Abstract

A method to simulate induced stresses for a laser crystal packaging technique and the consequent study of birefringent effects inside the laser cavities has been developed. The method has been implemented by thermo-mechanical simulations implemented with ANSYS 17.0. ANSYS results were later imported in VirtualLab Fusion software where input/output beams in terms of wavelengths and polarization were analysed. The study has been built in the context of a low-stress soldering technique implemented for glass or crystal optics packaging’s called the solderjet bumping technique. The outcome of the analysis showed almost no difference between the input and output laser beams for the laser cavity constructed with an yttrium aluminum garnet active laser crystal, a second harmonic generator beta-barium borate, and the output laser mirror made of fused silica assembled by the low-stress solderjet bumping technique.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Easy method to measure the packaging-induced stress of a semiconductor laser diode by lasing wavelength shifting

Hongyou Zhang, Tuanwei Fu, Chung-En Zah, and Xingsheng Liu
Appl. Opt. 58(24) 6672-6677 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Ferrando, M. Galan, E. Mendez, E. Romeu, D. Montes, A. Isern, M. Jardi, J. Juliachs, and G. Viera, “Innovative optical techniques used in the Raman instrument for Exomars,” in ICSO International Conference on Space Optics, Greece2010.
  2. P. Ribes-Pleguezuelo, C. Koechlin, M. Hornaff, A. Kamm, E. Beckert, G. Fiault, R. Eberhardt, and A. Tünnermann, “High-precision optomechanical lens system for space applications assembled by a local soldering technique,” Opt. Eng. 55(6), 065101 (2016).
    [Crossref]
  3. E. Beckert, T. Oppert, G. Azdasht, E. Zakel, T. Burkhardt, M. Hornaff, A. Kamm, I. Scheidig, R. Eberhardt, A. Tünnermann, and F. Buchmann, “Solder jetting–a versatile packaging and assembly technology for hybrid photonics and optoelectronical systems,” in Proceedings of IMAPS 42nd Int. Symp. on Microelectronics, California, (2009) pp. 406.
  4. W. Koechner, Solid-State Laser Engineering (Springer, 1999).
    [Crossref]
  5. C. Rothhardt, J. Rothhardt, A. Klenke, T. Peschel, R. Eberhardt, J. Limpert, and A. Tünnermann, “BBO-sapphire sandwich structure for frequency conversion of high power lasers,” Opt. Mater. Express 4, 1092 (2014).
    [Crossref]
  6. J. F. Nye, Physical properties of crystals (Oxford Universty, 2010).
  7. Q. Lü, U. Wittrock, and S. Dong, “Photoelastic effects in Nd:YAG rod and slab lasers,” Opt. Laser Technol. 27(2), 95–101 (1995).
    [Crossref]
  8. G. Golub and F. Charles, Matrix Computations (Johns Hopkins University, 1983).
  9. H. Bremmer, “The W.K.B approximation as the first term of a geometric-optical series,” Commun. Pure. Appl. Math. 4, 105–115 (1951).
    [Crossref]
  10. F. Wyrowski and M. Kuhn, “Introduction to field tracing,” J. Mod. Opt. 58, 449–466 (2011).
    [Crossref]
  11. D. W. Berreman, “Optics in stratified and anisotropic media: 4 × 4-matrix formulation,” J. Opt. Soc. Am. 62, 502–510 (1972).
    [Crossref]
  12. G. D. Landry and T. A. Maldonado, “Gaussian beam transmission and reflection from a general anisotropic multilayer structure,” Appl. Opt. 35, 5870–5879 (1996).
    [Crossref] [PubMed]
  13. L. Li, “Reformulation of the Fourier modal method for surface-relief gratings made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998).
    [Crossref]
  14. L. Li, “Note on the S-matrix propagation algorithm,” J. Opt. Soc. Am. A 20, 655–660 (2003).
    [Crossref]
  15. Physical optics design software, “Wyrowski VirtualLab Fusion”, developed by Wyrowski Photonics UG, distributed by LightTrans GmbH, Jena Germany. http://www.lighttrans.com .
  16. S. Zhang, Applied Computational Optics GroupInstitute of Applied Physics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743 Jena, Germany, C. Hellmann and F. Wyrowski are preparing a manuscript to be called “Algorithm for the propagation of electromagnetic fields through etalons and crystals.”
  17. D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
    [Crossref]
  18. W. Martienssen and H. Warlimont, Springer handbook of condensed matter and materials data (Springer, 2005).
    [Crossref]
  19. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).
    [Crossref]
  20. W. L. Bond, “Measurement of the refractive index of several crystals,” J. Appl. Phys. 36, 1674–1677 (1965).
    [Crossref]
  21. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of nonlinear optical crystals (Springer, 1999).
    [Crossref]
  22. D. Asoubar, S. Zhang, F. Wyrowski, and M. Kuhn, “Laser resonator modeling by field tracing: a flexible approach for fully vectorial transverse eigenmode calculation,” J. Opt. Soc. Am. B 31(11), 2565–2573 (2014).
    [Crossref]
  23. D. Asoubar, S. Zhang, and F. Wyrowski, “Simulation of birefringence effects on the dominant transversal laser resonator mode caused by anisotropic crystals,” Opt. Express 23, 13848–3865 (2015).
    [Crossref] [PubMed]
  24. D. Asoubar and F. Wyrowski, “Fully vectorial laser resonator modelling of continuous-wave solid-state lasers including rate equations, thermal lensing and stress-induced birefringence,” Opt. Express 23, 18802–18822 (2015).
    [Crossref] [PubMed]
  25. P. Ribes-Pleguezuelo, A. Moral, M. Gilaberte, P. Rodríguez, G. Rodríguez, M. Laudisio, M. Galan, M. Hornaff, E. Beckert, R. Eberhardt, and A. Tünnermann, “Assembly processes comparison for a miniaturized laser used for the Exomars European Space Agency mission,” Opt. Eng. 55, 116107 (2016).
    [Crossref]

2016 (2)

P. Ribes-Pleguezuelo, C. Koechlin, M. Hornaff, A. Kamm, E. Beckert, G. Fiault, R. Eberhardt, and A. Tünnermann, “High-precision optomechanical lens system for space applications assembled by a local soldering technique,” Opt. Eng. 55(6), 065101 (2016).
[Crossref]

P. Ribes-Pleguezuelo, A. Moral, M. Gilaberte, P. Rodríguez, G. Rodríguez, M. Laudisio, M. Galan, M. Hornaff, E. Beckert, R. Eberhardt, and A. Tünnermann, “Assembly processes comparison for a miniaturized laser used for the Exomars European Space Agency mission,” Opt. Eng. 55, 116107 (2016).
[Crossref]

2015 (2)

2014 (2)

2011 (1)

F. Wyrowski and M. Kuhn, “Introduction to field tracing,” J. Mod. Opt. 58, 449–466 (2011).
[Crossref]

2003 (1)

1998 (1)

L. Li, “Reformulation of the Fourier modal method for surface-relief gratings made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998).
[Crossref]

1996 (1)

1995 (1)

Q. Lü, U. Wittrock, and S. Dong, “Photoelastic effects in Nd:YAG rod and slab lasers,” Opt. Laser Technol. 27(2), 95–101 (1995).
[Crossref]

1987 (1)

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[Crossref]

1972 (1)

1965 (2)

I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).
[Crossref]

W. L. Bond, “Measurement of the refractive index of several crystals,” J. Appl. Phys. 36, 1674–1677 (1965).
[Crossref]

1951 (1)

H. Bremmer, “The W.K.B approximation as the first term of a geometric-optical series,” Commun. Pure. Appl. Math. 4, 105–115 (1951).
[Crossref]

Asoubar, D.

Azdasht, G.

E. Beckert, T. Oppert, G. Azdasht, E. Zakel, T. Burkhardt, M. Hornaff, A. Kamm, I. Scheidig, R. Eberhardt, A. Tünnermann, and F. Buchmann, “Solder jetting–a versatile packaging and assembly technology for hybrid photonics and optoelectronical systems,” in Proceedings of IMAPS 42nd Int. Symp. on Microelectronics, California, (2009) pp. 406.

Beckert, E.

P. Ribes-Pleguezuelo, C. Koechlin, M. Hornaff, A. Kamm, E. Beckert, G. Fiault, R. Eberhardt, and A. Tünnermann, “High-precision optomechanical lens system for space applications assembled by a local soldering technique,” Opt. Eng. 55(6), 065101 (2016).
[Crossref]

P. Ribes-Pleguezuelo, A. Moral, M. Gilaberte, P. Rodríguez, G. Rodríguez, M. Laudisio, M. Galan, M. Hornaff, E. Beckert, R. Eberhardt, and A. Tünnermann, “Assembly processes comparison for a miniaturized laser used for the Exomars European Space Agency mission,” Opt. Eng. 55, 116107 (2016).
[Crossref]

E. Beckert, T. Oppert, G. Azdasht, E. Zakel, T. Burkhardt, M. Hornaff, A. Kamm, I. Scheidig, R. Eberhardt, A. Tünnermann, and F. Buchmann, “Solder jetting–a versatile packaging and assembly technology for hybrid photonics and optoelectronical systems,” in Proceedings of IMAPS 42nd Int. Symp. on Microelectronics, California, (2009) pp. 406.

Berreman, D. W.

Bond, W. L.

W. L. Bond, “Measurement of the refractive index of several crystals,” J. Appl. Phys. 36, 1674–1677 (1965).
[Crossref]

Bremmer, H.

H. Bremmer, “The W.K.B approximation as the first term of a geometric-optical series,” Commun. Pure. Appl. Math. 4, 105–115 (1951).
[Crossref]

Buchmann, F.

E. Beckert, T. Oppert, G. Azdasht, E. Zakel, T. Burkhardt, M. Hornaff, A. Kamm, I. Scheidig, R. Eberhardt, A. Tünnermann, and F. Buchmann, “Solder jetting–a versatile packaging and assembly technology for hybrid photonics and optoelectronical systems,” in Proceedings of IMAPS 42nd Int. Symp. on Microelectronics, California, (2009) pp. 406.

Burkhardt, T.

E. Beckert, T. Oppert, G. Azdasht, E. Zakel, T. Burkhardt, M. Hornaff, A. Kamm, I. Scheidig, R. Eberhardt, A. Tünnermann, and F. Buchmann, “Solder jetting–a versatile packaging and assembly technology for hybrid photonics and optoelectronical systems,” in Proceedings of IMAPS 42nd Int. Symp. on Microelectronics, California, (2009) pp. 406.

Charles, F.

G. Golub and F. Charles, Matrix Computations (Johns Hopkins University, 1983).

Davis, L.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[Crossref]

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of nonlinear optical crystals (Springer, 1999).
[Crossref]

Dong, S.

Q. Lü, U. Wittrock, and S. Dong, “Photoelastic effects in Nd:YAG rod and slab lasers,” Opt. Laser Technol. 27(2), 95–101 (1995).
[Crossref]

Eberhardt, R.

P. Ribes-Pleguezuelo, C. Koechlin, M. Hornaff, A. Kamm, E. Beckert, G. Fiault, R. Eberhardt, and A. Tünnermann, “High-precision optomechanical lens system for space applications assembled by a local soldering technique,” Opt. Eng. 55(6), 065101 (2016).
[Crossref]

P. Ribes-Pleguezuelo, A. Moral, M. Gilaberte, P. Rodríguez, G. Rodríguez, M. Laudisio, M. Galan, M. Hornaff, E. Beckert, R. Eberhardt, and A. Tünnermann, “Assembly processes comparison for a miniaturized laser used for the Exomars European Space Agency mission,” Opt. Eng. 55, 116107 (2016).
[Crossref]

C. Rothhardt, J. Rothhardt, A. Klenke, T. Peschel, R. Eberhardt, J. Limpert, and A. Tünnermann, “BBO-sapphire sandwich structure for frequency conversion of high power lasers,” Opt. Mater. Express 4, 1092 (2014).
[Crossref]

E. Beckert, T. Oppert, G. Azdasht, E. Zakel, T. Burkhardt, M. Hornaff, A. Kamm, I. Scheidig, R. Eberhardt, A. Tünnermann, and F. Buchmann, “Solder jetting–a versatile packaging and assembly technology for hybrid photonics and optoelectronical systems,” in Proceedings of IMAPS 42nd Int. Symp. on Microelectronics, California, (2009) pp. 406.

Eimerl, D.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[Crossref]

Ferrando, S.

S. Ferrando, M. Galan, E. Mendez, E. Romeu, D. Montes, A. Isern, M. Jardi, J. Juliachs, and G. Viera, “Innovative optical techniques used in the Raman instrument for Exomars,” in ICSO International Conference on Space Optics, Greece2010.

Fiault, G.

P. Ribes-Pleguezuelo, C. Koechlin, M. Hornaff, A. Kamm, E. Beckert, G. Fiault, R. Eberhardt, and A. Tünnermann, “High-precision optomechanical lens system for space applications assembled by a local soldering technique,” Opt. Eng. 55(6), 065101 (2016).
[Crossref]

Galan, M.

P. Ribes-Pleguezuelo, A. Moral, M. Gilaberte, P. Rodríguez, G. Rodríguez, M. Laudisio, M. Galan, M. Hornaff, E. Beckert, R. Eberhardt, and A. Tünnermann, “Assembly processes comparison for a miniaturized laser used for the Exomars European Space Agency mission,” Opt. Eng. 55, 116107 (2016).
[Crossref]

S. Ferrando, M. Galan, E. Mendez, E. Romeu, D. Montes, A. Isern, M. Jardi, J. Juliachs, and G. Viera, “Innovative optical techniques used in the Raman instrument for Exomars,” in ICSO International Conference on Space Optics, Greece2010.

Gilaberte, M.

P. Ribes-Pleguezuelo, A. Moral, M. Gilaberte, P. Rodríguez, G. Rodríguez, M. Laudisio, M. Galan, M. Hornaff, E. Beckert, R. Eberhardt, and A. Tünnermann, “Assembly processes comparison for a miniaturized laser used for the Exomars European Space Agency mission,” Opt. Eng. 55, 116107 (2016).
[Crossref]

Golub, G.

G. Golub and F. Charles, Matrix Computations (Johns Hopkins University, 1983).

Graham, E. K.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[Crossref]

Gurzadyan, G. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of nonlinear optical crystals (Springer, 1999).
[Crossref]

Hornaff, M.

P. Ribes-Pleguezuelo, A. Moral, M. Gilaberte, P. Rodríguez, G. Rodríguez, M. Laudisio, M. Galan, M. Hornaff, E. Beckert, R. Eberhardt, and A. Tünnermann, “Assembly processes comparison for a miniaturized laser used for the Exomars European Space Agency mission,” Opt. Eng. 55, 116107 (2016).
[Crossref]

P. Ribes-Pleguezuelo, C. Koechlin, M. Hornaff, A. Kamm, E. Beckert, G. Fiault, R. Eberhardt, and A. Tünnermann, “High-precision optomechanical lens system for space applications assembled by a local soldering technique,” Opt. Eng. 55(6), 065101 (2016).
[Crossref]

E. Beckert, T. Oppert, G. Azdasht, E. Zakel, T. Burkhardt, M. Hornaff, A. Kamm, I. Scheidig, R. Eberhardt, A. Tünnermann, and F. Buchmann, “Solder jetting–a versatile packaging and assembly technology for hybrid photonics and optoelectronical systems,” in Proceedings of IMAPS 42nd Int. Symp. on Microelectronics, California, (2009) pp. 406.

Isern, A.

S. Ferrando, M. Galan, E. Mendez, E. Romeu, D. Montes, A. Isern, M. Jardi, J. Juliachs, and G. Viera, “Innovative optical techniques used in the Raman instrument for Exomars,” in ICSO International Conference on Space Optics, Greece2010.

Jardi, M.

S. Ferrando, M. Galan, E. Mendez, E. Romeu, D. Montes, A. Isern, M. Jardi, J. Juliachs, and G. Viera, “Innovative optical techniques used in the Raman instrument for Exomars,” in ICSO International Conference on Space Optics, Greece2010.

Juliachs, J.

S. Ferrando, M. Galan, E. Mendez, E. Romeu, D. Montes, A. Isern, M. Jardi, J. Juliachs, and G. Viera, “Innovative optical techniques used in the Raman instrument for Exomars,” in ICSO International Conference on Space Optics, Greece2010.

Kamm, A.

P. Ribes-Pleguezuelo, C. Koechlin, M. Hornaff, A. Kamm, E. Beckert, G. Fiault, R. Eberhardt, and A. Tünnermann, “High-precision optomechanical lens system for space applications assembled by a local soldering technique,” Opt. Eng. 55(6), 065101 (2016).
[Crossref]

E. Beckert, T. Oppert, G. Azdasht, E. Zakel, T. Burkhardt, M. Hornaff, A. Kamm, I. Scheidig, R. Eberhardt, A. Tünnermann, and F. Buchmann, “Solder jetting–a versatile packaging and assembly technology for hybrid photonics and optoelectronical systems,” in Proceedings of IMAPS 42nd Int. Symp. on Microelectronics, California, (2009) pp. 406.

Klenke, A.

Koechlin, C.

P. Ribes-Pleguezuelo, C. Koechlin, M. Hornaff, A. Kamm, E. Beckert, G. Fiault, R. Eberhardt, and A. Tünnermann, “High-precision optomechanical lens system for space applications assembled by a local soldering technique,” Opt. Eng. 55(6), 065101 (2016).
[Crossref]

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer, 1999).
[Crossref]

Kuhn, M.

Landry, G. D.

Laudisio, M.

P. Ribes-Pleguezuelo, A. Moral, M. Gilaberte, P. Rodríguez, G. Rodríguez, M. Laudisio, M. Galan, M. Hornaff, E. Beckert, R. Eberhardt, and A. Tünnermann, “Assembly processes comparison for a miniaturized laser used for the Exomars European Space Agency mission,” Opt. Eng. 55, 116107 (2016).
[Crossref]

Li, L.

L. Li, “Note on the S-matrix propagation algorithm,” J. Opt. Soc. Am. A 20, 655–660 (2003).
[Crossref]

L. Li, “Reformulation of the Fourier modal method for surface-relief gratings made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998).
[Crossref]

Limpert, J.

Lü, Q.

Q. Lü, U. Wittrock, and S. Dong, “Photoelastic effects in Nd:YAG rod and slab lasers,” Opt. Laser Technol. 27(2), 95–101 (1995).
[Crossref]

Maldonado, T. A.

Malitson, I. H.

Martienssen, W.

W. Martienssen and H. Warlimont, Springer handbook of condensed matter and materials data (Springer, 2005).
[Crossref]

Mendez, E.

S. Ferrando, M. Galan, E. Mendez, E. Romeu, D. Montes, A. Isern, M. Jardi, J. Juliachs, and G. Viera, “Innovative optical techniques used in the Raman instrument for Exomars,” in ICSO International Conference on Space Optics, Greece2010.

Montes, D.

S. Ferrando, M. Galan, E. Mendez, E. Romeu, D. Montes, A. Isern, M. Jardi, J. Juliachs, and G. Viera, “Innovative optical techniques used in the Raman instrument for Exomars,” in ICSO International Conference on Space Optics, Greece2010.

Moral, A.

P. Ribes-Pleguezuelo, A. Moral, M. Gilaberte, P. Rodríguez, G. Rodríguez, M. Laudisio, M. Galan, M. Hornaff, E. Beckert, R. Eberhardt, and A. Tünnermann, “Assembly processes comparison for a miniaturized laser used for the Exomars European Space Agency mission,” Opt. Eng. 55, 116107 (2016).
[Crossref]

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of nonlinear optical crystals (Springer, 1999).
[Crossref]

Nye, J. F.

J. F. Nye, Physical properties of crystals (Oxford Universty, 2010).

Oppert, T.

E. Beckert, T. Oppert, G. Azdasht, E. Zakel, T. Burkhardt, M. Hornaff, A. Kamm, I. Scheidig, R. Eberhardt, A. Tünnermann, and F. Buchmann, “Solder jetting–a versatile packaging and assembly technology for hybrid photonics and optoelectronical systems,” in Proceedings of IMAPS 42nd Int. Symp. on Microelectronics, California, (2009) pp. 406.

Peschel, T.

Ribes-Pleguezuelo, P.

P. Ribes-Pleguezuelo, C. Koechlin, M. Hornaff, A. Kamm, E. Beckert, G. Fiault, R. Eberhardt, and A. Tünnermann, “High-precision optomechanical lens system for space applications assembled by a local soldering technique,” Opt. Eng. 55(6), 065101 (2016).
[Crossref]

P. Ribes-Pleguezuelo, A. Moral, M. Gilaberte, P. Rodríguez, G. Rodríguez, M. Laudisio, M. Galan, M. Hornaff, E. Beckert, R. Eberhardt, and A. Tünnermann, “Assembly processes comparison for a miniaturized laser used for the Exomars European Space Agency mission,” Opt. Eng. 55, 116107 (2016).
[Crossref]

Rodríguez, G.

P. Ribes-Pleguezuelo, A. Moral, M. Gilaberte, P. Rodríguez, G. Rodríguez, M. Laudisio, M. Galan, M. Hornaff, E. Beckert, R. Eberhardt, and A. Tünnermann, “Assembly processes comparison for a miniaturized laser used for the Exomars European Space Agency mission,” Opt. Eng. 55, 116107 (2016).
[Crossref]

Rodríguez, P.

P. Ribes-Pleguezuelo, A. Moral, M. Gilaberte, P. Rodríguez, G. Rodríguez, M. Laudisio, M. Galan, M. Hornaff, E. Beckert, R. Eberhardt, and A. Tünnermann, “Assembly processes comparison for a miniaturized laser used for the Exomars European Space Agency mission,” Opt. Eng. 55, 116107 (2016).
[Crossref]

Romeu, E.

S. Ferrando, M. Galan, E. Mendez, E. Romeu, D. Montes, A. Isern, M. Jardi, J. Juliachs, and G. Viera, “Innovative optical techniques used in the Raman instrument for Exomars,” in ICSO International Conference on Space Optics, Greece2010.

Rothhardt, C.

Rothhardt, J.

Scheidig, I.

E. Beckert, T. Oppert, G. Azdasht, E. Zakel, T. Burkhardt, M. Hornaff, A. Kamm, I. Scheidig, R. Eberhardt, A. Tünnermann, and F. Buchmann, “Solder jetting–a versatile packaging and assembly technology for hybrid photonics and optoelectronical systems,” in Proceedings of IMAPS 42nd Int. Symp. on Microelectronics, California, (2009) pp. 406.

Tünnermann, A.

P. Ribes-Pleguezuelo, C. Koechlin, M. Hornaff, A. Kamm, E. Beckert, G. Fiault, R. Eberhardt, and A. Tünnermann, “High-precision optomechanical lens system for space applications assembled by a local soldering technique,” Opt. Eng. 55(6), 065101 (2016).
[Crossref]

P. Ribes-Pleguezuelo, A. Moral, M. Gilaberte, P. Rodríguez, G. Rodríguez, M. Laudisio, M. Galan, M. Hornaff, E. Beckert, R. Eberhardt, and A. Tünnermann, “Assembly processes comparison for a miniaturized laser used for the Exomars European Space Agency mission,” Opt. Eng. 55, 116107 (2016).
[Crossref]

C. Rothhardt, J. Rothhardt, A. Klenke, T. Peschel, R. Eberhardt, J. Limpert, and A. Tünnermann, “BBO-sapphire sandwich structure for frequency conversion of high power lasers,” Opt. Mater. Express 4, 1092 (2014).
[Crossref]

E. Beckert, T. Oppert, G. Azdasht, E. Zakel, T. Burkhardt, M. Hornaff, A. Kamm, I. Scheidig, R. Eberhardt, A. Tünnermann, and F. Buchmann, “Solder jetting–a versatile packaging and assembly technology for hybrid photonics and optoelectronical systems,” in Proceedings of IMAPS 42nd Int. Symp. on Microelectronics, California, (2009) pp. 406.

Velsko, S.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[Crossref]

Viera, G.

S. Ferrando, M. Galan, E. Mendez, E. Romeu, D. Montes, A. Isern, M. Jardi, J. Juliachs, and G. Viera, “Innovative optical techniques used in the Raman instrument for Exomars,” in ICSO International Conference on Space Optics, Greece2010.

Warlimont, H.

W. Martienssen and H. Warlimont, Springer handbook of condensed matter and materials data (Springer, 2005).
[Crossref]

Wittrock, U.

Q. Lü, U. Wittrock, and S. Dong, “Photoelastic effects in Nd:YAG rod and slab lasers,” Opt. Laser Technol. 27(2), 95–101 (1995).
[Crossref]

Wyrowski, F.

Zakel, E.

E. Beckert, T. Oppert, G. Azdasht, E. Zakel, T. Burkhardt, M. Hornaff, A. Kamm, I. Scheidig, R. Eberhardt, A. Tünnermann, and F. Buchmann, “Solder jetting–a versatile packaging and assembly technology for hybrid photonics and optoelectronical systems,” in Proceedings of IMAPS 42nd Int. Symp. on Microelectronics, California, (2009) pp. 406.

Zalkin, A.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[Crossref]

Zhang, S.

D. Asoubar, S. Zhang, and F. Wyrowski, “Simulation of birefringence effects on the dominant transversal laser resonator mode caused by anisotropic crystals,” Opt. Express 23, 13848–3865 (2015).
[Crossref] [PubMed]

D. Asoubar, S. Zhang, F. Wyrowski, and M. Kuhn, “Laser resonator modeling by field tracing: a flexible approach for fully vectorial transverse eigenmode calculation,” J. Opt. Soc. Am. B 31(11), 2565–2573 (2014).
[Crossref]

S. Zhang, Applied Computational Optics GroupInstitute of Applied Physics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743 Jena, Germany, C. Hellmann and F. Wyrowski are preparing a manuscript to be called “Algorithm for the propagation of electromagnetic fields through etalons and crystals.”

Appl. Opt. (1)

Commun. Pure. Appl. Math. (1)

H. Bremmer, “The W.K.B approximation as the first term of a geometric-optical series,” Commun. Pure. Appl. Math. 4, 105–115 (1951).
[Crossref]

J. Appl. Phys. (2)

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[Crossref]

W. L. Bond, “Measurement of the refractive index of several crystals,” J. Appl. Phys. 36, 1674–1677 (1965).
[Crossref]

J. Mod. Opt. (2)

L. Li, “Reformulation of the Fourier modal method for surface-relief gratings made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998).
[Crossref]

F. Wyrowski and M. Kuhn, “Introduction to field tracing,” J. Mod. Opt. 58, 449–466 (2011).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Eng. (2)

P. Ribes-Pleguezuelo, A. Moral, M. Gilaberte, P. Rodríguez, G. Rodríguez, M. Laudisio, M. Galan, M. Hornaff, E. Beckert, R. Eberhardt, and A. Tünnermann, “Assembly processes comparison for a miniaturized laser used for the Exomars European Space Agency mission,” Opt. Eng. 55, 116107 (2016).
[Crossref]

P. Ribes-Pleguezuelo, C. Koechlin, M. Hornaff, A. Kamm, E. Beckert, G. Fiault, R. Eberhardt, and A. Tünnermann, “High-precision optomechanical lens system for space applications assembled by a local soldering technique,” Opt. Eng. 55(6), 065101 (2016).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

Q. Lü, U. Wittrock, and S. Dong, “Photoelastic effects in Nd:YAG rod and slab lasers,” Opt. Laser Technol. 27(2), 95–101 (1995).
[Crossref]

Opt. Mater. Express (1)

Other (9)

J. F. Nye, Physical properties of crystals (Oxford Universty, 2010).

E. Beckert, T. Oppert, G. Azdasht, E. Zakel, T. Burkhardt, M. Hornaff, A. Kamm, I. Scheidig, R. Eberhardt, A. Tünnermann, and F. Buchmann, “Solder jetting–a versatile packaging and assembly technology for hybrid photonics and optoelectronical systems,” in Proceedings of IMAPS 42nd Int. Symp. on Microelectronics, California, (2009) pp. 406.

W. Koechner, Solid-State Laser Engineering (Springer, 1999).
[Crossref]

G. Golub and F. Charles, Matrix Computations (Johns Hopkins University, 1983).

Physical optics design software, “Wyrowski VirtualLab Fusion”, developed by Wyrowski Photonics UG, distributed by LightTrans GmbH, Jena Germany. http://www.lighttrans.com .

S. Zhang, Applied Computational Optics GroupInstitute of Applied Physics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743 Jena, Germany, C. Hellmann and F. Wyrowski are preparing a manuscript to be called “Algorithm for the propagation of electromagnetic fields through etalons and crystals.”

S. Ferrando, M. Galan, E. Mendez, E. Romeu, D. Montes, A. Isern, M. Jardi, J. Juliachs, and G. Viera, “Innovative optical techniques used in the Raman instrument for Exomars,” in ICSO International Conference on Space Optics, Greece2010.

W. Martienssen and H. Warlimont, Springer handbook of condensed matter and materials data (Springer, 2005).
[Crossref]

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of nonlinear optical crystals (Springer, 1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Soft solder alloys in a spherical form are transferred from the solder sphere reservoir to the jet capillary until they are melted and jetted to the desired components to be joined. The soldering device is mounted in a robotic arm able to solder components with 6 degrees of freedom [2].
Fig. 2
Fig. 2 Schematic of the studied DPSSL cavity. A pumping diode at 808 nm, and the plano-plano laser cavity represented by the three components; the YAG crystal, the SHG BBO and the output mirror.
Fig. 3
Fig. 3 An example of the designed geometry used for each laser component. In the case of the SHG BBO crystal, it was created by using two different coordinate systems (crystallographic and laboratory coordinates system). The two different coordinate systems were important to be able to define the material orthotropic characteristics (as seen in Table 1), but also to define the required crystal phase matching angle of 22.8° for SHG needs [4].
Fig. 4
Fig. 4 Thermally dependent mechanical material properties. In (a) isotropic elasticity, Young’s Modulus. In (b), enthalpy for the alloy phase change. The alloy thermal dependent characteristics have been extracted by experimental data from the company Setaram Instrumentation (France).
Fig. 5
Fig. 5 In (a), simulated 2 mm3 crystal cube with and internal laser beam represented as a red cylinder. The beam has a much smaller size than the dimension of the crystal cube. The cross-section marked within the yellow frame is shown in (b), where the inhomogeneity along z-direction is approximated as layered structures.
Fig. 6
Fig. 6 Maximum soldering alloy phase change temperature during cooling-down process (green), and whole assembly minimum temperature (red). Here the almost instant cooling-down process on the BBO simulation is shown. FEM simulations carried out for YAG and fused quartz showed similar cooling-down ramps.
Fig. 7
Fig. 7 In (a) Von-Mises stress calculated in MPa for the BBO FEM analysis. (b) vector principal stresses calculated along the laser beam propagation direction in MPa (maximum, middle and minimum principal stresses in red, green and blue, respectively). Similar results were obtained for the YAG crystal and the fused quartz laser output mirror.
Fig. 8
Fig. 8 Coordinates transformations needed to move the coordinates from the laboratory to the crystal coordinate system. (a) crystal structure of cubic YAG, x′, y′, z′, coordinates in the crystallographic structure [7]. (b) crystal structure of BBO, x′, y′, z′, coordinates in the crystallographic structure and x, y, z, in the laboratory system [17].
Fig. 9
Fig. 9 Amplitude of the transmitted field behind the YAG crystal, with Ey-polarized Gaussian @1064 nm as the input. Column (a) ideal case without stress; column (b) with actual solderjet bumping packaging induced stress; column (c) with 10× increased stress. Upper row corresponds to the Ex-component and lower row the Ey-component. Note that column (c) differs only slightly from (b) in the central part of Ex-component.
Fig. 10
Fig. 10 Amplitude of the transmitted field behind the YAG crystal, with Ex-polarized Gaussian @532 nm as the input. Column (a) ideal case without stress; column (b) with actual solderjet bumping induced stress; column (c) with 10× increased stress. Upper row corresponds to the Ex-component and lower row the Ey-component.
Fig. 11
Fig. 11 Amplitude of the transmitted field behind the BBO crystal, with Ey-polarized Gaussian @1064 nm as the input. Column (a) ideal case without stress; column (b) with actual stress; column (c) with 10× increased stress. The upper row corresponds to the Ex-component and lower row the Ey-component.
Fig. 12
Fig. 12 Amplitude of the transmitted field behind the BBO crystal, with Ex-polarized Gaussian @532 nm as the input. Column (a) ideal case without stress; column (b) with actual studied stress; column (c) with 10× increased stress. Upper row corresponds to the Ex-component and lower row the Ey-component.

Tables (4)

Tables Icon

Table 1 Main physical properties of laser materials used

Tables Icon

Table 2 Main physical properties of soldering alloy and base plate used

Tables Icon

Table 3 Piezo-optic constants for the crystals in the crystallographic orientation [18] as expressed in Eq. (5)

Tables Icon

Table 4 Studied crystal types, laser resonator cavity produced beams, and stress conditions. The diode-pumping emission wavelength of 808 nm is avoided for being granted between both extreme 532 nm and 1064 nm laser cavity wavelengths.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

B i j = B 0 , i j + Δ B i j ,
Δ B i j = π i j k l σ k l ,
[ i j ] = [ B i j ] 1 ,
[ σ i j ] = [ a i j ] [ σ i j ] [ a i j ] 1
Δ B m = π m n σ n ,
B i j = Δ B 0 , i j + Δ B i j ,
B 0 , i j = { ( n i ) 2 , if i = j 0 , else
[ i j ] = [ B 0 , i j + Δ B i j ] 1 [ B 0 , i j ] 1 η [ B 0 , i j ] 1 [ Δ B i j / η ] [ B 0 , i j ] 1 ,
η = 1 9 i = 1 3 j = 1 3 Δ B i j
[ i j ] = [ a i j ] T [ i j ] [ a i j ] ,
E ˜ in ( κ ) = [ E ˜ x in ( κ ) E ˜ y in ( κ ) ] = [ E ˜ x in ( ρ ) E ˜ y in ( ρ ) ] ,
E ˜ out ( κ ) = T ˜ ( κ ) E ˜ in ( κ ) ,
T ˜ ( κ ) = [ t ˜ x x ( κ ) t ˜ x y ( κ ) t ˜ y x ( κ ) t ˜ y y ( κ ) ]
E out ( ρ ) = [ E x out ( ρ ) E y out ( ρ ) ] = [ 1 E ˜ x out ( κ ) 1 E ˜ y out ( κ ) ] .
[ a i j ] YAG = 1 6 [ 3 0 3 1 2 1 2 2 2 ] ,
[ a i j ] BBO = [ cos θ 0 sin θ 0 1 0 sin θ 0 cos θ ] ,
[ π m n ] m 3 m = [ π 11 π 12 π 12 0 0 0 π 12 π 11 π 12 0 0 0 π 12 π 12 π 11 0 0 0 0 0 0 π 44 0 0 0 0 0 0 π 44 0 0 0 0 0 0 π 44 ] ,
[ π m n ] 3 m ¯ = [ π 11 π 12 π 13 π 14 0 0 π 12 π 11 π 13 π 14 0 0 π 31 π 31 π 33 0 0 0 π 41 π 41 0 π 44 0 0 0 0 0 0 π 44 2 π 41 0 0 0 0 π 14 π 11 π 12 ] ,
[ π m n ] Isotropic = [ π 11 π 12 π 12 0 0 0 π 12 π 11 π 12 0 0 0 π 12 π 12 π 11 0 0 0 0 0 0 π 44 0 0 0 0 0 0 π 44 0 0 0 0 0 0 p i 44 ] ,
n 2 = 1 + 2.293 λ 2 λ 2 ( 0.1095 ) 2 + 3.705 λ 2 λ 2 ( 17.825 ) 2 ;
n o 2 = 2.7405 + 0.0184 λ 2 0.0179 0.0155 λ 2 , n e 2 = 2.3730 + 0.0128 λ 2 0.0156 0.0044 λ 2 ;
n 2 = 1 + 0.6962 λ 2 λ 2 ( 0.0684 ) 2 + 0.4079 λ 2 λ 2 ( 0.1162 ) 2 + 0.8975 λ 2 λ 2 ( 9.896 ) 2 ;

Metrics