Abstract

A time domain surface integral equation (TD-SIE) solver is developed for quantum-corrected analysis of transient electromagnetic field interactions on plasmonic nanostructures with sub-nanometer gaps. “Quantum correction” introduces an auxiliary tunnel to support the current path that is generated by electrons tunneled between the nanostructures. The permittivity of the auxiliary tunnel and the nanostructures is obtained from density functional theory (DFT) computations. Electromagnetic field interactions on the combined structure (nanostructures plus auxiliary tunnel connecting them) are computed using a TD-SIE solver. Time domain samples of the permittivity and the Green function required by this solver are obtained from their frequency domain samples (generated from DFT computations) using a semi-analytical method. Accuracy and applicability of the resulting quantum-corrected solver scheme are demonstrated via numerical examples.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Transient analysis of electromagnetic wave interactions on plasmonic nanostructures using a surface integral equation solver

Ismail E. Uysal, H. Arda Ülkü, and Hakan Bağci
J. Opt. Soc. Am. A 33(9) 1747-1759 (2016)

Optical properties of plasmonic core-shell nanomatryoshkas: a quantum hydrodynamic analysis

Muhammad Khalid, Fabio Della Sala, and Cristian Ciracì
Opt. Express 26(13) 17322-17334 (2018)

Quantum effects in the optical response of extended plasmonic gaps: validation of the quantum corrected model in core-shell nanomatryushkas

Mario Zapata, Ángela S. Camacho Beltrán, Andrei G. Borisov, and Javier Aizpurua
Opt. Express 23(6) 8134-8149 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. S. Tame, K. McEnery, Ş. Özdemir, J. Lee, S. Maier, and M. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
    [Crossref]
  2. K. Kneipp, H. Kneipp, and J. Kneipp, “Probing plasmonic nanostructures by photons and electrons,” Chem. Sci. 6, 2721–2726 (2015).
    [Crossref]
  3. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. G. de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
    [Crossref] [PubMed]
  4. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
    [Crossref] [PubMed]
  5. R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
    [Crossref] [PubMed]
  6. R. Esteban, A. Zugarramurdi, P. Zhang, P. Nordlander, F. J. Garcia-Vidal, A. G. Borisov, and J. Aizpurua, “A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations,” Faraday Discuss. 178, 151–183 (2015).
    [Crossref] [PubMed]
  7. U. Hohenester, “Quantum corrected model for plasmonic nanoparticles: A boundary element method implementation,” Phys. Rev. B 91, 205436 (2015).
    [Crossref]
  8. L. Wu, H. Duan, P. Bai, M. Bosman, J. K. Yang, and E. Li, “Fowler–Nordheim tunneling induced charge transfer plasmons between nearly touching nanoparticles,” ACS Nano 7, 707–716 (2013).
    [Crossref]
  9. K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
    [Crossref] [PubMed]
  10. J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13, 564–569 (2013).
    [Crossref]
  11. W. Zhu and K. B. Crozier, “Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering,” Nat. Commun. 5, 5228 (2014).
    [Crossref]
  12. S. F. Tan, L. Wu, J. K. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum plasmon resonances controlled by molecular tunnel junctions,” Science 343, 1496–1499 (2014).
    [Crossref] [PubMed]
  13. S. Kadkhodazadeh, J. B. Wagner, H. Kneipp, and K. Kneipp, “Coexistence of classical and quantum plasmonics in large plasmonic structures with subnanometer gaps,” Appl. Phys. Lett. 103, 083103 (2013).
    [Crossref]
  14. H. Jung, H. Cha, D. Lee, and S. Yoon, “Bridging the nanogap with light: continuous tuning of plasmon coupling between gold nanoparticles,” ACS Nano 9, 12292–12300 (2015).
    [Crossref] [PubMed]
  15. H. Cha, D. Lee, J. H. Yoon, and S. Yoon, “Plasmon coupling between silver nanoparticles: Transition from the classical to the quantum regime,” J. Colloid Interface Sci. 464, 18–24 (2016).
    [Crossref]
  16. P. Zhang, J. Feist, A. Rubio, P. García-González, and F. J. García-Vidal, “Ab initio nanoplasmonics: The impact of atomic structure,” Phys. Rev. B 90, 161407 (2014).
    [Crossref]
  17. F. Hao and P. Nordlander, “Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles,” Chem. Phys. Lett. 446, 115–118 (2007).
    [Crossref]
  18. U. Hohenester and C. Draxl, “Ab initio approach for gap plasmonics,” Phys. Rev. B 94, 165418 (2016).
    [Crossref]
  19. W. Yan, M. Wubs, and N. A. Mortensen, “Projected dipole model for quantum plasmonics,” Phys. Rev. Lett. 115, 137403 (2015).
    [Crossref] [PubMed]
  20. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: An Augmented Plane Wave and Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, 2001).
  21. C. Ambrosch-Draxl and J. O. Sofo, “Linear optical properties of solids within the full-potential linearized augmented planewave method,” Comput. Phys. Commun. 175, 1–14 (2006).
    [Crossref]
  22. W. S. Werner, K. Glantschnig, and C. Ambrosch-Draxl, “Optical constants and inelastic electron-scattering data for 17 elemental metals,” J. Phys. Chem. Ref. Data,  38, 1013–1092, (2009).
    [Crossref]
  23. S. Laref, J. Cao, A. Asaduzzaman, K. Runge, P. Deymier, R. W. Ziolkowski, M. Miyawaki, and K. Muralidharan, “Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: a density functional theory study,” Opt. Express 21, 11827–11838 (2013).
    [Crossref] [PubMed]
  24. B. Gustavsen and A. Semlyen, “Rational approximation of frequency domain responses by vector fitting,” IEEE Trans. Power Del. 14, 1052–1061 (1999).
    [Crossref]
  25. B. Gustavsen, “Improving the pole relocating properties of vector fitting,” IEEE Trans. Power Del. 21, 1587–1592 (2006).
    [Crossref]
  26. D. Deschrijver, M. Mrozowski, T. Dhaene, and D. De Zutter, “Macromodeling of multiport systems using a fast implementation of the vector fitting method,” IEEE Microw. Compon. Lett. 18, 383–385 (2008).
    [Crossref]
  27. I. E. Uysal, H. A. Ulku, and H. Bagci, “Transient analysis of electromagnetic wave interactions on plasmonic nanostructures using a surface integral equation solver,” J. Opt. Soc. Am. A 33, 1747–1759 (2016).
    [Crossref]
  28. I. E. Uysal, H. A. Ulku, and H. Bagci, “MOT solution of the PMCHWT equation for analyzing transient scattering from conductive dielectrics,” IEEE Antennas Wireless Propag. Lett. 14, 507–510 (2015).
    [Crossref]
  29. B. Shanker, M. Lu, J. Yuan, and E. Michielssen, “Time domain integral equation analysis of scattering from composite bodies via exact evaluation of radiation fields,” IEEE Trans. Antennas Propag. 57, 1506–1520 (2009).
    [Crossref]
  30. S. Rao, D. Wilton, and A. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).
    [Crossref]
  31. G. Manara, A. Monorchio, and R. Reggiannini, “A space-time discretization criterion for a stable time-marching solution of the electric field integral equation,” IEEE Trans. Antennas Propag. 45, 527–532 (1997).
    [Crossref]
  32. H. Bagci, A. E. Yilmaz, V. Lomakin, and E. Michielssen, “Fast solution of mixed-potential time-domain integral equations for half-space environments,” IEEE Trans. Geosci. Remote Sens. 43, 269–279 (2005).
    [Crossref]
  33. A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, 2005).
  34. P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136, B864 (1964).
    [Crossref]
  35. W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140, A1133 (1965).
    [Crossref]
  36. S. Cottenier, “Density functional theory and the family of (L)APW-methods: a step-by-step introduction,” Instituut voor Kern-en Stralingsfysica, KU Leuven, Belgium 4, 41 (2002).
  37. P. Blaha, K. Schwarz, P. Sorantin, and S. Trickey, “Full-potential, linearized augmented plane wave programs for crystalline systems,” Comput. Phys. Commun. 59, 399–415 (1990).
    [Crossref]
  38. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
    [Crossref] [PubMed]
  39. F. Wooten, Optical Properties of Solids (Academic, 1972).
  40. L. Brekhovskikh, Waves in Layered Media (Academic, 1980), Chap. 1, Sec. 13, pp. 98–99.
  41. A. T. Fromhold, Quantum Mechanics for Applied Physics and Engineering (Academic, 1981).
  42. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  43. G.-G. Siu and L. Cheng, “Mie solution of light scattering from spheres of radii up to 80λ with digit-array method,” J. Opt. Soc. Am. B 19, 1922–1929 (2002).
    [Crossref]

2016 (3)

H. Cha, D. Lee, J. H. Yoon, and S. Yoon, “Plasmon coupling between silver nanoparticles: Transition from the classical to the quantum regime,” J. Colloid Interface Sci. 464, 18–24 (2016).
[Crossref]

U. Hohenester and C. Draxl, “Ab initio approach for gap plasmonics,” Phys. Rev. B 94, 165418 (2016).
[Crossref]

I. E. Uysal, H. A. Ulku, and H. Bagci, “Transient analysis of electromagnetic wave interactions on plasmonic nanostructures using a surface integral equation solver,” J. Opt. Soc. Am. A 33, 1747–1759 (2016).
[Crossref]

2015 (6)

I. E. Uysal, H. A. Ulku, and H. Bagci, “MOT solution of the PMCHWT equation for analyzing transient scattering from conductive dielectrics,” IEEE Antennas Wireless Propag. Lett. 14, 507–510 (2015).
[Crossref]

H. Jung, H. Cha, D. Lee, and S. Yoon, “Bridging the nanogap with light: continuous tuning of plasmon coupling between gold nanoparticles,” ACS Nano 9, 12292–12300 (2015).
[Crossref] [PubMed]

W. Yan, M. Wubs, and N. A. Mortensen, “Projected dipole model for quantum plasmonics,” Phys. Rev. Lett. 115, 137403 (2015).
[Crossref] [PubMed]

K. Kneipp, H. Kneipp, and J. Kneipp, “Probing plasmonic nanostructures by photons and electrons,” Chem. Sci. 6, 2721–2726 (2015).
[Crossref]

R. Esteban, A. Zugarramurdi, P. Zhang, P. Nordlander, F. J. Garcia-Vidal, A. G. Borisov, and J. Aizpurua, “A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations,” Faraday Discuss. 178, 151–183 (2015).
[Crossref] [PubMed]

U. Hohenester, “Quantum corrected model for plasmonic nanoparticles: A boundary element method implementation,” Phys. Rev. B 91, 205436 (2015).
[Crossref]

2014 (3)

P. Zhang, J. Feist, A. Rubio, P. García-González, and F. J. García-Vidal, “Ab initio nanoplasmonics: The impact of atomic structure,” Phys. Rev. B 90, 161407 (2014).
[Crossref]

W. Zhu and K. B. Crozier, “Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering,” Nat. Commun. 5, 5228 (2014).
[Crossref]

S. F. Tan, L. Wu, J. K. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum plasmon resonances controlled by molecular tunnel junctions,” Science 343, 1496–1499 (2014).
[Crossref] [PubMed]

2013 (5)

S. Kadkhodazadeh, J. B. Wagner, H. Kneipp, and K. Kneipp, “Coexistence of classical and quantum plasmonics in large plasmonic structures with subnanometer gaps,” Appl. Phys. Lett. 103, 083103 (2013).
[Crossref]

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13, 564–569 (2013).
[Crossref]

L. Wu, H. Duan, P. Bai, M. Bosman, J. K. Yang, and E. Li, “Fowler–Nordheim tunneling induced charge transfer plasmons between nearly touching nanoparticles,” ACS Nano 7, 707–716 (2013).
[Crossref]

M. S. Tame, K. McEnery, Ş. Özdemir, J. Lee, S. Maier, and M. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

S. Laref, J. Cao, A. Asaduzzaman, K. Runge, P. Deymier, R. W. Ziolkowski, M. Miyawaki, and K. Muralidharan, “Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: a density functional theory study,” Opt. Express 21, 11827–11838 (2013).
[Crossref] [PubMed]

2012 (2)

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[Crossref] [PubMed]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

2009 (3)

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[Crossref] [PubMed]

W. S. Werner, K. Glantschnig, and C. Ambrosch-Draxl, “Optical constants and inelastic electron-scattering data for 17 elemental metals,” J. Phys. Chem. Ref. Data,  38, 1013–1092, (2009).
[Crossref]

B. Shanker, M. Lu, J. Yuan, and E. Michielssen, “Time domain integral equation analysis of scattering from composite bodies via exact evaluation of radiation fields,” IEEE Trans. Antennas Propag. 57, 1506–1520 (2009).
[Crossref]

2008 (1)

D. Deschrijver, M. Mrozowski, T. Dhaene, and D. De Zutter, “Macromodeling of multiport systems using a fast implementation of the vector fitting method,” IEEE Microw. Compon. Lett. 18, 383–385 (2008).
[Crossref]

2007 (1)

F. Hao and P. Nordlander, “Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles,” Chem. Phys. Lett. 446, 115–118 (2007).
[Crossref]

2006 (3)

C. Ambrosch-Draxl and J. O. Sofo, “Linear optical properties of solids within the full-potential linearized augmented planewave method,” Comput. Phys. Commun. 175, 1–14 (2006).
[Crossref]

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. G. de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
[Crossref] [PubMed]

B. Gustavsen, “Improving the pole relocating properties of vector fitting,” IEEE Trans. Power Del. 21, 1587–1592 (2006).
[Crossref]

2005 (1)

H. Bagci, A. E. Yilmaz, V. Lomakin, and E. Michielssen, “Fast solution of mixed-potential time-domain integral equations for half-space environments,” IEEE Trans. Geosci. Remote Sens. 43, 269–279 (2005).
[Crossref]

2002 (2)

S. Cottenier, “Density functional theory and the family of (L)APW-methods: a step-by-step introduction,” Instituut voor Kern-en Stralingsfysica, KU Leuven, Belgium 4, 41 (2002).

G.-G. Siu and L. Cheng, “Mie solution of light scattering from spheres of radii up to 80λ with digit-array method,” J. Opt. Soc. Am. B 19, 1922–1929 (2002).
[Crossref]

1999 (1)

B. Gustavsen and A. Semlyen, “Rational approximation of frequency domain responses by vector fitting,” IEEE Trans. Power Del. 14, 1052–1061 (1999).
[Crossref]

1997 (1)

G. Manara, A. Monorchio, and R. Reggiannini, “A space-time discretization criterion for a stable time-marching solution of the electric field integral equation,” IEEE Trans. Antennas Propag. 45, 527–532 (1997).
[Crossref]

1996 (1)

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
[Crossref] [PubMed]

1990 (1)

P. Blaha, K. Schwarz, P. Sorantin, and S. Trickey, “Full-potential, linearized augmented plane wave programs for crystalline systems,” Comput. Phys. Commun. 59, 399–415 (1990).
[Crossref]

1982 (1)

S. Rao, D. Wilton, and A. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

1965 (1)

W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140, A1133 (1965).
[Crossref]

1964 (1)

P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136, B864 (1964).
[Crossref]

Aizpurua, J.

R. Esteban, A. Zugarramurdi, P. Zhang, P. Nordlander, F. J. Garcia-Vidal, A. G. Borisov, and J. Aizpurua, “A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations,” Faraday Discuss. 178, 151–183 (2015).
[Crossref] [PubMed]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[Crossref] [PubMed]

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. G. de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
[Crossref] [PubMed]

Ambrosch-Draxl, C.

W. S. Werner, K. Glantschnig, and C. Ambrosch-Draxl, “Optical constants and inelastic electron-scattering data for 17 elemental metals,” J. Phys. Chem. Ref. Data,  38, 1013–1092, (2009).
[Crossref]

C. Ambrosch-Draxl and J. O. Sofo, “Linear optical properties of solids within the full-potential linearized augmented planewave method,” Comput. Phys. Commun. 175, 1–14 (2006).
[Crossref]

Asaduzzaman, A.

Bagci, H.

I. E. Uysal, H. A. Ulku, and H. Bagci, “Transient analysis of electromagnetic wave interactions on plasmonic nanostructures using a surface integral equation solver,” J. Opt. Soc. Am. A 33, 1747–1759 (2016).
[Crossref]

I. E. Uysal, H. A. Ulku, and H. Bagci, “MOT solution of the PMCHWT equation for analyzing transient scattering from conductive dielectrics,” IEEE Antennas Wireless Propag. Lett. 14, 507–510 (2015).
[Crossref]

H. Bagci, A. E. Yilmaz, V. Lomakin, and E. Michielssen, “Fast solution of mixed-potential time-domain integral equations for half-space environments,” IEEE Trans. Geosci. Remote Sens. 43, 269–279 (2005).
[Crossref]

Bai, P.

S. F. Tan, L. Wu, J. K. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum plasmon resonances controlled by molecular tunnel junctions,” Science 343, 1496–1499 (2014).
[Crossref] [PubMed]

L. Wu, H. Duan, P. Bai, M. Bosman, J. K. Yang, and E. Li, “Fowler–Nordheim tunneling induced charge transfer plasmons between nearly touching nanoparticles,” ACS Nano 7, 707–716 (2013).
[Crossref]

Baumberg, J. J.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[Crossref] [PubMed]

Blaha, P.

P. Blaha, K. Schwarz, P. Sorantin, and S. Trickey, “Full-potential, linearized augmented plane wave programs for crystalline systems,” Comput. Phys. Commun. 59, 399–415 (1990).
[Crossref]

P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: An Augmented Plane Wave and Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, 2001).

Borisov, A. G.

R. Esteban, A. Zugarramurdi, P. Zhang, P. Nordlander, F. J. Garcia-Vidal, A. G. Borisov, and J. Aizpurua, “A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations,” Faraday Discuss. 178, 151–183 (2015).
[Crossref] [PubMed]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[Crossref] [PubMed]

Bosman, M.

S. F. Tan, L. Wu, J. K. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum plasmon resonances controlled by molecular tunnel junctions,” Science 343, 1496–1499 (2014).
[Crossref] [PubMed]

L. Wu, H. Duan, P. Bai, M. Bosman, J. K. Yang, and E. Li, “Fowler–Nordheim tunneling induced charge transfer plasmons between nearly touching nanoparticles,” ACS Nano 7, 707–716 (2013).
[Crossref]

Brekhovskikh, L.

L. Brekhovskikh, Waves in Layered Media (Academic, 1980), Chap. 1, Sec. 13, pp. 98–99.

Bryant, G. W.

Burke, K.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
[Crossref] [PubMed]

Cao, J.

Cha, H.

H. Cha, D. Lee, J. H. Yoon, and S. Yoon, “Plasmon coupling between silver nanoparticles: Transition from the classical to the quantum regime,” J. Colloid Interface Sci. 464, 18–24 (2016).
[Crossref]

H. Jung, H. Cha, D. Lee, and S. Yoon, “Bridging the nanogap with light: continuous tuning of plasmon coupling between gold nanoparticles,” ACS Nano 9, 12292–12300 (2015).
[Crossref] [PubMed]

Cheng, L.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Cottenier, S.

S. Cottenier, “Density functional theory and the family of (L)APW-methods: a step-by-step introduction,” Instituut voor Kern-en Stralingsfysica, KU Leuven, Belgium 4, 41 (2002).

Crozier, K. B.

W. Zhu and K. B. Crozier, “Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering,” Nat. Commun. 5, 5228 (2014).
[Crossref]

de Abajo, F. J. G.

De Zutter, D.

D. Deschrijver, M. Mrozowski, T. Dhaene, and D. De Zutter, “Macromodeling of multiport systems using a fast implementation of the vector fitting method,” IEEE Microw. Compon. Lett. 18, 383–385 (2008).
[Crossref]

Deschrijver, D.

D. Deschrijver, M. Mrozowski, T. Dhaene, and D. De Zutter, “Macromodeling of multiport systems using a fast implementation of the vector fitting method,” IEEE Microw. Compon. Lett. 18, 383–385 (2008).
[Crossref]

Deymier, P.

Dhaene, T.

D. Deschrijver, M. Mrozowski, T. Dhaene, and D. De Zutter, “Macromodeling of multiport systems using a fast implementation of the vector fitting method,” IEEE Microw. Compon. Lett. 18, 383–385 (2008).
[Crossref]

Dionne, J. A.

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13, 564–569 (2013).
[Crossref]

Draxl, C.

U. Hohenester and C. Draxl, “Ab initio approach for gap plasmonics,” Phys. Rev. B 94, 165418 (2016).
[Crossref]

Duan, H.

L. Wu, H. Duan, P. Bai, M. Bosman, J. K. Yang, and E. Li, “Fowler–Nordheim tunneling induced charge transfer plasmons between nearly touching nanoparticles,” ACS Nano 7, 707–716 (2013).
[Crossref]

Ernzerhof, M.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
[Crossref] [PubMed]

Esteban, R.

R. Esteban, A. Zugarramurdi, P. Zhang, P. Nordlander, F. J. Garcia-Vidal, A. G. Borisov, and J. Aizpurua, “A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations,” Faraday Discuss. 178, 151–183 (2015).
[Crossref] [PubMed]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[Crossref] [PubMed]

Feist, J.

P. Zhang, J. Feist, A. Rubio, P. García-González, and F. J. García-Vidal, “Ab initio nanoplasmonics: The impact of atomic structure,” Phys. Rev. B 90, 161407 (2014).
[Crossref]

Fromhold, A. T.

A. T. Fromhold, Quantum Mechanics for Applied Physics and Engineering (Academic, 1981).

García-Etxarri, A.

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13, 564–569 (2013).
[Crossref]

García-González, P.

P. Zhang, J. Feist, A. Rubio, P. García-González, and F. J. García-Vidal, “Ab initio nanoplasmonics: The impact of atomic structure,” Phys. Rev. B 90, 161407 (2014).
[Crossref]

Garcia-Vidal, F. J.

R. Esteban, A. Zugarramurdi, P. Zhang, P. Nordlander, F. J. Garcia-Vidal, A. G. Borisov, and J. Aizpurua, “A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations,” Faraday Discuss. 178, 151–183 (2015).
[Crossref] [PubMed]

García-Vidal, F. J.

P. Zhang, J. Feist, A. Rubio, P. García-González, and F. J. García-Vidal, “Ab initio nanoplasmonics: The impact of atomic structure,” Phys. Rev. B 90, 161407 (2014).
[Crossref]

Glantschnig, K.

W. S. Werner, K. Glantschnig, and C. Ambrosch-Draxl, “Optical constants and inelastic electron-scattering data for 17 elemental metals,” J. Phys. Chem. Ref. Data,  38, 1013–1092, (2009).
[Crossref]

Glisson, A.

S. Rao, D. Wilton, and A. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).
[Crossref]

Gustavsen, B.

B. Gustavsen, “Improving the pole relocating properties of vector fitting,” IEEE Trans. Power Del. 21, 1587–1592 (2006).
[Crossref]

B. Gustavsen and A. Semlyen, “Rational approximation of frequency domain responses by vector fitting,” IEEE Trans. Power Del. 14, 1052–1061 (1999).
[Crossref]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, 2005).

Hao, F.

F. Hao and P. Nordlander, “Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles,” Chem. Phys. Lett. 446, 115–118 (2007).
[Crossref]

Hawkeye, M. M.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[Crossref] [PubMed]

Hohenberg, P.

P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136, B864 (1964).
[Crossref]

Hohenester, U.

U. Hohenester and C. Draxl, “Ab initio approach for gap plasmonics,” Phys. Rev. B 94, 165418 (2016).
[Crossref]

U. Hohenester, “Quantum corrected model for plasmonic nanoparticles: A boundary element method implementation,” Phys. Rev. B 91, 205436 (2015).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Jung, H.

H. Jung, H. Cha, D. Lee, and S. Yoon, “Bridging the nanogap with light: continuous tuning of plasmon coupling between gold nanoparticles,” ACS Nano 9, 12292–12300 (2015).
[Crossref] [PubMed]

Kadkhodazadeh, S.

S. Kadkhodazadeh, J. B. Wagner, H. Kneipp, and K. Kneipp, “Coexistence of classical and quantum plasmonics in large plasmonic structures with subnanometer gaps,” Appl. Phys. Lett. 103, 083103 (2013).
[Crossref]

Kim, M.

M. S. Tame, K. McEnery, Ş. Özdemir, J. Lee, S. Maier, and M. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

Kneipp, H.

K. Kneipp, H. Kneipp, and J. Kneipp, “Probing plasmonic nanostructures by photons and electrons,” Chem. Sci. 6, 2721–2726 (2015).
[Crossref]

S. Kadkhodazadeh, J. B. Wagner, H. Kneipp, and K. Kneipp, “Coexistence of classical and quantum plasmonics in large plasmonic structures with subnanometer gaps,” Appl. Phys. Lett. 103, 083103 (2013).
[Crossref]

Kneipp, J.

K. Kneipp, H. Kneipp, and J. Kneipp, “Probing plasmonic nanostructures by photons and electrons,” Chem. Sci. 6, 2721–2726 (2015).
[Crossref]

Kneipp, K.

K. Kneipp, H. Kneipp, and J. Kneipp, “Probing plasmonic nanostructures by photons and electrons,” Chem. Sci. 6, 2721–2726 (2015).
[Crossref]

S. Kadkhodazadeh, J. B. Wagner, H. Kneipp, and K. Kneipp, “Coexistence of classical and quantum plasmonics in large plasmonic structures with subnanometer gaps,” Appl. Phys. Lett. 103, 083103 (2013).
[Crossref]

Koh, A. L.

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13, 564–569 (2013).
[Crossref]

Kohn, W.

W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140, A1133 (1965).
[Crossref]

P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136, B864 (1964).
[Crossref]

Kvasnicka, D.

P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: An Augmented Plane Wave and Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, 2001).

Laref, S.

Lee, D.

H. Cha, D. Lee, J. H. Yoon, and S. Yoon, “Plasmon coupling between silver nanoparticles: Transition from the classical to the quantum regime,” J. Colloid Interface Sci. 464, 18–24 (2016).
[Crossref]

H. Jung, H. Cha, D. Lee, and S. Yoon, “Bridging the nanogap with light: continuous tuning of plasmon coupling between gold nanoparticles,” ACS Nano 9, 12292–12300 (2015).
[Crossref] [PubMed]

Lee, J.

M. S. Tame, K. McEnery, Ş. Özdemir, J. Lee, S. Maier, and M. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

Li, E.

L. Wu, H. Duan, P. Bai, M. Bosman, J. K. Yang, and E. Li, “Fowler–Nordheim tunneling induced charge transfer plasmons between nearly touching nanoparticles,” ACS Nano 7, 707–716 (2013).
[Crossref]

Lomakin, V.

H. Bagci, A. E. Yilmaz, V. Lomakin, and E. Michielssen, “Fast solution of mixed-potential time-domain integral equations for half-space environments,” IEEE Trans. Geosci. Remote Sens. 43, 269–279 (2005).
[Crossref]

Lu, M.

B. Shanker, M. Lu, J. Yuan, and E. Michielssen, “Time domain integral equation analysis of scattering from composite bodies via exact evaluation of radiation fields,” IEEE Trans. Antennas Propag. 57, 1506–1520 (2009).
[Crossref]

Luitz, J.

P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: An Augmented Plane Wave and Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, 2001).

Madsen, G.

P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: An Augmented Plane Wave and Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, 2001).

Maier, S.

M. S. Tame, K. McEnery, Ş. Özdemir, J. Lee, S. Maier, and M. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

Manara, G.

G. Manara, A. Monorchio, and R. Reggiannini, “A space-time discretization criterion for a stable time-marching solution of the electric field integral equation,” IEEE Trans. Antennas Propag. 45, 527–532 (1997).
[Crossref]

McEnery, K.

M. S. Tame, K. McEnery, Ş. Özdemir, J. Lee, S. Maier, and M. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

Michielssen, E.

B. Shanker, M. Lu, J. Yuan, and E. Michielssen, “Time domain integral equation analysis of scattering from composite bodies via exact evaluation of radiation fields,” IEEE Trans. Antennas Propag. 57, 1506–1520 (2009).
[Crossref]

H. Bagci, A. E. Yilmaz, V. Lomakin, and E. Michielssen, “Fast solution of mixed-potential time-domain integral equations for half-space environments,” IEEE Trans. Geosci. Remote Sens. 43, 269–279 (2005).
[Crossref]

Miyawaki, M.

Monorchio, A.

G. Manara, A. Monorchio, and R. Reggiannini, “A space-time discretization criterion for a stable time-marching solution of the electric field integral equation,” IEEE Trans. Antennas Propag. 45, 527–532 (1997).
[Crossref]

Mortensen, N. A.

W. Yan, M. Wubs, and N. A. Mortensen, “Projected dipole model for quantum plasmonics,” Phys. Rev. Lett. 115, 137403 (2015).
[Crossref] [PubMed]

Mrozowski, M.

D. Deschrijver, M. Mrozowski, T. Dhaene, and D. De Zutter, “Macromodeling of multiport systems using a fast implementation of the vector fitting method,” IEEE Microw. Compon. Lett. 18, 383–385 (2008).
[Crossref]

Muralidharan, K.

Nijhuis, C. A.

S. F. Tan, L. Wu, J. K. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum plasmon resonances controlled by molecular tunnel junctions,” Science 343, 1496–1499 (2014).
[Crossref] [PubMed]

Nordlander, P.

R. Esteban, A. Zugarramurdi, P. Zhang, P. Nordlander, F. J. Garcia-Vidal, A. G. Borisov, and J. Aizpurua, “A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations,” Faraday Discuss. 178, 151–183 (2015).
[Crossref] [PubMed]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[Crossref] [PubMed]

F. Hao and P. Nordlander, “Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles,” Chem. Phys. Lett. 446, 115–118 (2007).
[Crossref]

Özdemir, S.

M. S. Tame, K. McEnery, Ş. Özdemir, J. Lee, S. Maier, and M. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

Perdew, J. P.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
[Crossref] [PubMed]

Prodan, E.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[Crossref] [PubMed]

Rao, S.

S. Rao, D. Wilton, and A. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).
[Crossref]

Reggiannini, R.

G. Manara, A. Monorchio, and R. Reggiannini, “A space-time discretization criterion for a stable time-marching solution of the electric field integral equation,” IEEE Trans. Antennas Propag. 45, 527–532 (1997).
[Crossref]

Romero, I.

Rubio, A.

P. Zhang, J. Feist, A. Rubio, P. García-González, and F. J. García-Vidal, “Ab initio nanoplasmonics: The impact of atomic structure,” Phys. Rev. B 90, 161407 (2014).
[Crossref]

Runge, K.

Savage, K. J.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[Crossref] [PubMed]

Scholl, J. A.

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13, 564–569 (2013).
[Crossref]

Schwarz, K.

P. Blaha, K. Schwarz, P. Sorantin, and S. Trickey, “Full-potential, linearized augmented plane wave programs for crystalline systems,” Comput. Phys. Commun. 59, 399–415 (1990).
[Crossref]

P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: An Augmented Plane Wave and Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, 2001).

Semlyen, A.

B. Gustavsen and A. Semlyen, “Rational approximation of frequency domain responses by vector fitting,” IEEE Trans. Power Del. 14, 1052–1061 (1999).
[Crossref]

Sham, L. J.

W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140, A1133 (1965).
[Crossref]

Shanker, B.

B. Shanker, M. Lu, J. Yuan, and E. Michielssen, “Time domain integral equation analysis of scattering from composite bodies via exact evaluation of radiation fields,” IEEE Trans. Antennas Propag. 57, 1506–1520 (2009).
[Crossref]

Siu, G.-G.

Sofo, J. O.

C. Ambrosch-Draxl and J. O. Sofo, “Linear optical properties of solids within the full-potential linearized augmented planewave method,” Comput. Phys. Commun. 175, 1–14 (2006).
[Crossref]

Sorantin, P.

P. Blaha, K. Schwarz, P. Sorantin, and S. Trickey, “Full-potential, linearized augmented plane wave programs for crystalline systems,” Comput. Phys. Commun. 59, 399–415 (1990).
[Crossref]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, 2005).

Tame, M. S.

M. S. Tame, K. McEnery, Ş. Özdemir, J. Lee, S. Maier, and M. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

Tan, S. F.

S. F. Tan, L. Wu, J. K. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum plasmon resonances controlled by molecular tunnel junctions,” Science 343, 1496–1499 (2014).
[Crossref] [PubMed]

Trickey, S.

P. Blaha, K. Schwarz, P. Sorantin, and S. Trickey, “Full-potential, linearized augmented plane wave programs for crystalline systems,” Comput. Phys. Commun. 59, 399–415 (1990).
[Crossref]

Ulku, H. A.

I. E. Uysal, H. A. Ulku, and H. Bagci, “Transient analysis of electromagnetic wave interactions on plasmonic nanostructures using a surface integral equation solver,” J. Opt. Soc. Am. A 33, 1747–1759 (2016).
[Crossref]

I. E. Uysal, H. A. Ulku, and H. Bagci, “MOT solution of the PMCHWT equation for analyzing transient scattering from conductive dielectrics,” IEEE Antennas Wireless Propag. Lett. 14, 507–510 (2015).
[Crossref]

Uysal, I. E.

I. E. Uysal, H. A. Ulku, and H. Bagci, “Transient analysis of electromagnetic wave interactions on plasmonic nanostructures using a surface integral equation solver,” J. Opt. Soc. Am. A 33, 1747–1759 (2016).
[Crossref]

I. E. Uysal, H. A. Ulku, and H. Bagci, “MOT solution of the PMCHWT equation for analyzing transient scattering from conductive dielectrics,” IEEE Antennas Wireless Propag. Lett. 14, 507–510 (2015).
[Crossref]

Wagner, J. B.

S. Kadkhodazadeh, J. B. Wagner, H. Kneipp, and K. Kneipp, “Coexistence of classical and quantum plasmonics in large plasmonic structures with subnanometer gaps,” Appl. Phys. Lett. 103, 083103 (2013).
[Crossref]

Werner, W. S.

W. S. Werner, K. Glantschnig, and C. Ambrosch-Draxl, “Optical constants and inelastic electron-scattering data for 17 elemental metals,” J. Phys. Chem. Ref. Data,  38, 1013–1092, (2009).
[Crossref]

Wilton, D.

S. Rao, D. Wilton, and A. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).
[Crossref]

Wooten, F.

F. Wooten, Optical Properties of Solids (Academic, 1972).

Wu, L.

S. F. Tan, L. Wu, J. K. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum plasmon resonances controlled by molecular tunnel junctions,” Science 343, 1496–1499 (2014).
[Crossref] [PubMed]

L. Wu, H. Duan, P. Bai, M. Bosman, J. K. Yang, and E. Li, “Fowler–Nordheim tunneling induced charge transfer plasmons between nearly touching nanoparticles,” ACS Nano 7, 707–716 (2013).
[Crossref]

Wubs, M.

W. Yan, M. Wubs, and N. A. Mortensen, “Projected dipole model for quantum plasmonics,” Phys. Rev. Lett. 115, 137403 (2015).
[Crossref] [PubMed]

Yan, W.

W. Yan, M. Wubs, and N. A. Mortensen, “Projected dipole model for quantum plasmonics,” Phys. Rev. Lett. 115, 137403 (2015).
[Crossref] [PubMed]

Yang, J. K.

S. F. Tan, L. Wu, J. K. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum plasmon resonances controlled by molecular tunnel junctions,” Science 343, 1496–1499 (2014).
[Crossref] [PubMed]

L. Wu, H. Duan, P. Bai, M. Bosman, J. K. Yang, and E. Li, “Fowler–Nordheim tunneling induced charge transfer plasmons between nearly touching nanoparticles,” ACS Nano 7, 707–716 (2013).
[Crossref]

Yilmaz, A. E.

H. Bagci, A. E. Yilmaz, V. Lomakin, and E. Michielssen, “Fast solution of mixed-potential time-domain integral equations for half-space environments,” IEEE Trans. Geosci. Remote Sens. 43, 269–279 (2005).
[Crossref]

Yoon, J. H.

H. Cha, D. Lee, J. H. Yoon, and S. Yoon, “Plasmon coupling between silver nanoparticles: Transition from the classical to the quantum regime,” J. Colloid Interface Sci. 464, 18–24 (2016).
[Crossref]

Yoon, S.

H. Cha, D. Lee, J. H. Yoon, and S. Yoon, “Plasmon coupling between silver nanoparticles: Transition from the classical to the quantum regime,” J. Colloid Interface Sci. 464, 18–24 (2016).
[Crossref]

H. Jung, H. Cha, D. Lee, and S. Yoon, “Bridging the nanogap with light: continuous tuning of plasmon coupling between gold nanoparticles,” ACS Nano 9, 12292–12300 (2015).
[Crossref] [PubMed]

Yuan, J.

B. Shanker, M. Lu, J. Yuan, and E. Michielssen, “Time domain integral equation analysis of scattering from composite bodies via exact evaluation of radiation fields,” IEEE Trans. Antennas Propag. 57, 1506–1520 (2009).
[Crossref]

Zhang, P.

R. Esteban, A. Zugarramurdi, P. Zhang, P. Nordlander, F. J. Garcia-Vidal, A. G. Borisov, and J. Aizpurua, “A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations,” Faraday Discuss. 178, 151–183 (2015).
[Crossref] [PubMed]

P. Zhang, J. Feist, A. Rubio, P. García-González, and F. J. García-Vidal, “Ab initio nanoplasmonics: The impact of atomic structure,” Phys. Rev. B 90, 161407 (2014).
[Crossref]

Zhu, W.

W. Zhu and K. B. Crozier, “Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering,” Nat. Commun. 5, 5228 (2014).
[Crossref]

Ziolkowski, R. W.

Zugarramurdi, A.

R. Esteban, A. Zugarramurdi, P. Zhang, P. Nordlander, F. J. Garcia-Vidal, A. G. Borisov, and J. Aizpurua, “A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations,” Faraday Discuss. 178, 151–183 (2015).
[Crossref] [PubMed]

Zuloaga, J.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[Crossref] [PubMed]

ACS Nano (2)

L. Wu, H. Duan, P. Bai, M. Bosman, J. K. Yang, and E. Li, “Fowler–Nordheim tunneling induced charge transfer plasmons between nearly touching nanoparticles,” ACS Nano 7, 707–716 (2013).
[Crossref]

H. Jung, H. Cha, D. Lee, and S. Yoon, “Bridging the nanogap with light: continuous tuning of plasmon coupling between gold nanoparticles,” ACS Nano 9, 12292–12300 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

S. Kadkhodazadeh, J. B. Wagner, H. Kneipp, and K. Kneipp, “Coexistence of classical and quantum plasmonics in large plasmonic structures with subnanometer gaps,” Appl. Phys. Lett. 103, 083103 (2013).
[Crossref]

Chem. Phys. Lett. (1)

F. Hao and P. Nordlander, “Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles,” Chem. Phys. Lett. 446, 115–118 (2007).
[Crossref]

Chem. Sci. (1)

K. Kneipp, H. Kneipp, and J. Kneipp, “Probing plasmonic nanostructures by photons and electrons,” Chem. Sci. 6, 2721–2726 (2015).
[Crossref]

Comput. Phys. Commun. (2)

C. Ambrosch-Draxl and J. O. Sofo, “Linear optical properties of solids within the full-potential linearized augmented planewave method,” Comput. Phys. Commun. 175, 1–14 (2006).
[Crossref]

P. Blaha, K. Schwarz, P. Sorantin, and S. Trickey, “Full-potential, linearized augmented plane wave programs for crystalline systems,” Comput. Phys. Commun. 59, 399–415 (1990).
[Crossref]

Faraday Discuss. (1)

R. Esteban, A. Zugarramurdi, P. Zhang, P. Nordlander, F. J. Garcia-Vidal, A. G. Borisov, and J. Aizpurua, “A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations,” Faraday Discuss. 178, 151–183 (2015).
[Crossref] [PubMed]

IEEE Antennas Wireless Propag. Lett. (1)

I. E. Uysal, H. A. Ulku, and H. Bagci, “MOT solution of the PMCHWT equation for analyzing transient scattering from conductive dielectrics,” IEEE Antennas Wireless Propag. Lett. 14, 507–510 (2015).
[Crossref]

IEEE Microw. Compon. Lett. (1)

D. Deschrijver, M. Mrozowski, T. Dhaene, and D. De Zutter, “Macromodeling of multiport systems using a fast implementation of the vector fitting method,” IEEE Microw. Compon. Lett. 18, 383–385 (2008).
[Crossref]

IEEE Trans. Antennas Propag. (3)

B. Shanker, M. Lu, J. Yuan, and E. Michielssen, “Time domain integral equation analysis of scattering from composite bodies via exact evaluation of radiation fields,” IEEE Trans. Antennas Propag. 57, 1506–1520 (2009).
[Crossref]

S. Rao, D. Wilton, and A. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).
[Crossref]

G. Manara, A. Monorchio, and R. Reggiannini, “A space-time discretization criterion for a stable time-marching solution of the electric field integral equation,” IEEE Trans. Antennas Propag. 45, 527–532 (1997).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (1)

H. Bagci, A. E. Yilmaz, V. Lomakin, and E. Michielssen, “Fast solution of mixed-potential time-domain integral equations for half-space environments,” IEEE Trans. Geosci. Remote Sens. 43, 269–279 (2005).
[Crossref]

IEEE Trans. Power Del. (2)

B. Gustavsen and A. Semlyen, “Rational approximation of frequency domain responses by vector fitting,” IEEE Trans. Power Del. 14, 1052–1061 (1999).
[Crossref]

B. Gustavsen, “Improving the pole relocating properties of vector fitting,” IEEE Trans. Power Del. 21, 1587–1592 (2006).
[Crossref]

Instituut voor Kern-en Stralingsfysica, KU Leuven, Belgium (1)

S. Cottenier, “Density functional theory and the family of (L)APW-methods: a step-by-step introduction,” Instituut voor Kern-en Stralingsfysica, KU Leuven, Belgium 4, 41 (2002).

J. Colloid Interface Sci. (1)

H. Cha, D. Lee, J. H. Yoon, and S. Yoon, “Plasmon coupling between silver nanoparticles: Transition from the classical to the quantum regime,” J. Colloid Interface Sci. 464, 18–24 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Ref. Data (1)

W. S. Werner, K. Glantschnig, and C. Ambrosch-Draxl, “Optical constants and inelastic electron-scattering data for 17 elemental metals,” J. Phys. Chem. Ref. Data,  38, 1013–1092, (2009).
[Crossref]

Nano Lett. (2)

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[Crossref] [PubMed]

J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13, 564–569 (2013).
[Crossref]

Nat. Commun. (2)

W. Zhu and K. B. Crozier, “Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering,” Nat. Commun. 5, 5228 (2014).
[Crossref]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

Nat. Phys. (1)

M. S. Tame, K. McEnery, Ş. Özdemir, J. Lee, S. Maier, and M. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

Nature (1)

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. (2)

P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136, B864 (1964).
[Crossref]

W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140, A1133 (1965).
[Crossref]

Phys. Rev. B (4)

U. Hohenester, “Quantum corrected model for plasmonic nanoparticles: A boundary element method implementation,” Phys. Rev. B 91, 205436 (2015).
[Crossref]

P. Zhang, J. Feist, A. Rubio, P. García-González, and F. J. García-Vidal, “Ab initio nanoplasmonics: The impact of atomic structure,” Phys. Rev. B 90, 161407 (2014).
[Crossref]

U. Hohenester and C. Draxl, “Ab initio approach for gap plasmonics,” Phys. Rev. B 94, 165418 (2016).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (2)

W. Yan, M. Wubs, and N. A. Mortensen, “Projected dipole model for quantum plasmonics,” Phys. Rev. Lett. 115, 137403 (2015).
[Crossref] [PubMed]

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
[Crossref] [PubMed]

Science (1)

S. F. Tan, L. Wu, J. K. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum plasmon resonances controlled by molecular tunnel junctions,” Science 343, 1496–1499 (2014).
[Crossref] [PubMed]

Other (5)

P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: An Augmented Plane Wave and Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, 2001).

F. Wooten, Optical Properties of Solids (Academic, 1972).

L. Brekhovskikh, Waves in Layered Media (Academic, 1980), Chap. 1, Sec. 13, pp. 98–99.

A. T. Fromhold, Quantum Mechanics for Applied Physics and Engineering (Academic, 1981).

A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Summary of the proposed approach.
Fig. 2
Fig. 2 Auxiliary tunnel with (a) single layer and (b) three layers.
Fig. 3
Fig. 3 Supercell with gap.
Fig. 4
Fig. 4 (a) Real and (b) imaginary parts of εgap(ω) for gold.
Fig. 5
Fig. 5 (a) Real and (b) imaginary parts of εgap(ω) for silver.
Fig. 6
Fig. 6 (a) Real and (b) imaginary parts of ε(ω) for bulk gold.
Fig. 7
Fig. 7 (a) Real and (b) imaginary parts of ε(ω) for bulk silver.
Fig. 8
Fig. 8 Cext(ω) computed using the Mie series solution for (a) a gold sphere of radius 25 nm and (b) a silver sphere of radius 10 nm.
Fig. 9
Fig. 9 Cext(ω) computed using the TD-SIE solver and the Mie series solution for (a) a gold sphere of radius 25 nm and (b) a silver sphere of radius 10 nm.
Fig. 10
Fig. 10 Electric and magnetic current densities computed using the TD-SIE solver on the surface of the gold dimer (a) without the auxiliary tunnel and (b) with the auxiliary tunnel.
Fig. 11
Fig. 11 Cext(ω) computed using the TD-SIE solver for the gold dimer (a) without the auxiliary tunnel and (b) with the auxiliary tunnel.
Fig. 12
Fig. 12 Cext(ω) computed using the TD-SIE solver for the gold dimer with the auxiliary tunnel constructed using different number of layers.
Fig. 13
Fig. 13 Cext(ω) computed using the TD-SIE solver for the silver dimer (a) without the auxiliary tunnel and (b) with the auxiliary tunnel.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Im { ε ¯ ¯ z z inter ( ω ) } = q e 2 4 π 2 m e 2 ω 2 ϵ 0 n n k p z ; n , n , k 2 ( f ( E n , k ) f ( E n , k ) ) δ ( E n , k E n , k ω ) d 3 k ,
Re { ε ¯ ¯ z z inter ( ω ) } = 1 + 2 π P 0 ω Im { ε ¯ ¯ z z inter ( ω ) } d ω ω 2 ω 2 ,
ε ¯ ¯ z z inter ( ω ) = 1 ω p , z z 2 ω ( ω + i γ ) .
ω p , z z 2 = q e 2 4 π 2 m e 2 ϵ 0 n k p z ; n , n , k 2 δ ( E n , k E F ) d 3 k ,
ε gap ( ω ) = ε ¯ ¯ z z DFT ( ω ) ε bulk ( ω ) d gap ε bulk ( ω ) ( 2 h + d gap ) 2 h ε ¯ ¯ z z DFT ( ω ) .
F ( ω ) = d i ω f + k = 1 N b k i ω + a k .
1 { F ( ω ) } = d δ ( t ) + f δ ( t ) + k = 1 N b k u ( t ) e a k t .
n ^ l ( r ) × [ t E p inc ( r , t ) t E q inc ( r , t ) ] | r S l = n ^ l ( r ) × [ t E p sca ( r , t ) t E q sca ( r , t ) ] | r S l ,
n ^ l ( r ) × [ t H p inc ( r , t ) t H q inc ( r , t ) ] | r S l = n ^ l ( r ) × [ t H p sca ( r , t ) t H q sca ( r , t ) ] | r S l .
t E p sca ( r , t ) = l [ p { μ 0 J l ( r , t ) } Q p { ε ¯ p ( t ) J l ( r , t ) } + K p { M l ( r , t ) } ] ,
t H p sca ( r , t ) = l [ p { ε p ( t ) M l ( r , t ) } Q p { μ 0 1 M l ( r , t ) } K p { J l ( r , t ) } ] .
p { X l ( r , t ) } = S l G p ( R , t ) t 2 X l ( r , t ) d r ,
Q p { X l ( r , t ) } = S l G p ( R , t ) X l ( r , t ) d r ,
K p { X l ( r , t ) } = × S l G p ( R , t ) t X l ( r , t ) d r .
E 0 inc ( r , t ) = z ^ E 0 inc G ( t x ^ r / c 0 ) .

Metrics