Abstract

To enhance signal levels in multiphoton microscopy (MPM) at the deep-tissue excitation window (1600-1820 nm) with oil immersion, we demonstrate: First, the absorption spectra of several commonly immersion oils are characterized, which were unknown before. Second, new material with lower absorption based on mixing is proposed. Third, optimal selection of excitation wavelength within this window is proposed based on absorption spectra characterization. Second and third harmonic generation imaging of mouse tissue corroborate our selection: 1600-nm excitation leads to notable orders-of-magnitude increase in MPM signal, compared with 1700-nm excitation, enabling 200-µm imaging depth of mouse skin while 1700-nm excitation could resolve virtually no structure.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Measurements of multiphoton action cross sections for multiphoton microscopy

Li-Chung Cheng, Nicholas G. Horton, Ke Wang, Shean-Jen Chen, and Chris Xu
Biomed. Opt. Express 5(10) 3427-3433 (2014)

Energetic ultrafast fiber laser sources tunable in 1030–1215 nm for deep tissue multi-photon microscopy

Wei Liu, Shih-Hsuan Chia, Hsiang-Yu Chung, Rüdiger Greinert, Franz X. Kärtner, and Guoqing Chang
Opt. Express 25(6) 6822-6831 (2017)

Miniature fiber-optic multiphoton microscopy system using frequency-doubled femtosecond Er-doped fiber laser

Lin Huang, Arthur K. Mills, Yuan Zhao, David J. Jones, and Shuo Tang
Biomed. Opt. Express 7(5) 1948-1956 (2016)

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  2. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
    [Crossref] [PubMed]
  3. N. Horton, K. Wang, D. Kobat, F. W. Wise, and C. Xu, “In vivo deep penetration three-photon imaging of mouse brain through an unthinned, intact skull,” in Novel Techniques in Microscopy (OSA, 2013).
  4. K. Wang, N. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6800311 (2014).
  5. P. Theer, M. T. Hasan, and W. Denk, “Two-photon imaging to a depth of 1000 μm in living brains by use of a Ti:Al2O3 regenerative amplifier,” Opt. Lett. 28(12), 1022–1024 (2003).
    [Crossref] [PubMed]
  6. W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
    [Crossref] [PubMed]
  7. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
    [Crossref] [PubMed]
  8. K. Wang, R. Liang, and P. Qiu, “Fluorescence signal generation optimization by optimal filling of the high numerical aperture objective lens for high-order deep-tissue multiphoton fluorescence microscopy,” IEEE Photonics J. 7(6), 2600908 (2015).
    [Crossref]
  9. D. Sinefeld, H. P. Paudel, D. G. Ouzounov, T. G. Bifano, and C. Xu, “Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence,” Opt. Express 23(24), 31472–31483 (2015).
    [Crossref] [PubMed]
  10. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
    [Crossref] [PubMed]
  11. L.-C. Cheng, N. G. Horton, K. Wang, S.-J. Chen, and C. Xu, “Measurements of multiphoton action cross sections for multiphoton microscopy,” Biomed. Opt. Express 5(10), 3427–3433 (2014).
    [Crossref] [PubMed]
  12. C. Tischbirek, A. Birkner, H. Jia, B. Sakmann, and A. Konnerth, “Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator,” Proc. Natl. Acad. Sci. U.S.A. 112(36), 11377–11382 (2015).
    [Crossref] [PubMed]
  13. G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8(9), 723–730 (2014).
    [Crossref] [PubMed]
  14. A. Singh, J. D. McMullen, E. A. Doris, and W. R. Zipfel, “Comparison of objective lenses for multiphoton microscopy in turbid samples,” Biomed. Opt. Express 6(8), 3113–3127 (2015).
    [Crossref] [PubMed]
  15. E. Dimitrow, M. Ziemer, M. J. Koehler, J. Norgauer, K. Konig, P. Elsner, and M. Kaatz, “Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma,” J. Invest. Dermatol. 129(7), 1752–1758 (2009).
    [Crossref] [PubMed]
  16. R. Cicchi, D. Kapsokalyvas, and F. S. Pavone, “Clinical nonlinear laser imaging of human skin: a review,” BioMed Res. Int. 2014, 903589 (2014).
    [Crossref] [PubMed]
  17. Y. X. Wang, W. H. Wen, K. Wang, P. Zhai, P. Qiu, and K. Wang, “Measurement of absorption spectrum of deuterium oxide (D2O) and its application to signal enhancement in multiphoton microscopy at the 1700-nm window,” Appl. Phys. Lett. 108(2), 021112 (2016).
    [Crossref]
  18. P. Qiu and K. Wang, “Wavelength-separation-tunable two-color-soliton-pulse generation through prechirping,” Phys. Rev. A 90(4), 043813 (2014).
    [Crossref]
  19. T. Euler, S. E. Hausselt, D. J. Margolis, T. Breuninger, X. Castell, P. B. Detwiler, and W. Denk, “Eyecup scope-optical recordings of light stimulus-evoked fluorescence signals in the retina,” Pflugers Arch. 457(6), 1393–1414 (2009).
    [Crossref] [PubMed]
  20. “Glycerol Objective,” https://www.leica-microsystems.com/fileadmin/downloads/Leica%20TCS%20SP2/Application%20Notes/Appl_Let_17_Glycerol_Objective_144dpi.pdf .
  21. J. C. R. Reis, I. M. S. Lampreia, A. F. S. Santos, M. L. Moita, and G. Douheret, “Refractive index of liquid mixtures: theory and experiment,” ChemPhysChem 11(17), 3722–3733 (2010).
    [Crossref] [PubMed]
  22. S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express 2(11), 1588–1611 (2012).
    [Crossref]
  23. K. Wang, C. W. Freudiger, J. H. Lee, B. G. Saar, X. S. Xie, and C. Xu, “Synchronized time-lens source for coherent Raman scattering microscopy,” Opt. Express 18(23), 24019–24024 (2010).
    [Crossref] [PubMed]
  24. K. Kabashima and G. Egawa, “Intravital multiphoton imaging of cutaneous immune responses,” J. Invest. Dermatol. 134(11), 2680–2684 (2014).
    [Crossref] [PubMed]
  25. P. Qiu, R. Liang, J. He, and K. Wang, “Estimation of temperature rise at the focus of objective lens at the 1700 nm window,” J. Innov. Opt. Health Sci. 10(2), 1650048 (2017).
    [Crossref]

2017 (1)

P. Qiu, R. Liang, J. He, and K. Wang, “Estimation of temperature rise at the focus of objective lens at the 1700 nm window,” J. Innov. Opt. Health Sci. 10(2), 1650048 (2017).
[Crossref]

2016 (1)

Y. X. Wang, W. H. Wen, K. Wang, P. Zhai, P. Qiu, and K. Wang, “Measurement of absorption spectrum of deuterium oxide (D2O) and its application to signal enhancement in multiphoton microscopy at the 1700-nm window,” Appl. Phys. Lett. 108(2), 021112 (2016).
[Crossref]

2015 (4)

K. Wang, R. Liang, and P. Qiu, “Fluorescence signal generation optimization by optimal filling of the high numerical aperture objective lens for high-order deep-tissue multiphoton fluorescence microscopy,” IEEE Photonics J. 7(6), 2600908 (2015).
[Crossref]

C. Tischbirek, A. Birkner, H. Jia, B. Sakmann, and A. Konnerth, “Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator,” Proc. Natl. Acad. Sci. U.S.A. 112(36), 11377–11382 (2015).
[Crossref] [PubMed]

A. Singh, J. D. McMullen, E. A. Doris, and W. R. Zipfel, “Comparison of objective lenses for multiphoton microscopy in turbid samples,” Biomed. Opt. Express 6(8), 3113–3127 (2015).
[Crossref] [PubMed]

D. Sinefeld, H. P. Paudel, D. G. Ouzounov, T. G. Bifano, and C. Xu, “Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence,” Opt. Express 23(24), 31472–31483 (2015).
[Crossref] [PubMed]

2014 (6)

L.-C. Cheng, N. G. Horton, K. Wang, S.-J. Chen, and C. Xu, “Measurements of multiphoton action cross sections for multiphoton microscopy,” Biomed. Opt. Express 5(10), 3427–3433 (2014).
[Crossref] [PubMed]

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8(9), 723–730 (2014).
[Crossref] [PubMed]

K. Wang, N. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6800311 (2014).

P. Qiu and K. Wang, “Wavelength-separation-tunable two-color-soliton-pulse generation through prechirping,” Phys. Rev. A 90(4), 043813 (2014).
[Crossref]

R. Cicchi, D. Kapsokalyvas, and F. S. Pavone, “Clinical nonlinear laser imaging of human skin: a review,” BioMed Res. Int. 2014, 903589 (2014).
[Crossref] [PubMed]

K. Kabashima and G. Egawa, “Intravital multiphoton imaging of cutaneous immune responses,” J. Invest. Dermatol. 134(11), 2680–2684 (2014).
[Crossref] [PubMed]

2013 (1)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (1)

W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
[Crossref] [PubMed]

2010 (2)

J. C. R. Reis, I. M. S. Lampreia, A. F. S. Santos, M. L. Moita, and G. Douheret, “Refractive index of liquid mixtures: theory and experiment,” ChemPhysChem 11(17), 3722–3733 (2010).
[Crossref] [PubMed]

K. Wang, C. W. Freudiger, J. H. Lee, B. G. Saar, X. S. Xie, and C. Xu, “Synchronized time-lens source for coherent Raman scattering microscopy,” Opt. Express 18(23), 24019–24024 (2010).
[Crossref] [PubMed]

2009 (2)

T. Euler, S. E. Hausselt, D. J. Margolis, T. Breuninger, X. Castell, P. B. Detwiler, and W. Denk, “Eyecup scope-optical recordings of light stimulus-evoked fluorescence signals in the retina,” Pflugers Arch. 457(6), 1393–1414 (2009).
[Crossref] [PubMed]

E. Dimitrow, M. Ziemer, M. J. Koehler, J. Norgauer, K. Konig, P. Elsner, and M. Kaatz, “Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma,” J. Invest. Dermatol. 129(7), 1752–1758 (2009).
[Crossref] [PubMed]

2006 (1)

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

2005 (1)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

2003 (1)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Andreasson, K. I.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8(9), 723–730 (2014).
[Crossref] [PubMed]

Antaris, A. L.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8(9), 723–730 (2014).
[Crossref] [PubMed]

Atochin, D. N.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8(9), 723–730 (2014).
[Crossref] [PubMed]

Bifano, T. G.

Birkner, A.

C. Tischbirek, A. Birkner, H. Jia, B. Sakmann, and A. Konnerth, “Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator,” Proc. Natl. Acad. Sci. U.S.A. 112(36), 11377–11382 (2015).
[Crossref] [PubMed]

Breuninger, T.

T. Euler, S. E. Hausselt, D. J. Margolis, T. Breuninger, X. Castell, P. B. Detwiler, and W. Denk, “Eyecup scope-optical recordings of light stimulus-evoked fluorescence signals in the retina,” Pflugers Arch. 457(6), 1393–1414 (2009).
[Crossref] [PubMed]

Castell, X.

T. Euler, S. E. Hausselt, D. J. Margolis, T. Breuninger, X. Castell, P. B. Detwiler, and W. Denk, “Eyecup scope-optical recordings of light stimulus-evoked fluorescence signals in the retina,” Pflugers Arch. 457(6), 1393–1414 (2009).
[Crossref] [PubMed]

Chang, J.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8(9), 723–730 (2014).
[Crossref] [PubMed]

Charan, K.

K. Wang, N. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6800311 (2014).

Chen, C.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8(9), 723–730 (2014).
[Crossref] [PubMed]

Chen, S.-J.

Cheng, L.-C.

Cicchi, R.

R. Cicchi, D. Kapsokalyvas, and F. S. Pavone, “Clinical nonlinear laser imaging of human skin: a review,” BioMed Res. Int. 2014, 903589 (2014).
[Crossref] [PubMed]

Clark, C. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Czubayko, U.

W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
[Crossref] [PubMed]

Dai, H.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8(9), 723–730 (2014).
[Crossref] [PubMed]

Denk, W.

W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
[Crossref] [PubMed]

T. Euler, S. E. Hausselt, D. J. Margolis, T. Breuninger, X. Castell, P. B. Detwiler, and W. Denk, “Eyecup scope-optical recordings of light stimulus-evoked fluorescence signals in the retina,” Pflugers Arch. 457(6), 1393–1414 (2009).
[Crossref] [PubMed]

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

P. Theer, M. T. Hasan, and W. Denk, “Two-photon imaging to a depth of 1000 μm in living brains by use of a Ti:Al2O3 regenerative amplifier,” Opt. Lett. 28(12), 1022–1024 (2003).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Detwiler, P. B.

T. Euler, S. E. Hausselt, D. J. Margolis, T. Breuninger, X. Castell, P. B. Detwiler, and W. Denk, “Eyecup scope-optical recordings of light stimulus-evoked fluorescence signals in the retina,” Pflugers Arch. 457(6), 1393–1414 (2009).
[Crossref] [PubMed]

Diao, S.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8(9), 723–730 (2014).
[Crossref] [PubMed]

Dimitrow, E.

E. Dimitrow, M. Ziemer, M. J. Koehler, J. Norgauer, K. Konig, P. Elsner, and M. Kaatz, “Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma,” J. Invest. Dermatol. 129(7), 1752–1758 (2009).
[Crossref] [PubMed]

Doris, E. A.

Douheret, G.

J. C. R. Reis, I. M. S. Lampreia, A. F. S. Santos, M. L. Moita, and G. Douheret, “Refractive index of liquid mixtures: theory and experiment,” ChemPhysChem 11(17), 3722–3733 (2010).
[Crossref] [PubMed]

Egawa, G.

K. Kabashima and G. Egawa, “Intravital multiphoton imaging of cutaneous immune responses,” J. Invest. Dermatol. 134(11), 2680–2684 (2014).
[Crossref] [PubMed]

Elsner, P.

E. Dimitrow, M. Ziemer, M. J. Koehler, J. Norgauer, K. Konig, P. Elsner, and M. Kaatz, “Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma,” J. Invest. Dermatol. 129(7), 1752–1758 (2009).
[Crossref] [PubMed]

Euler, T.

T. Euler, S. E. Hausselt, D. J. Margolis, T. Breuninger, X. Castell, P. B. Detwiler, and W. Denk, “Eyecup scope-optical recordings of light stimulus-evoked fluorescence signals in the retina,” Pflugers Arch. 457(6), 1393–1414 (2009).
[Crossref] [PubMed]

Freudiger, C. W.

Giessen, H.

Gissibl, T.

Hasan, M. T.

Hausselt, S. E.

T. Euler, S. E. Hausselt, D. J. Margolis, T. Breuninger, X. Castell, P. B. Detwiler, and W. Denk, “Eyecup scope-optical recordings of light stimulus-evoked fluorescence signals in the retina,” Pflugers Arch. 457(6), 1393–1414 (2009).
[Crossref] [PubMed]

He, J.

P. Qiu, R. Liang, J. He, and K. Wang, “Estimation of temperature rise at the focus of objective lens at the 1700 nm window,” J. Innov. Opt. Health Sci. 10(2), 1650048 (2017).
[Crossref]

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Herb, J. T.

W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
[Crossref] [PubMed]

Hong, G.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8(9), 723–730 (2014).
[Crossref] [PubMed]

Horton, N.

K. Wang, N. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6800311 (2014).

Horton, N. G.

L.-C. Cheng, N. G. Horton, K. Wang, S.-J. Chen, and C. Xu, “Measurements of multiphoton action cross sections for multiphoton microscopy,” Biomed. Opt. Express 5(10), 3427–3433 (2014).
[Crossref] [PubMed]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Huang, P. L.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8(9), 723–730 (2014).
[Crossref] [PubMed]

Jia, H.

C. Tischbirek, A. Birkner, H. Jia, B. Sakmann, and A. Konnerth, “Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator,” Proc. Natl. Acad. Sci. U.S.A. 112(36), 11377–11382 (2015).
[Crossref] [PubMed]

Kaatz, M.

E. Dimitrow, M. Ziemer, M. J. Koehler, J. Norgauer, K. Konig, P. Elsner, and M. Kaatz, “Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma,” J. Invest. Dermatol. 129(7), 1752–1758 (2009).
[Crossref] [PubMed]

Kabashima, K.

K. Kabashima and G. Egawa, “Intravital multiphoton imaging of cutaneous immune responses,” J. Invest. Dermatol. 134(11), 2680–2684 (2014).
[Crossref] [PubMed]

Kapsokalyvas, D.

R. Cicchi, D. Kapsokalyvas, and F. S. Pavone, “Clinical nonlinear laser imaging of human skin: a review,” BioMed Res. Int. 2014, 903589 (2014).
[Crossref] [PubMed]

Kedenburg, S.

Kerr, J. N.

W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
[Crossref] [PubMed]

Kobat, D.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Koehler, M. J.

E. Dimitrow, M. Ziemer, M. J. Koehler, J. Norgauer, K. Konig, P. Elsner, and M. Kaatz, “Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma,” J. Invest. Dermatol. 129(7), 1752–1758 (2009).
[Crossref] [PubMed]

Konig, K.

E. Dimitrow, M. Ziemer, M. J. Koehler, J. Norgauer, K. Konig, P. Elsner, and M. Kaatz, “Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma,” J. Invest. Dermatol. 129(7), 1752–1758 (2009).
[Crossref] [PubMed]

Konnerth, A.

C. Tischbirek, A. Birkner, H. Jia, B. Sakmann, and A. Konnerth, “Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator,” Proc. Natl. Acad. Sci. U.S.A. 112(36), 11377–11382 (2015).
[Crossref] [PubMed]

Kuo, C. J.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8(9), 723–730 (2014).
[Crossref] [PubMed]

Lampreia, I. M. S.

J. C. R. Reis, I. M. S. Lampreia, A. F. S. Santos, M. L. Moita, and G. Douheret, “Refractive index of liquid mixtures: theory and experiment,” ChemPhysChem 11(17), 3722–3733 (2010).
[Crossref] [PubMed]

Lee, J. H.

Liang, R.

P. Qiu, R. Liang, J. He, and K. Wang, “Estimation of temperature rise at the focus of objective lens at the 1700 nm window,” J. Innov. Opt. Health Sci. 10(2), 1650048 (2017).
[Crossref]

K. Wang, R. Liang, and P. Qiu, “Fluorescence signal generation optimization by optimal filling of the high numerical aperture objective lens for high-order deep-tissue multiphoton fluorescence microscopy,” IEEE Photonics J. 7(6), 2600908 (2015).
[Crossref]

Looger, L. L.

W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
[Crossref] [PubMed]

Mack-Bucher, J. A.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

Margolis, D. J.

T. Euler, S. E. Hausselt, D. J. Margolis, T. Breuninger, X. Castell, P. B. Detwiler, and W. Denk, “Eyecup scope-optical recordings of light stimulus-evoked fluorescence signals in the retina,” Pflugers Arch. 457(6), 1393–1414 (2009).
[Crossref] [PubMed]

McMullen, J. D.

Mittmann, W.

W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
[Crossref] [PubMed]

Moita, M. L.

J. C. R. Reis, I. M. S. Lampreia, A. F. S. Santos, M. L. Moita, and G. Douheret, “Refractive index of liquid mixtures: theory and experiment,” ChemPhysChem 11(17), 3722–3733 (2010).
[Crossref] [PubMed]

Norgauer, J.

E. Dimitrow, M. Ziemer, M. J. Koehler, J. Norgauer, K. Konig, P. Elsner, and M. Kaatz, “Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma,” J. Invest. Dermatol. 129(7), 1752–1758 (2009).
[Crossref] [PubMed]

Ouzounov, D. G.

Paudel, H. P.

Pavone, F. S.

R. Cicchi, D. Kapsokalyvas, and F. S. Pavone, “Clinical nonlinear laser imaging of human skin: a review,” BioMed Res. Int. 2014, 903589 (2014).
[Crossref] [PubMed]

Qiu, P.

P. Qiu, R. Liang, J. He, and K. Wang, “Estimation of temperature rise at the focus of objective lens at the 1700 nm window,” J. Innov. Opt. Health Sci. 10(2), 1650048 (2017).
[Crossref]

Y. X. Wang, W. H. Wen, K. Wang, P. Zhai, P. Qiu, and K. Wang, “Measurement of absorption spectrum of deuterium oxide (D2O) and its application to signal enhancement in multiphoton microscopy at the 1700-nm window,” Appl. Phys. Lett. 108(2), 021112 (2016).
[Crossref]

K. Wang, R. Liang, and P. Qiu, “Fluorescence signal generation optimization by optimal filling of the high numerical aperture objective lens for high-order deep-tissue multiphoton fluorescence microscopy,” IEEE Photonics J. 7(6), 2600908 (2015).
[Crossref]

P. Qiu and K. Wang, “Wavelength-separation-tunable two-color-soliton-pulse generation through prechirping,” Phys. Rev. A 90(4), 043813 (2014).
[Crossref]

Reis, J. C. R.

J. C. R. Reis, I. M. S. Lampreia, A. F. S. Santos, M. L. Moita, and G. Douheret, “Refractive index of liquid mixtures: theory and experiment,” ChemPhysChem 11(17), 3722–3733 (2010).
[Crossref] [PubMed]

Rueckel, M.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

Saar, B. G.

Sakmann, B.

C. Tischbirek, A. Birkner, H. Jia, B. Sakmann, and A. Konnerth, “Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator,” Proc. Natl. Acad. Sci. U.S.A. 112(36), 11377–11382 (2015).
[Crossref] [PubMed]

Santos, A. F. S.

J. C. R. Reis, I. M. S. Lampreia, A. F. S. Santos, M. L. Moita, and G. Douheret, “Refractive index of liquid mixtures: theory and experiment,” ChemPhysChem 11(17), 3722–3733 (2010).
[Crossref] [PubMed]

Schaefer, A. T.

W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
[Crossref] [PubMed]

Schaffer, C. B.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Sinefeld, D.

Singh, A.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Theer, P.

Tischbirek, C.

C. Tischbirek, A. Birkner, H. Jia, B. Sakmann, and A. Konnerth, “Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator,” Proc. Natl. Acad. Sci. U.S.A. 112(36), 11377–11382 (2015).
[Crossref] [PubMed]

Vieweg, M.

Wallace, D. J.

W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
[Crossref] [PubMed]

Wang, K.

P. Qiu, R. Liang, J. He, and K. Wang, “Estimation of temperature rise at the focus of objective lens at the 1700 nm window,” J. Innov. Opt. Health Sci. 10(2), 1650048 (2017).
[Crossref]

Y. X. Wang, W. H. Wen, K. Wang, P. Zhai, P. Qiu, and K. Wang, “Measurement of absorption spectrum of deuterium oxide (D2O) and its application to signal enhancement in multiphoton microscopy at the 1700-nm window,” Appl. Phys. Lett. 108(2), 021112 (2016).
[Crossref]

Y. X. Wang, W. H. Wen, K. Wang, P. Zhai, P. Qiu, and K. Wang, “Measurement of absorption spectrum of deuterium oxide (D2O) and its application to signal enhancement in multiphoton microscopy at the 1700-nm window,” Appl. Phys. Lett. 108(2), 021112 (2016).
[Crossref]

K. Wang, R. Liang, and P. Qiu, “Fluorescence signal generation optimization by optimal filling of the high numerical aperture objective lens for high-order deep-tissue multiphoton fluorescence microscopy,” IEEE Photonics J. 7(6), 2600908 (2015).
[Crossref]

K. Wang, N. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6800311 (2014).

L.-C. Cheng, N. G. Horton, K. Wang, S.-J. Chen, and C. Xu, “Measurements of multiphoton action cross sections for multiphoton microscopy,” Biomed. Opt. Express 5(10), 3427–3433 (2014).
[Crossref] [PubMed]

P. Qiu and K. Wang, “Wavelength-separation-tunable two-color-soliton-pulse generation through prechirping,” Phys. Rev. A 90(4), 043813 (2014).
[Crossref]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

K. Wang, C. W. Freudiger, J. H. Lee, B. G. Saar, X. S. Xie, and C. Xu, “Synchronized time-lens source for coherent Raman scattering microscopy,” Opt. Express 18(23), 24019–24024 (2010).
[Crossref] [PubMed]

Wang, Y. X.

Y. X. Wang, W. H. Wen, K. Wang, P. Zhai, P. Qiu, and K. Wang, “Measurement of absorption spectrum of deuterium oxide (D2O) and its application to signal enhancement in multiphoton microscopy at the 1700-nm window,” Appl. Phys. Lett. 108(2), 021112 (2016).
[Crossref]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Wen, W. H.

Y. X. Wang, W. H. Wen, K. Wang, P. Zhai, P. Qiu, and K. Wang, “Measurement of absorption spectrum of deuterium oxide (D2O) and its application to signal enhancement in multiphoton microscopy at the 1700-nm window,” Appl. Phys. Lett. 108(2), 021112 (2016).
[Crossref]

Wise, F. W.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Xie, X. S.

Xu, C.

Zhai, P.

Y. X. Wang, W. H. Wen, K. Wang, P. Zhai, P. Qiu, and K. Wang, “Measurement of absorption spectrum of deuterium oxide (D2O) and its application to signal enhancement in multiphoton microscopy at the 1700-nm window,” Appl. Phys. Lett. 108(2), 021112 (2016).
[Crossref]

Zhang, B.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8(9), 723–730 (2014).
[Crossref] [PubMed]

Zhao, S.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8(9), 723–730 (2014).
[Crossref] [PubMed]

Ziemer, M.

E. Dimitrow, M. Ziemer, M. J. Koehler, J. Norgauer, K. Konig, P. Elsner, and M. Kaatz, “Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma,” J. Invest. Dermatol. 129(7), 1752–1758 (2009).
[Crossref] [PubMed]

Zipfel, W. R.

Appl. Phys. Lett. (1)

Y. X. Wang, W. H. Wen, K. Wang, P. Zhai, P. Qiu, and K. Wang, “Measurement of absorption spectrum of deuterium oxide (D2O) and its application to signal enhancement in multiphoton microscopy at the 1700-nm window,” Appl. Phys. Lett. 108(2), 021112 (2016).
[Crossref]

BioMed Res. Int. (1)

R. Cicchi, D. Kapsokalyvas, and F. S. Pavone, “Clinical nonlinear laser imaging of human skin: a review,” BioMed Res. Int. 2014, 903589 (2014).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

ChemPhysChem (1)

J. C. R. Reis, I. M. S. Lampreia, A. F. S. Santos, M. L. Moita, and G. Douheret, “Refractive index of liquid mixtures: theory and experiment,” ChemPhysChem 11(17), 3722–3733 (2010).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Wang, N. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6800311 (2014).

IEEE Photonics J. (1)

K. Wang, R. Liang, and P. Qiu, “Fluorescence signal generation optimization by optimal filling of the high numerical aperture objective lens for high-order deep-tissue multiphoton fluorescence microscopy,” IEEE Photonics J. 7(6), 2600908 (2015).
[Crossref]

J. Innov. Opt. Health Sci. (1)

P. Qiu, R. Liang, J. He, and K. Wang, “Estimation of temperature rise at the focus of objective lens at the 1700 nm window,” J. Innov. Opt. Health Sci. 10(2), 1650048 (2017).
[Crossref]

J. Invest. Dermatol. (2)

E. Dimitrow, M. Ziemer, M. J. Koehler, J. Norgauer, K. Konig, P. Elsner, and M. Kaatz, “Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma,” J. Invest. Dermatol. 129(7), 1752–1758 (2009).
[Crossref] [PubMed]

K. Kabashima and G. Egawa, “Intravital multiphoton imaging of cutaneous immune responses,” J. Invest. Dermatol. 134(11), 2680–2684 (2014).
[Crossref] [PubMed]

Nat. Methods (1)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Nat. Neurosci. (1)

W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8(9), 723–730 (2014).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. Express (1)

Pflugers Arch. (1)

T. Euler, S. E. Hausselt, D. J. Margolis, T. Breuninger, X. Castell, P. B. Detwiler, and W. Denk, “Eyecup scope-optical recordings of light stimulus-evoked fluorescence signals in the retina,” Pflugers Arch. 457(6), 1393–1414 (2009).
[Crossref] [PubMed]

Phys. Rev. A (1)

P. Qiu and K. Wang, “Wavelength-separation-tunable two-color-soliton-pulse generation through prechirping,” Phys. Rev. A 90(4), 043813 (2014).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (2)

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

C. Tischbirek, A. Birkner, H. Jia, B. Sakmann, and A. Konnerth, “Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator,” Proc. Natl. Acad. Sci. U.S.A. 112(36), 11377–11382 (2015).
[Crossref] [PubMed]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Other (2)

N. Horton, K. Wang, D. Kobat, F. W. Wise, and C. Xu, “In vivo deep penetration three-photon imaging of mouse brain through an unthinned, intact skull,” in Novel Techniques in Microscopy (OSA, 2013).

“Glycerol Objective,” https://www.leica-microsystems.com/fileadmin/downloads/Leica%20TCS%20SP2/Application%20Notes/Appl_Let_17_Glycerol_Objective_144dpi.pdf .

Supplementary Material (3)

NameDescription
» Data File 1: CSV (10 KB)      supplementary material 1
» Data File 2: CSV (16 KB)      supplementary material 2
» Data File 3: CSV (16 KB)      supplementary material 3

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Measured absorption spectra of three immersion oils from 1200 nm to 1900 nm. Black line: M5904 mineral oil from Sigma Aldrich, red line: IMMOIL-F30CC from Olympus, blue line: Type F from Leica.

Fig. 2
Fig. 2

Measured absorption spectra of glycerol, water, D2O and mixtures of glycerol and water or D2O with different volume ratios prior to mixing (indicated in the figure).

Fig. 3
Fig. 3

SHG imaging of mouse tail tendon with 1600-nm (a) and 1700-nm (b) excitation. The powers after the objective lens are 0.38 mW and 1.45 mW for 1600 nm and 1700 nm, respectively. Color scale (0~65535) is the same for both figures. Scale bar: 30 µm.

Fig. 4
Fig. 4

3D THG imaging stacks of the mouse ear with 1.8-mw 1600-nm excitation (a) and 2.3-mW 1700-nm excitation (b) after the objective lens and before the immersion oil. 2D images corresponding to (a) and (b) at different depths (60 µm, 92 µm, 154 µm, and 200 µm below the surface) are show in (c) and (d), respectively, with THG (red) and SHG (green) signals acquired simultaneously. The arrow, arrow head, and circles in (c) indicate corneocytes, sebaceous gland, and the same adipocyte, respectively. Scale bars: 30 µm.

Metrics