temperature, chemical species, and pressure in reactive flows using absorption spectroscopy with frequency-agile lasers,” Appl. Phys. Lett. 104(3), 034101 (2014).
[Crossref]

Y. Wang, M. G. Soskind, W. Wang, and G. Wysocki, “High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers,” Appl. Phys. Lett. 104(3), 031114 (2014).
[Crossref]

Chem. Eng. J. (1)

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, and T. Litt, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158(1), 2–10 (2010).
[Crossref]

Comput. Phys. Commun. (1)

W. Cai and L. Ma, “Applications of critical temperature in minimizing functions of continuous variables with simulated annealing algorithm,” Comput. Phys. Commun. 181(1), 11–16 (2010).
[Crossref]

Flow Meas. Instrum. (1)

S. Shi, J. Wang, J. Ding, Z. Zhao, and T. H. New, “Parametric study on light field volumetric particle image velocimetry,” Flow Meas. Instrum. 49, 70–88 (2016).
[Crossref]

IEEE Sens. J. (1)

M. P. Wood and K. B. Ozanyan, “Simultaneous temperature, concentration, and pressure imaging of water vapor in a turbine engine,” IEEE Sens. J. 15(1), 545–551 (2015).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

K. J. Daun, S. J. Grauer, and P. J. Hadwin, “Chemical species tomography of turbulent flows: Discrete ill-posed and rank deficient problems and the use of prior information,” J. Quant. Spectrosc. Radiat. Transf. 172, 58–74 (2016).
[Crossref]

J. Theor. Biol. (1)

R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29(3), 471–481 (1970).
[Crossref] [PubMed]

Laser Phys. Lett. (1)

S. Dupont, Z. Qu, S.-S. Kiwanuka, L. E. Hooper, J. C. Knight, S. R. Keiding, and C. F. Kaminski, “Ultra-high repetition rate absorption spectroscopy with low noise supercontinuum radiation generated in an all-normal dispersion fibre,” Laser Phys. Lett. 11(7), 075601 (2014).
[Crossref]

Math. Comput. (1)

L. Ingber, “Simulated annealing - practice versus theory,” Math. Comput. 18, 29–57 (1993).

Meas. Sci. Technol. (1)

N. Terzija, J. L. Davidson, C. A. Garciastewart, P. Wright, K. B. Ozanyan, S. Pegrum, T. J. Litt, and H. Mccann, “Image optimization for chemical species tomography with an irregular and sparse beam array,” Meas. Sci. Technol. 19(9), 094007 (2008).
[Crossref]

Nat. Photonics (1)

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 20, 27–30 (2016).

Opt. Express (1)

Opt. Lasers Eng. (2)

M. S. Irandoost, M. Ashjaee, M. H. Askari, and S. Ahmadi, “Temperature measurement of axisymmetric partially premixed methane/air flame in a co-annular burner using Mach–Zehnder interferometry,” Opt. Lasers Eng. 74, 94–102 (2015).
[Crossref]

B. Zhang, M. Zhao, Z. Liu, and Z. Wu, “Flame four-dimensional deflection tomography with compressed-sensing-revision reconstruction,” Opt. Lasers Eng. 83, 23–31 (2016).
[Crossref]

Opt. Lett. (1)

Opt. Photonics News (1)

L. A. Rahn, “Laser-based combustion diagnostics,” Opt. Photonics News 7(9), 23–29 (1996).
[Crossref]

Prog. Energ. Combust. (2)

areJ. Ballester and T. García-Armingol, “Diagnostic techniques for the monitoring and control of practical flames,” Prog. Energ. Combust. 36(4), 375–411 (2010).
[Crossref]

W. Cai and C. F. Kaminski, “Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows,” Prog. Energ. Combust. 59, 1–31 (2017).
[Crossref]

Rev. Sci. Instrum. (1)

S. A. Tsekenis, N. Tait, and H. McCann, “Spatially resolved and observer-free experimental quantification of spatial resolution in tomographic images,” Rev. Sci. Instrum. 86(3), 035104 (2015).
[Crossref] [PubMed]

Science (1)

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).
[Crossref] [PubMed]

Z. Phys. Chem. (1)

P. M. Lillo, M. L. Greene, and V. Sick, “Plenoptic single-Shot 3D imaging of in-cylinder fuel spray geometry,” Z. Phys. Chem. 229, 549–560 (2014).

Other (9)

G. T. Herman, Image Reconstruction from Projections (Springer-Verlag, 1979).

M. Allen, E. Furlong, and R. Hanson, “Tunable diode laser sensing and combustion control,” in Applied Combustion Diagnostics, K. Kohse-Hoinghaus, and J. B. Jeffries, eds., (Taylor & Francis, 2002), pp. 479–498.

C. Kim, M. Kim, J. Abell, W. Bewley, C. Merritt, C. Canedy, I. Vurgaftman, and J. Meyer, “Mid-IR distributed-feedback interband cascade lasers,” in SPIE OPTO, (International Society for Optics and Photonics, 2013), pp. 86311–86318.

J. Song, Y. Hong, H. Pan, and G. Wang, “Beam arrangement on two-dimensional temperature reconstruction based on laser absorption spectroscopy,” in International Symposium on Photoelectronic Detection & Imaging (2013).
[Crossref]

D. Mccormick, M. G. Twynstra, K. J. Daun, and H. Mccann, “Optimising laser absorption tomography beam arrays for imaging chemical species in gas turbine engine exhaust plumes,” in International Society for Industrial Process Tomography (2014).

M. P. Wood and K. B. Ozanyan, “Optimisation of a tomography sensor for imaging of temperature in a gas turbine engine,” IEEE Sensors 2013, pp. 1–4.

P. C. Hansen, “Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion,” in Society for Industrial and Applied Mathematics (SIAM, 1999).

M. Tsuzuki and T. Martins, Simulated Annealing: Strategies, Potential Uses & Advantages (Nova Science Publishers, 2014).

K. Sun, “Ultilization of multiple harmonics of wavelength modulation spectroscopy for practical gas sensing,” Ph.D. thesis (Stanford University, 2013).

Supplementary Material (1)

NameDescription
» Visualization 1: MPEG (2681 KB)      Evolution of the beam arrangement and the corresponding reconstruction from ART

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Definition of the coordinate system and the specifications for the i-th beam transecting the tomography field.
Fig. 2
Fig. 2 Schematic of the iterative process of the ART algorithm.
Fig. 3
Fig. 3 Illustration of the concept of orthogonality degree with a 3 × 3 tomographic problem.
Fig. 4
Fig. 4 Flow chart of the SA algorithm customized for the beam optimization problem.
Fig. 5
Fig. 5 The evolution of the cost functions along with the corresponding reconstruction errors from both ART and Tikhonov reconstruction for GWF, RM, and MOD respectively.
Fig. 6
Fig. 6 Singular values of the weight matrix A and the augmented matrices [A; λL] using various λ for the optimized beam arrangement by RM as shown in Panel (b) of Fig. 5.
Fig. 7
Fig. 7 Representative phantoms used for simulative studies.
Fig. 8
Fig. 8 (a). Seven example beam configurations represented in the physical space. (b). Seven example beam configurations represented in the Radon space.
Fig. 9
Fig. 9 Reconstructions for the beam arrangements shown in Figs. 8(a) and 8(b) using the ART algorithm.
Fig. 10
Fig. 10 Reconstructions for the beam arrangements shown in Panel #6 and #7 of Fig. 8(a) using the Tikhonov regularization method. Panel (a) and (b) are from Tikhonov reconstruction by setting λ as 0.5; and Panel (c) and (d) are results of λ = 0.05.
Fig. 11
Fig. 11 Panel (a) and (c) are the reconstructions for Phantom 1 and Phantom 3 using the optimized beam arrangement from RM; and Panel (b) and (d) are the counterparts of Panel (a) and (b) using the MOD method. The ART algorithm was used in these cases.
Fig. 12
Fig. 12 Panel (a) shows the reconstruction errors for 100 phantoms which are generated by randomly adjust the positions of the twin Gaussian peaks in Phantom 1; and Panel (b) is the counterpart of Panel (a) but with another 100 phantoms which are generated by randomly adjust the positions of the square and the Gaussian peak in Phantom 2.
Fig. 13
Fig. 13 Five beam optimization cases using MOD. The first row shows the optimized beam arrangements in the physical space; and the second row is the counterpart of the first row in the Radon space.

Tables (1)

Tables Icon

Table 1 Summary of simulation conditions for five beam optimization cases.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

p i =ln( I t,i (ν)/ I 0,i (ν) )= 0 L f(l,ν)dl .
j=1 n 2 A ij f j = p i .
A f = p .
f n = f n1 +β A i T f n1 p i A i T 2 2 A i T ,
f λ = argmin f { [ A λL ]f[ p 0 ] 2 2 }s.t. f λ 0,
L ij ={ 1 if i=j 1/w if j neighbors i 0 otherwise },
f λ = ( A T A+ λ 2 L T L) 1 A T p = A # ( p exact + p error ) = A # A f exact + A # p error = f exact +( A # AI) f exact + A # p error , = f exact +(RI) f exact + A # p error
F RM (ϕ)=||R(ϕ)-I| | F 2 .
F GWF =( j=1 n 2 i=1 m 1 2 i1 )/ n 2 .
O D i,j = A i A j || A i |||| A j || .
A 1 = (1,0,0,1,0,0,1,0,0) T A 2 = (0,1,0,0,1,0,0,1,0) T A 3 = (0,0,0,0,0,0,1,1,1) T . A 4 = (0,0,0,1,1,1,0,0,0) T
MOD(ϕ)= ( 1 O D 1,2 O D 1,3 O D 1,k O D 2,1 1 O D 2,3 O D 2,k O D 3,1 O D 3,2 1 O D k,k1 O D k,1 O D k,2 1 ) k×k .
F MOD (ϕ)=max(MOD(ϕ)I),
if Δf=f( ϕ new )f(ϕ)0, accept the ϕ new , else if rand<exp(Δf/T), accept the ϕ new , else remain ϕ .
e= f exact f rec 2 / f exact 2 ,

Metrics