Abstract

In this work, we present a luminous-exothermic hollow optical element (LEHOE) that performs spectral beam splitting in the visible spectral range for the enhancement of biofilm growth and activity. The LEHOE is composed of a four-layer structure with a fiber core (air), cladding (SiO2), coating I (LaB6 film), and coating II (SiO2-Agarose-Medium film). To clarify the physical, optical and photothermal conversion properties of the LEHOE, we determined the surface morphology and composition of the coating materials, and examined the luminous intensity and heating rate at the LEHOE surface. The biofilm activity on the biocompatible LEHOE is far greater than that of commercial fibers, and the biofilm weight on the LEHOE is 4.5 × that of the uncoated hollow optical element.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
GeO2-SiO2-chitosan-medium-coated hollow optical fiber for cell immobilization

Nian-bing Zhong, Xun Zhu, Qiang Liao, Yong-zhong Wang, and Rong Chen
Opt. Lett. 38(16) 3115-3118 (2013)

U-shaped, double-tapered, fiber-optic sensor for effective biofilm growth monitoring

Nianbing Zhong, Mingfu Zhao, and Yishan Li
Biomed. Opt. Express 7(2) 335-351 (2016)

Fiber-optic microsensors to measure backscattered light intensity in biofilms

Haluk Beyenal, Zbigniew Lewandowski, Chris Yakymyshyn, Brad Lemley, and Joe Wehri
Appl. Opt. 39(19) 3408-3412 (2000)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Mariñas, and A. M. Mayes, “Science and technology for water purification in the coming decades,” Nature 452(7185), 301–310 (2008).
    [Crossref] [PubMed]
  2. C. Zhou, A. Ontiveros-Valencia, Z. Wang, J. Maldonado, H. P. Zhao, R. Krajmalnik-Brown, and B. E. Rittmann, “Palladium recovery in a H2-based membrane biofilm reactor: formation of Pd (0) nanoparticles through enzymatic and autocatalytic reductions,” Environ. Sci. Technol. 50(5), 2546–2555 (2016).
    [Crossref] [PubMed]
  3. N. Zhong, Q. Liao, X. Zhu, and R. Chen, “A fiber-optic sensor for accurately monitoring biofilm growth in a hydrogen production photobioreactor,” Anal. Chem. 86(8), 3994–4001 (2014).
    [Crossref] [PubMed]
  4. Y. Su, A. Mennerich, and B. Urban, “The long-term effects of wall attached microalgal biofilm on algae-based wastewater treatment,” Bioresour. Technol. 218, 1249–1252 (2016).
    [Crossref] [PubMed]
  5. Q. Liao, N. B. Zhong, X. Zhu, Y. Huang, and R. Chen, “Enhancement of hydrogen production by optimization of biofilm growth in a photobioreactor,” Int. J. Hydrogen Energy 40(14), 4741–4751 (2015).
    [Crossref]
  6. P. Praveen, D. T. T. Nguyen, and K. C. Loh, “Biodegradation of phenol from saline wastewater using forward osmotic hollow fiber membrane bioreactor coupled chemostat,” Biochem. Eng. J. 94, 125–133 (2015).
    [Crossref]
  7. N. B. Zhong, X. Zhu, Q. Liao, Y. Z. Wang, and R. Chen, “GeO2-SiO2-chitosan-medium-coated hollow optical fiber for cell immobilization,” Opt. Lett. 38(16), 3115–3118 (2013).
    [Crossref] [PubMed]
  8. K. Wagner, K. Besemer, N. R. Burns, T. J. Battin, and M. M. Bengtsson, “Light availability affects stream biofilm bacterial community composition and function, but not diversity,” Environ. Microbiol. 17(12), 5036–5047 (2015).
    [Crossref] [PubMed]
  9. W. R. Hill and I. L. Larsen, “Growth dilution of metals in microalgal biofilms,” Environ. Sci. Technol. 39(6), 1513–1518 (2005).
    [Crossref] [PubMed]
  10. H. R. Bonomi, D. M. Posadas, G. Paris, M. C. Carrica, M. Frederickson, L. I. Pietrasanta, R. A. Bogomolni, A. Zorreguieta, and F. A. Goldbaum, “Light regulates attachment, exopolysaccharide production, and nodulation in Rhizobium leguminosarum through a LOV-histidine kinase photoreceptor,” Proc. Natl. Acad. Sci. U.S.A. 109(30), 12135–12140 (2012).
    [Crossref] [PubMed]
  11. D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics 5(10), 583–590 (2011).
    [Crossref]
  12. S. C. Chu, H. L. Yang, Y. H. Liao, H. Y. Wu, and C. Wang, “One-time ray-tracing optimization method and its application to the design of an illuminator for a tube photo-bioreactor,” Opt. Express 22(5), 5357–5374 (2014).
    [Crossref] [PubMed]
  13. Q. Liao, N. B. Zhong, X. Zhu, and R. Chen, “High-performance biofilm photobioreactor based on a GeO2–SiO2–chitosan-medium-coated hollow optical fiber,” Int. J. Hydrogen Energy 39(19), 10016–10027 (2014).
    [Crossref]
  14. C. Salthouse, S. Hilderbrand, R. Weissleder, and U. Mahmood, “Design and demonstration of a small-animal up-conversion imager,” Opt. Express 16(26), 21731–21737 (2008).
    [Crossref] [PubMed]
  15. N. Zhong, Q. Liao, X. Zhu, and M. Zhao, “Fiber Bragg grating with polyimide-silica hybrid membrane for accurately monitoring cell growth and temperature in a photobioreactor,” Anal. Chem. 86(18), 9278–9285 (2014).
    [Crossref] [PubMed]
  16. P. Carlozzi and M. Lambardi, “Fed-batch operation for Bio-H2 production by Rhodopseudomonas Palustris (Strain 42OL),” Renew. Energy 34(12), 2577–2584 (2009).
    [Crossref]
  17. F. Lahoz, I. R. Martín, J. Gil-Rostra, M. Oliva-Ramirez, F. Yubero, and A. R. Gonzalez-Elipe, “Portable IR dye laser optofluidic microresonator as a temperature and chemical sensor,” Opt. Express 24(13), 14383–14392 (2016).
    [Crossref] [PubMed]
  18. X. Tian, Q. Liao, X. Zhu, Y. Wang, P. Zhang, J. Li, and H. Wang, “Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production,” Bioresour. Technol. 101(3), 977–983 (2010).
    [Crossref] [PubMed]
  19. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries,” Nature 407(6803), 496–499 (2000).
    [Crossref] [PubMed]
  20. A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science 311(5761), 622–627 (2006).
    [Crossref] [PubMed]
  21. M. Sakemoto, Y. Kishi, K. Watanabe, H. Abe, S. Ota, Y. Takemura, and T. Baba, “Cell imaging using GaInAsP semiconductor photoluminescence,” Opt. Express 24(10), 11232–11238 (2016).
    [Crossref] [PubMed]
  22. C. J. Chen and D. H. Chen, “Preparation of LaB6 nanoparticles as a novel and effective near-infrared photothermal conversion material,” Chem. Eng. J. 180, 337–342 (2012).
    [Crossref]
  23. Q. Shao, L. Ouyang, L. Jin, and J. Jiang, “Multifunctional nanoheater based on NaGdF4: Yb3+, Er3+ upconversion nanoparticles,” Opt. Express 23(23), 30057–30066 (2015).
    [Crossref] [PubMed]
  24. T. M. Mattox, A. Agrawal, and D. J. Milliron, “Low temperature synthesis and surface plasmon resonance of colloidal lanthanum hexaboride (LaB6) nanocrystals,” Chem. Mater. 27(19), 6620–6624 (2015).
    [Crossref]
  25. C. Zhang, X. Zhu, Q. Liao, Y. Z. Wang, J. Li, Y. D. Ding, and H. Wang, “Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria,” Int. J. Hydrogen Energy 35(11), 5284–5292 (2010).
    [Crossref]
  26. Q. Liao, Y. J. Wang, Y. Z. Wang, X. Zhu, X. Tian, and J. Li, “Formation and hydrogen production of photosynthetic bacterial biofilm under various illumination conditions,” Bioresour. Technol. 101(14), 5315–5324 (2010).
    [Crossref] [PubMed]
  27. S. Kimura, T. Nanba, S. Kunii, and T. Kasuya, “Low-energy optical excitation in rare-earth hexaborides,” Phys. Rev. B Condens. Matter 50(3), 1406–1414 (1994).
    [Crossref] [PubMed]
  28. H. Takeda, H. Kuno, and K. Adachi, “Solar control dispersions and coatings with rare-earth hexaboride nanoparticles,” J. Am. Ceram. Soc. 91(9), 2897–2902 (2008).
    [Crossref]
  29. S. Schelm and G. B. Smith, “Dilute LaB6 nanoparticles in polymer as optimized clear solar control glazing,” Appl. Phys. Lett. 82(24), 4346–4348 (2003).
    [Crossref]
  30. Y. Li, N. B. Zhong, Q. Liao, Q. Fu, Y. Huang, X. Zhu, and Q. L. Li, “A biomaterial doped with LaB6 nanoparticles as photothermal media for enhancing biofilm growth and hydrogen production in photosynthetic bacteria,” Int. J. Hydrogen Energy, in press (2017).
  31. G. K. Mehta, S. Kondaveeti, and A. K. Siddhanta, “Facile synthesis of agarose-l-phenylalanine ester hydrogels,” Polym. Chem.-UK 2(10), 2334–2340 (2011).
    [Crossref]
  32. C. Krafft, L. Neudert, T. Simat, and R. Salzer, “Near infrared Raman spectra of human brain lipids,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(7), 1529–1535 (2005).
    [Crossref] [PubMed]
  33. M. F. Zhang, L. Yuan, X. Q. Wang, H. Fan, X. Y. Wang, X. Y. Wu, H. Z. Wang, and Y. T. Qian, “A low-temperature route for the synthesis of nanocrystalline LaB6,” J. Solid State Chem. 181(2), 294–297 (2008).
    [Crossref]
  34. T. R. Neu, U. Kuhlicke, and J. R. Lawrence, “Assessment of fluorochromes for two-photon laser scanning microscopy of biofilms,” Appl. Environ. Microbiol. 68(2), 901–909 (2002).
    [Crossref] [PubMed]
  35. H. Liu and H. H. P. Fang, “Extraction of extracellular polymeric substances (EPS) of sludges,” J. Biotechnol. 95(3), 249–256 (2002).
    [Crossref] [PubMed]

2016 (4)

Y. Su, A. Mennerich, and B. Urban, “The long-term effects of wall attached microalgal biofilm on algae-based wastewater treatment,” Bioresour. Technol. 218, 1249–1252 (2016).
[Crossref] [PubMed]

C. Zhou, A. Ontiveros-Valencia, Z. Wang, J. Maldonado, H. P. Zhao, R. Krajmalnik-Brown, and B. E. Rittmann, “Palladium recovery in a H2-based membrane biofilm reactor: formation of Pd (0) nanoparticles through enzymatic and autocatalytic reductions,” Environ. Sci. Technol. 50(5), 2546–2555 (2016).
[Crossref] [PubMed]

M. Sakemoto, Y. Kishi, K. Watanabe, H. Abe, S. Ota, Y. Takemura, and T. Baba, “Cell imaging using GaInAsP semiconductor photoluminescence,” Opt. Express 24(10), 11232–11238 (2016).
[Crossref] [PubMed]

F. Lahoz, I. R. Martín, J. Gil-Rostra, M. Oliva-Ramirez, F. Yubero, and A. R. Gonzalez-Elipe, “Portable IR dye laser optofluidic microresonator as a temperature and chemical sensor,” Opt. Express 24(13), 14383–14392 (2016).
[Crossref] [PubMed]

2015 (5)

Q. Shao, L. Ouyang, L. Jin, and J. Jiang, “Multifunctional nanoheater based on NaGdF4: Yb3+, Er3+ upconversion nanoparticles,” Opt. Express 23(23), 30057–30066 (2015).
[Crossref] [PubMed]

Q. Liao, N. B. Zhong, X. Zhu, Y. Huang, and R. Chen, “Enhancement of hydrogen production by optimization of biofilm growth in a photobioreactor,” Int. J. Hydrogen Energy 40(14), 4741–4751 (2015).
[Crossref]

P. Praveen, D. T. T. Nguyen, and K. C. Loh, “Biodegradation of phenol from saline wastewater using forward osmotic hollow fiber membrane bioreactor coupled chemostat,” Biochem. Eng. J. 94, 125–133 (2015).
[Crossref]

K. Wagner, K. Besemer, N. R. Burns, T. J. Battin, and M. M. Bengtsson, “Light availability affects stream biofilm bacterial community composition and function, but not diversity,” Environ. Microbiol. 17(12), 5036–5047 (2015).
[Crossref] [PubMed]

T. M. Mattox, A. Agrawal, and D. J. Milliron, “Low temperature synthesis and surface plasmon resonance of colloidal lanthanum hexaboride (LaB6) nanocrystals,” Chem. Mater. 27(19), 6620–6624 (2015).
[Crossref]

2014 (4)

Q. Liao, N. B. Zhong, X. Zhu, and R. Chen, “High-performance biofilm photobioreactor based on a GeO2–SiO2–chitosan-medium-coated hollow optical fiber,” Int. J. Hydrogen Energy 39(19), 10016–10027 (2014).
[Crossref]

N. Zhong, Q. Liao, X. Zhu, and M. Zhao, “Fiber Bragg grating with polyimide-silica hybrid membrane for accurately monitoring cell growth and temperature in a photobioreactor,” Anal. Chem. 86(18), 9278–9285 (2014).
[Crossref] [PubMed]

N. Zhong, Q. Liao, X. Zhu, and R. Chen, “A fiber-optic sensor for accurately monitoring biofilm growth in a hydrogen production photobioreactor,” Anal. Chem. 86(8), 3994–4001 (2014).
[Crossref] [PubMed]

S. C. Chu, H. L. Yang, Y. H. Liao, H. Y. Wu, and C. Wang, “One-time ray-tracing optimization method and its application to the design of an illuminator for a tube photo-bioreactor,” Opt. Express 22(5), 5357–5374 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (2)

C. J. Chen and D. H. Chen, “Preparation of LaB6 nanoparticles as a novel and effective near-infrared photothermal conversion material,” Chem. Eng. J. 180, 337–342 (2012).
[Crossref]

H. R. Bonomi, D. M. Posadas, G. Paris, M. C. Carrica, M. Frederickson, L. I. Pietrasanta, R. A. Bogomolni, A. Zorreguieta, and F. A. Goldbaum, “Light regulates attachment, exopolysaccharide production, and nodulation in Rhizobium leguminosarum through a LOV-histidine kinase photoreceptor,” Proc. Natl. Acad. Sci. U.S.A. 109(30), 12135–12140 (2012).
[Crossref] [PubMed]

2011 (2)

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics 5(10), 583–590 (2011).
[Crossref]

G. K. Mehta, S. Kondaveeti, and A. K. Siddhanta, “Facile synthesis of agarose-l-phenylalanine ester hydrogels,” Polym. Chem.-UK 2(10), 2334–2340 (2011).
[Crossref]

2010 (3)

X. Tian, Q. Liao, X. Zhu, Y. Wang, P. Zhang, J. Li, and H. Wang, “Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production,” Bioresour. Technol. 101(3), 977–983 (2010).
[Crossref] [PubMed]

C. Zhang, X. Zhu, Q. Liao, Y. Z. Wang, J. Li, Y. D. Ding, and H. Wang, “Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria,” Int. J. Hydrogen Energy 35(11), 5284–5292 (2010).
[Crossref]

Q. Liao, Y. J. Wang, Y. Z. Wang, X. Zhu, X. Tian, and J. Li, “Formation and hydrogen production of photosynthetic bacterial biofilm under various illumination conditions,” Bioresour. Technol. 101(14), 5315–5324 (2010).
[Crossref] [PubMed]

2009 (1)

P. Carlozzi and M. Lambardi, “Fed-batch operation for Bio-H2 production by Rhodopseudomonas Palustris (Strain 42OL),” Renew. Energy 34(12), 2577–2584 (2009).
[Crossref]

2008 (4)

M. F. Zhang, L. Yuan, X. Q. Wang, H. Fan, X. Y. Wang, X. Y. Wu, H. Z. Wang, and Y. T. Qian, “A low-temperature route for the synthesis of nanocrystalline LaB6,” J. Solid State Chem. 181(2), 294–297 (2008).
[Crossref]

M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Mariñas, and A. M. Mayes, “Science and technology for water purification in the coming decades,” Nature 452(7185), 301–310 (2008).
[Crossref] [PubMed]

H. Takeda, H. Kuno, and K. Adachi, “Solar control dispersions and coatings with rare-earth hexaboride nanoparticles,” J. Am. Ceram. Soc. 91(9), 2897–2902 (2008).
[Crossref]

C. Salthouse, S. Hilderbrand, R. Weissleder, and U. Mahmood, “Design and demonstration of a small-animal up-conversion imager,” Opt. Express 16(26), 21731–21737 (2008).
[Crossref] [PubMed]

2006 (1)

A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science 311(5761), 622–627 (2006).
[Crossref] [PubMed]

2005 (2)

C. Krafft, L. Neudert, T. Simat, and R. Salzer, “Near infrared Raman spectra of human brain lipids,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(7), 1529–1535 (2005).
[Crossref] [PubMed]

W. R. Hill and I. L. Larsen, “Growth dilution of metals in microalgal biofilms,” Environ. Sci. Technol. 39(6), 1513–1518 (2005).
[Crossref] [PubMed]

2003 (1)

S. Schelm and G. B. Smith, “Dilute LaB6 nanoparticles in polymer as optimized clear solar control glazing,” Appl. Phys. Lett. 82(24), 4346–4348 (2003).
[Crossref]

2002 (2)

T. R. Neu, U. Kuhlicke, and J. R. Lawrence, “Assessment of fluorochromes for two-photon laser scanning microscopy of biofilms,” Appl. Environ. Microbiol. 68(2), 901–909 (2002).
[Crossref] [PubMed]

H. Liu and H. H. P. Fang, “Extraction of extracellular polymeric substances (EPS) of sludges,” J. Biotechnol. 95(3), 249–256 (2002).
[Crossref] [PubMed]

2000 (1)

P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries,” Nature 407(6803), 496–499 (2000).
[Crossref] [PubMed]

1994 (1)

S. Kimura, T. Nanba, S. Kunii, and T. Kasuya, “Low-energy optical excitation in rare-earth hexaborides,” Phys. Rev. B Condens. Matter 50(3), 1406–1414 (1994).
[Crossref] [PubMed]

Abe, H.

Adachi, K.

H. Takeda, H. Kuno, and K. Adachi, “Solar control dispersions and coatings with rare-earth hexaboride nanoparticles,” J. Am. Ceram. Soc. 91(9), 2897–2902 (2008).
[Crossref]

Agrawal, A.

T. M. Mattox, A. Agrawal, and D. J. Milliron, “Low temperature synthesis and surface plasmon resonance of colloidal lanthanum hexaboride (LaB6) nanocrystals,” Chem. Mater. 27(19), 6620–6624 (2015).
[Crossref]

Baba, T.

Battin, T. J.

K. Wagner, K. Besemer, N. R. Burns, T. J. Battin, and M. M. Bengtsson, “Light availability affects stream biofilm bacterial community composition and function, but not diversity,” Environ. Microbiol. 17(12), 5036–5047 (2015).
[Crossref] [PubMed]

Bengtsson, M. M.

K. Wagner, K. Besemer, N. R. Burns, T. J. Battin, and M. M. Bengtsson, “Light availability affects stream biofilm bacterial community composition and function, but not diversity,” Environ. Microbiol. 17(12), 5036–5047 (2015).
[Crossref] [PubMed]

Besemer, K.

K. Wagner, K. Besemer, N. R. Burns, T. J. Battin, and M. M. Bengtsson, “Light availability affects stream biofilm bacterial community composition and function, but not diversity,” Environ. Microbiol. 17(12), 5036–5047 (2015).
[Crossref] [PubMed]

Bogomolni, R. A.

H. R. Bonomi, D. M. Posadas, G. Paris, M. C. Carrica, M. Frederickson, L. I. Pietrasanta, R. A. Bogomolni, A. Zorreguieta, and F. A. Goldbaum, “Light regulates attachment, exopolysaccharide production, and nodulation in Rhizobium leguminosarum through a LOV-histidine kinase photoreceptor,” Proc. Natl. Acad. Sci. U.S.A. 109(30), 12135–12140 (2012).
[Crossref] [PubMed]

Bohn, P. W.

M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Mariñas, and A. M. Mayes, “Science and technology for water purification in the coming decades,” Nature 452(7185), 301–310 (2008).
[Crossref] [PubMed]

Bonomi, H. R.

H. R. Bonomi, D. M. Posadas, G. Paris, M. C. Carrica, M. Frederickson, L. I. Pietrasanta, R. A. Bogomolni, A. Zorreguieta, and F. A. Goldbaum, “Light regulates attachment, exopolysaccharide production, and nodulation in Rhizobium leguminosarum through a LOV-histidine kinase photoreceptor,” Proc. Natl. Acad. Sci. U.S.A. 109(30), 12135–12140 (2012).
[Crossref] [PubMed]

Burns, N. R.

K. Wagner, K. Besemer, N. R. Burns, T. J. Battin, and M. M. Bengtsson, “Light availability affects stream biofilm bacterial community composition and function, but not diversity,” Environ. Microbiol. 17(12), 5036–5047 (2015).
[Crossref] [PubMed]

Carlozzi, P.

P. Carlozzi and M. Lambardi, “Fed-batch operation for Bio-H2 production by Rhodopseudomonas Palustris (Strain 42OL),” Renew. Energy 34(12), 2577–2584 (2009).
[Crossref]

Carrica, M. C.

H. R. Bonomi, D. M. Posadas, G. Paris, M. C. Carrica, M. Frederickson, L. I. Pietrasanta, R. A. Bogomolni, A. Zorreguieta, and F. A. Goldbaum, “Light regulates attachment, exopolysaccharide production, and nodulation in Rhizobium leguminosarum through a LOV-histidine kinase photoreceptor,” Proc. Natl. Acad. Sci. U.S.A. 109(30), 12135–12140 (2012).
[Crossref] [PubMed]

Chen, C. J.

C. J. Chen and D. H. Chen, “Preparation of LaB6 nanoparticles as a novel and effective near-infrared photothermal conversion material,” Chem. Eng. J. 180, 337–342 (2012).
[Crossref]

Chen, D. H.

C. J. Chen and D. H. Chen, “Preparation of LaB6 nanoparticles as a novel and effective near-infrared photothermal conversion material,” Chem. Eng. J. 180, 337–342 (2012).
[Crossref]

Chen, R.

Q. Liao, N. B. Zhong, X. Zhu, Y. Huang, and R. Chen, “Enhancement of hydrogen production by optimization of biofilm growth in a photobioreactor,” Int. J. Hydrogen Energy 40(14), 4741–4751 (2015).
[Crossref]

N. Zhong, Q. Liao, X. Zhu, and R. Chen, “A fiber-optic sensor for accurately monitoring biofilm growth in a hydrogen production photobioreactor,” Anal. Chem. 86(8), 3994–4001 (2014).
[Crossref] [PubMed]

Q. Liao, N. B. Zhong, X. Zhu, and R. Chen, “High-performance biofilm photobioreactor based on a GeO2–SiO2–chitosan-medium-coated hollow optical fiber,” Int. J. Hydrogen Energy 39(19), 10016–10027 (2014).
[Crossref]

N. B. Zhong, X. Zhu, Q. Liao, Y. Z. Wang, and R. Chen, “GeO2-SiO2-chitosan-medium-coated hollow optical fiber for cell immobilization,” Opt. Lett. 38(16), 3115–3118 (2013).
[Crossref] [PubMed]

Chu, S. C.

Ding, Y. D.

C. Zhang, X. Zhu, Q. Liao, Y. Z. Wang, J. Li, Y. D. Ding, and H. Wang, “Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria,” Int. J. Hydrogen Energy 35(11), 5284–5292 (2010).
[Crossref]

Dupont, L.

P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries,” Nature 407(6803), 496–499 (2000).
[Crossref] [PubMed]

Elimelech, M.

M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Mariñas, and A. M. Mayes, “Science and technology for water purification in the coming decades,” Nature 452(7185), 301–310 (2008).
[Crossref] [PubMed]

Erickson, D.

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics 5(10), 583–590 (2011).
[Crossref]

Fan, H.

M. F. Zhang, L. Yuan, X. Q. Wang, H. Fan, X. Y. Wang, X. Y. Wu, H. Z. Wang, and Y. T. Qian, “A low-temperature route for the synthesis of nanocrystalline LaB6,” J. Solid State Chem. 181(2), 294–297 (2008).
[Crossref]

Fang, H. H. P.

H. Liu and H. H. P. Fang, “Extraction of extracellular polymeric substances (EPS) of sludges,” J. Biotechnol. 95(3), 249–256 (2002).
[Crossref] [PubMed]

Frederickson, M.

H. R. Bonomi, D. M. Posadas, G. Paris, M. C. Carrica, M. Frederickson, L. I. Pietrasanta, R. A. Bogomolni, A. Zorreguieta, and F. A. Goldbaum, “Light regulates attachment, exopolysaccharide production, and nodulation in Rhizobium leguminosarum through a LOV-histidine kinase photoreceptor,” Proc. Natl. Acad. Sci. U.S.A. 109(30), 12135–12140 (2012).
[Crossref] [PubMed]

Fu, Q.

Y. Li, N. B. Zhong, Q. Liao, Q. Fu, Y. Huang, X. Zhu, and Q. L. Li, “A biomaterial doped with LaB6 nanoparticles as photothermal media for enhancing biofilm growth and hydrogen production in photosynthetic bacteria,” Int. J. Hydrogen Energy, in press (2017).

Georgiadis, J. G.

M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Mariñas, and A. M. Mayes, “Science and technology for water purification in the coming decades,” Nature 452(7185), 301–310 (2008).
[Crossref] [PubMed]

Gil-Rostra, J.

Goldbaum, F. A.

H. R. Bonomi, D. M. Posadas, G. Paris, M. C. Carrica, M. Frederickson, L. I. Pietrasanta, R. A. Bogomolni, A. Zorreguieta, and F. A. Goldbaum, “Light regulates attachment, exopolysaccharide production, and nodulation in Rhizobium leguminosarum through a LOV-histidine kinase photoreceptor,” Proc. Natl. Acad. Sci. U.S.A. 109(30), 12135–12140 (2012).
[Crossref] [PubMed]

Gonzalez-Elipe, A. R.

Grugeon, S.

P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries,” Nature 407(6803), 496–499 (2000).
[Crossref] [PubMed]

Hilderbrand, S.

Hill, W. R.

W. R. Hill and I. L. Larsen, “Growth dilution of metals in microalgal biofilms,” Environ. Sci. Technol. 39(6), 1513–1518 (2005).
[Crossref] [PubMed]

Huang, Y.

Q. Liao, N. B. Zhong, X. Zhu, Y. Huang, and R. Chen, “Enhancement of hydrogen production by optimization of biofilm growth in a photobioreactor,” Int. J. Hydrogen Energy 40(14), 4741–4751 (2015).
[Crossref]

Y. Li, N. B. Zhong, Q. Liao, Q. Fu, Y. Huang, X. Zhu, and Q. L. Li, “A biomaterial doped with LaB6 nanoparticles as photothermal media for enhancing biofilm growth and hydrogen production in photosynthetic bacteria,” Int. J. Hydrogen Energy, in press (2017).

Jiang, J.

Jin, L.

Kasuya, T.

S. Kimura, T. Nanba, S. Kunii, and T. Kasuya, “Low-energy optical excitation in rare-earth hexaborides,” Phys. Rev. B Condens. Matter 50(3), 1406–1414 (1994).
[Crossref] [PubMed]

Kimura, S.

S. Kimura, T. Nanba, S. Kunii, and T. Kasuya, “Low-energy optical excitation in rare-earth hexaborides,” Phys. Rev. B Condens. Matter 50(3), 1406–1414 (1994).
[Crossref] [PubMed]

Kishi, Y.

Kondaveeti, S.

G. K. Mehta, S. Kondaveeti, and A. K. Siddhanta, “Facile synthesis of agarose-l-phenylalanine ester hydrogels,” Polym. Chem.-UK 2(10), 2334–2340 (2011).
[Crossref]

Krafft, C.

C. Krafft, L. Neudert, T. Simat, and R. Salzer, “Near infrared Raman spectra of human brain lipids,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(7), 1529–1535 (2005).
[Crossref] [PubMed]

Krajmalnik-Brown, R.

C. Zhou, A. Ontiveros-Valencia, Z. Wang, J. Maldonado, H. P. Zhao, R. Krajmalnik-Brown, and B. E. Rittmann, “Palladium recovery in a H2-based membrane biofilm reactor: formation of Pd (0) nanoparticles through enzymatic and autocatalytic reductions,” Environ. Sci. Technol. 50(5), 2546–2555 (2016).
[Crossref] [PubMed]

Kuhlicke, U.

T. R. Neu, U. Kuhlicke, and J. R. Lawrence, “Assessment of fluorochromes for two-photon laser scanning microscopy of biofilms,” Appl. Environ. Microbiol. 68(2), 901–909 (2002).
[Crossref] [PubMed]

Kunii, S.

S. Kimura, T. Nanba, S. Kunii, and T. Kasuya, “Low-energy optical excitation in rare-earth hexaborides,” Phys. Rev. B Condens. Matter 50(3), 1406–1414 (1994).
[Crossref] [PubMed]

Kuno, H.

H. Takeda, H. Kuno, and K. Adachi, “Solar control dispersions and coatings with rare-earth hexaboride nanoparticles,” J. Am. Ceram. Soc. 91(9), 2897–2902 (2008).
[Crossref]

Lahoz, F.

Lambardi, M.

P. Carlozzi and M. Lambardi, “Fed-batch operation for Bio-H2 production by Rhodopseudomonas Palustris (Strain 42OL),” Renew. Energy 34(12), 2577–2584 (2009).
[Crossref]

Larsen, I. L.

W. R. Hill and I. L. Larsen, “Growth dilution of metals in microalgal biofilms,” Environ. Sci. Technol. 39(6), 1513–1518 (2005).
[Crossref] [PubMed]

Laruelle, S.

P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries,” Nature 407(6803), 496–499 (2000).
[Crossref] [PubMed]

Lawrence, J. R.

T. R. Neu, U. Kuhlicke, and J. R. Lawrence, “Assessment of fluorochromes for two-photon laser scanning microscopy of biofilms,” Appl. Environ. Microbiol. 68(2), 901–909 (2002).
[Crossref] [PubMed]

Li, J.

Q. Liao, Y. J. Wang, Y. Z. Wang, X. Zhu, X. Tian, and J. Li, “Formation and hydrogen production of photosynthetic bacterial biofilm under various illumination conditions,” Bioresour. Technol. 101(14), 5315–5324 (2010).
[Crossref] [PubMed]

X. Tian, Q. Liao, X. Zhu, Y. Wang, P. Zhang, J. Li, and H. Wang, “Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production,” Bioresour. Technol. 101(3), 977–983 (2010).
[Crossref] [PubMed]

C. Zhang, X. Zhu, Q. Liao, Y. Z. Wang, J. Li, Y. D. Ding, and H. Wang, “Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria,” Int. J. Hydrogen Energy 35(11), 5284–5292 (2010).
[Crossref]

Li, N.

A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science 311(5761), 622–627 (2006).
[Crossref] [PubMed]

Li, Q. L.

Y. Li, N. B. Zhong, Q. Liao, Q. Fu, Y. Huang, X. Zhu, and Q. L. Li, “A biomaterial doped with LaB6 nanoparticles as photothermal media for enhancing biofilm growth and hydrogen production in photosynthetic bacteria,” Int. J. Hydrogen Energy, in press (2017).

Li, Y.

Y. Li, N. B. Zhong, Q. Liao, Q. Fu, Y. Huang, X. Zhu, and Q. L. Li, “A biomaterial doped with LaB6 nanoparticles as photothermal media for enhancing biofilm growth and hydrogen production in photosynthetic bacteria,” Int. J. Hydrogen Energy, in press (2017).

Liao, Q.

Q. Liao, N. B. Zhong, X. Zhu, Y. Huang, and R. Chen, “Enhancement of hydrogen production by optimization of biofilm growth in a photobioreactor,” Int. J. Hydrogen Energy 40(14), 4741–4751 (2015).
[Crossref]

N. Zhong, Q. Liao, X. Zhu, and R. Chen, “A fiber-optic sensor for accurately monitoring biofilm growth in a hydrogen production photobioreactor,” Anal. Chem. 86(8), 3994–4001 (2014).
[Crossref] [PubMed]

Q. Liao, N. B. Zhong, X. Zhu, and R. Chen, “High-performance biofilm photobioreactor based on a GeO2–SiO2–chitosan-medium-coated hollow optical fiber,” Int. J. Hydrogen Energy 39(19), 10016–10027 (2014).
[Crossref]

N. Zhong, Q. Liao, X. Zhu, and M. Zhao, “Fiber Bragg grating with polyimide-silica hybrid membrane for accurately monitoring cell growth and temperature in a photobioreactor,” Anal. Chem. 86(18), 9278–9285 (2014).
[Crossref] [PubMed]

N. B. Zhong, X. Zhu, Q. Liao, Y. Z. Wang, and R. Chen, “GeO2-SiO2-chitosan-medium-coated hollow optical fiber for cell immobilization,” Opt. Lett. 38(16), 3115–3118 (2013).
[Crossref] [PubMed]

X. Tian, Q. Liao, X. Zhu, Y. Wang, P. Zhang, J. Li, and H. Wang, “Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production,” Bioresour. Technol. 101(3), 977–983 (2010).
[Crossref] [PubMed]

Q. Liao, Y. J. Wang, Y. Z. Wang, X. Zhu, X. Tian, and J. Li, “Formation and hydrogen production of photosynthetic bacterial biofilm under various illumination conditions,” Bioresour. Technol. 101(14), 5315–5324 (2010).
[Crossref] [PubMed]

C. Zhang, X. Zhu, Q. Liao, Y. Z. Wang, J. Li, Y. D. Ding, and H. Wang, “Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria,” Int. J. Hydrogen Energy 35(11), 5284–5292 (2010).
[Crossref]

Y. Li, N. B. Zhong, Q. Liao, Q. Fu, Y. Huang, X. Zhu, and Q. L. Li, “A biomaterial doped with LaB6 nanoparticles as photothermal media for enhancing biofilm growth and hydrogen production in photosynthetic bacteria,” Int. J. Hydrogen Energy, in press (2017).

Liao, Y. H.

Liu, H.

H. Liu and H. H. P. Fang, “Extraction of extracellular polymeric substances (EPS) of sludges,” J. Biotechnol. 95(3), 249–256 (2002).
[Crossref] [PubMed]

Loh, K. C.

P. Praveen, D. T. T. Nguyen, and K. C. Loh, “Biodegradation of phenol from saline wastewater using forward osmotic hollow fiber membrane bioreactor coupled chemostat,” Biochem. Eng. J. 94, 125–133 (2015).
[Crossref]

Mädler, L.

A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science 311(5761), 622–627 (2006).
[Crossref] [PubMed]

Mahmood, U.

Maldonado, J.

C. Zhou, A. Ontiveros-Valencia, Z. Wang, J. Maldonado, H. P. Zhao, R. Krajmalnik-Brown, and B. E. Rittmann, “Palladium recovery in a H2-based membrane biofilm reactor: formation of Pd (0) nanoparticles through enzymatic and autocatalytic reductions,” Environ. Sci. Technol. 50(5), 2546–2555 (2016).
[Crossref] [PubMed]

Mariñas, B. J.

M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Mariñas, and A. M. Mayes, “Science and technology for water purification in the coming decades,” Nature 452(7185), 301–310 (2008).
[Crossref] [PubMed]

Martín, I. R.

Mattox, T. M.

T. M. Mattox, A. Agrawal, and D. J. Milliron, “Low temperature synthesis and surface plasmon resonance of colloidal lanthanum hexaboride (LaB6) nanocrystals,” Chem. Mater. 27(19), 6620–6624 (2015).
[Crossref]

Mayes, A. M.

M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Mariñas, and A. M. Mayes, “Science and technology for water purification in the coming decades,” Nature 452(7185), 301–310 (2008).
[Crossref] [PubMed]

Mehta, G. K.

G. K. Mehta, S. Kondaveeti, and A. K. Siddhanta, “Facile synthesis of agarose-l-phenylalanine ester hydrogels,” Polym. Chem.-UK 2(10), 2334–2340 (2011).
[Crossref]

Mennerich, A.

Y. Su, A. Mennerich, and B. Urban, “The long-term effects of wall attached microalgal biofilm on algae-based wastewater treatment,” Bioresour. Technol. 218, 1249–1252 (2016).
[Crossref] [PubMed]

Milliron, D. J.

T. M. Mattox, A. Agrawal, and D. J. Milliron, “Low temperature synthesis and surface plasmon resonance of colloidal lanthanum hexaboride (LaB6) nanocrystals,” Chem. Mater. 27(19), 6620–6624 (2015).
[Crossref]

Nanba, T.

S. Kimura, T. Nanba, S. Kunii, and T. Kasuya, “Low-energy optical excitation in rare-earth hexaborides,” Phys. Rev. B Condens. Matter 50(3), 1406–1414 (1994).
[Crossref] [PubMed]

Nel, A.

A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science 311(5761), 622–627 (2006).
[Crossref] [PubMed]

Neu, T. R.

T. R. Neu, U. Kuhlicke, and J. R. Lawrence, “Assessment of fluorochromes for two-photon laser scanning microscopy of biofilms,” Appl. Environ. Microbiol. 68(2), 901–909 (2002).
[Crossref] [PubMed]

Neudert, L.

C. Krafft, L. Neudert, T. Simat, and R. Salzer, “Near infrared Raman spectra of human brain lipids,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(7), 1529–1535 (2005).
[Crossref] [PubMed]

Nguyen, D. T. T.

P. Praveen, D. T. T. Nguyen, and K. C. Loh, “Biodegradation of phenol from saline wastewater using forward osmotic hollow fiber membrane bioreactor coupled chemostat,” Biochem. Eng. J. 94, 125–133 (2015).
[Crossref]

Oliva-Ramirez, M.

Ontiveros-Valencia, A.

C. Zhou, A. Ontiveros-Valencia, Z. Wang, J. Maldonado, H. P. Zhao, R. Krajmalnik-Brown, and B. E. Rittmann, “Palladium recovery in a H2-based membrane biofilm reactor: formation of Pd (0) nanoparticles through enzymatic and autocatalytic reductions,” Environ. Sci. Technol. 50(5), 2546–2555 (2016).
[Crossref] [PubMed]

Ota, S.

Ouyang, L.

Paris, G.

H. R. Bonomi, D. M. Posadas, G. Paris, M. C. Carrica, M. Frederickson, L. I. Pietrasanta, R. A. Bogomolni, A. Zorreguieta, and F. A. Goldbaum, “Light regulates attachment, exopolysaccharide production, and nodulation in Rhizobium leguminosarum through a LOV-histidine kinase photoreceptor,” Proc. Natl. Acad. Sci. U.S.A. 109(30), 12135–12140 (2012).
[Crossref] [PubMed]

Pietrasanta, L. I.

H. R. Bonomi, D. M. Posadas, G. Paris, M. C. Carrica, M. Frederickson, L. I. Pietrasanta, R. A. Bogomolni, A. Zorreguieta, and F. A. Goldbaum, “Light regulates attachment, exopolysaccharide production, and nodulation in Rhizobium leguminosarum through a LOV-histidine kinase photoreceptor,” Proc. Natl. Acad. Sci. U.S.A. 109(30), 12135–12140 (2012).
[Crossref] [PubMed]

Poizot, P.

P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries,” Nature 407(6803), 496–499 (2000).
[Crossref] [PubMed]

Posadas, D. M.

H. R. Bonomi, D. M. Posadas, G. Paris, M. C. Carrica, M. Frederickson, L. I. Pietrasanta, R. A. Bogomolni, A. Zorreguieta, and F. A. Goldbaum, “Light regulates attachment, exopolysaccharide production, and nodulation in Rhizobium leguminosarum through a LOV-histidine kinase photoreceptor,” Proc. Natl. Acad. Sci. U.S.A. 109(30), 12135–12140 (2012).
[Crossref] [PubMed]

Praveen, P.

P. Praveen, D. T. T. Nguyen, and K. C. Loh, “Biodegradation of phenol from saline wastewater using forward osmotic hollow fiber membrane bioreactor coupled chemostat,” Biochem. Eng. J. 94, 125–133 (2015).
[Crossref]

Psaltis, D.

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics 5(10), 583–590 (2011).
[Crossref]

Qian, Y. T.

M. F. Zhang, L. Yuan, X. Q. Wang, H. Fan, X. Y. Wang, X. Y. Wu, H. Z. Wang, and Y. T. Qian, “A low-temperature route for the synthesis of nanocrystalline LaB6,” J. Solid State Chem. 181(2), 294–297 (2008).
[Crossref]

Rittmann, B. E.

C. Zhou, A. Ontiveros-Valencia, Z. Wang, J. Maldonado, H. P. Zhao, R. Krajmalnik-Brown, and B. E. Rittmann, “Palladium recovery in a H2-based membrane biofilm reactor: formation of Pd (0) nanoparticles through enzymatic and autocatalytic reductions,” Environ. Sci. Technol. 50(5), 2546–2555 (2016).
[Crossref] [PubMed]

Sakemoto, M.

Salthouse, C.

Salzer, R.

C. Krafft, L. Neudert, T. Simat, and R. Salzer, “Near infrared Raman spectra of human brain lipids,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(7), 1529–1535 (2005).
[Crossref] [PubMed]

Schelm, S.

S. Schelm and G. B. Smith, “Dilute LaB6 nanoparticles in polymer as optimized clear solar control glazing,” Appl. Phys. Lett. 82(24), 4346–4348 (2003).
[Crossref]

Shannon, M. A.

M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Mariñas, and A. M. Mayes, “Science and technology for water purification in the coming decades,” Nature 452(7185), 301–310 (2008).
[Crossref] [PubMed]

Shao, Q.

Siddhanta, A. K.

G. K. Mehta, S. Kondaveeti, and A. K. Siddhanta, “Facile synthesis of agarose-l-phenylalanine ester hydrogels,” Polym. Chem.-UK 2(10), 2334–2340 (2011).
[Crossref]

Simat, T.

C. Krafft, L. Neudert, T. Simat, and R. Salzer, “Near infrared Raman spectra of human brain lipids,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(7), 1529–1535 (2005).
[Crossref] [PubMed]

Sinton, D.

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics 5(10), 583–590 (2011).
[Crossref]

Smith, G. B.

S. Schelm and G. B. Smith, “Dilute LaB6 nanoparticles in polymer as optimized clear solar control glazing,” Appl. Phys. Lett. 82(24), 4346–4348 (2003).
[Crossref]

Su, Y.

Y. Su, A. Mennerich, and B. Urban, “The long-term effects of wall attached microalgal biofilm on algae-based wastewater treatment,” Bioresour. Technol. 218, 1249–1252 (2016).
[Crossref] [PubMed]

Takeda, H.

H. Takeda, H. Kuno, and K. Adachi, “Solar control dispersions and coatings with rare-earth hexaboride nanoparticles,” J. Am. Ceram. Soc. 91(9), 2897–2902 (2008).
[Crossref]

Takemura, Y.

Tarascon, J. M.

P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries,” Nature 407(6803), 496–499 (2000).
[Crossref] [PubMed]

Tian, X.

X. Tian, Q. Liao, X. Zhu, Y. Wang, P. Zhang, J. Li, and H. Wang, “Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production,” Bioresour. Technol. 101(3), 977–983 (2010).
[Crossref] [PubMed]

Q. Liao, Y. J. Wang, Y. Z. Wang, X. Zhu, X. Tian, and J. Li, “Formation and hydrogen production of photosynthetic bacterial biofilm under various illumination conditions,” Bioresour. Technol. 101(14), 5315–5324 (2010).
[Crossref] [PubMed]

Urban, B.

Y. Su, A. Mennerich, and B. Urban, “The long-term effects of wall attached microalgal biofilm on algae-based wastewater treatment,” Bioresour. Technol. 218, 1249–1252 (2016).
[Crossref] [PubMed]

Wagner, K.

K. Wagner, K. Besemer, N. R. Burns, T. J. Battin, and M. M. Bengtsson, “Light availability affects stream biofilm bacterial community composition and function, but not diversity,” Environ. Microbiol. 17(12), 5036–5047 (2015).
[Crossref] [PubMed]

Wang, C.

Wang, H.

X. Tian, Q. Liao, X. Zhu, Y. Wang, P. Zhang, J. Li, and H. Wang, “Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production,” Bioresour. Technol. 101(3), 977–983 (2010).
[Crossref] [PubMed]

C. Zhang, X. Zhu, Q. Liao, Y. Z. Wang, J. Li, Y. D. Ding, and H. Wang, “Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria,” Int. J. Hydrogen Energy 35(11), 5284–5292 (2010).
[Crossref]

Wang, H. Z.

M. F. Zhang, L. Yuan, X. Q. Wang, H. Fan, X. Y. Wang, X. Y. Wu, H. Z. Wang, and Y. T. Qian, “A low-temperature route for the synthesis of nanocrystalline LaB6,” J. Solid State Chem. 181(2), 294–297 (2008).
[Crossref]

Wang, X. Q.

M. F. Zhang, L. Yuan, X. Q. Wang, H. Fan, X. Y. Wang, X. Y. Wu, H. Z. Wang, and Y. T. Qian, “A low-temperature route for the synthesis of nanocrystalline LaB6,” J. Solid State Chem. 181(2), 294–297 (2008).
[Crossref]

Wang, X. Y.

M. F. Zhang, L. Yuan, X. Q. Wang, H. Fan, X. Y. Wang, X. Y. Wu, H. Z. Wang, and Y. T. Qian, “A low-temperature route for the synthesis of nanocrystalline LaB6,” J. Solid State Chem. 181(2), 294–297 (2008).
[Crossref]

Wang, Y.

X. Tian, Q. Liao, X. Zhu, Y. Wang, P. Zhang, J. Li, and H. Wang, “Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production,” Bioresour. Technol. 101(3), 977–983 (2010).
[Crossref] [PubMed]

Wang, Y. J.

Q. Liao, Y. J. Wang, Y. Z. Wang, X. Zhu, X. Tian, and J. Li, “Formation and hydrogen production of photosynthetic bacterial biofilm under various illumination conditions,” Bioresour. Technol. 101(14), 5315–5324 (2010).
[Crossref] [PubMed]

Wang, Y. Z.

N. B. Zhong, X. Zhu, Q. Liao, Y. Z. Wang, and R. Chen, “GeO2-SiO2-chitosan-medium-coated hollow optical fiber for cell immobilization,” Opt. Lett. 38(16), 3115–3118 (2013).
[Crossref] [PubMed]

Q. Liao, Y. J. Wang, Y. Z. Wang, X. Zhu, X. Tian, and J. Li, “Formation and hydrogen production of photosynthetic bacterial biofilm under various illumination conditions,” Bioresour. Technol. 101(14), 5315–5324 (2010).
[Crossref] [PubMed]

C. Zhang, X. Zhu, Q. Liao, Y. Z. Wang, J. Li, Y. D. Ding, and H. Wang, “Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria,” Int. J. Hydrogen Energy 35(11), 5284–5292 (2010).
[Crossref]

Wang, Z.

C. Zhou, A. Ontiveros-Valencia, Z. Wang, J. Maldonado, H. P. Zhao, R. Krajmalnik-Brown, and B. E. Rittmann, “Palladium recovery in a H2-based membrane biofilm reactor: formation of Pd (0) nanoparticles through enzymatic and autocatalytic reductions,” Environ. Sci. Technol. 50(5), 2546–2555 (2016).
[Crossref] [PubMed]

Watanabe, K.

Weissleder, R.

Wu, H. Y.

Wu, X. Y.

M. F. Zhang, L. Yuan, X. Q. Wang, H. Fan, X. Y. Wang, X. Y. Wu, H. Z. Wang, and Y. T. Qian, “A low-temperature route for the synthesis of nanocrystalline LaB6,” J. Solid State Chem. 181(2), 294–297 (2008).
[Crossref]

Xia, T.

A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science 311(5761), 622–627 (2006).
[Crossref] [PubMed]

Yang, H. L.

Yuan, L.

M. F. Zhang, L. Yuan, X. Q. Wang, H. Fan, X. Y. Wang, X. Y. Wu, H. Z. Wang, and Y. T. Qian, “A low-temperature route for the synthesis of nanocrystalline LaB6,” J. Solid State Chem. 181(2), 294–297 (2008).
[Crossref]

Yubero, F.

Zhang, C.

C. Zhang, X. Zhu, Q. Liao, Y. Z. Wang, J. Li, Y. D. Ding, and H. Wang, “Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria,” Int. J. Hydrogen Energy 35(11), 5284–5292 (2010).
[Crossref]

Zhang, M. F.

M. F. Zhang, L. Yuan, X. Q. Wang, H. Fan, X. Y. Wang, X. Y. Wu, H. Z. Wang, and Y. T. Qian, “A low-temperature route for the synthesis of nanocrystalline LaB6,” J. Solid State Chem. 181(2), 294–297 (2008).
[Crossref]

Zhang, P.

X. Tian, Q. Liao, X. Zhu, Y. Wang, P. Zhang, J. Li, and H. Wang, “Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production,” Bioresour. Technol. 101(3), 977–983 (2010).
[Crossref] [PubMed]

Zhao, H. P.

C. Zhou, A. Ontiveros-Valencia, Z. Wang, J. Maldonado, H. P. Zhao, R. Krajmalnik-Brown, and B. E. Rittmann, “Palladium recovery in a H2-based membrane biofilm reactor: formation of Pd (0) nanoparticles through enzymatic and autocatalytic reductions,” Environ. Sci. Technol. 50(5), 2546–2555 (2016).
[Crossref] [PubMed]

Zhao, M.

N. Zhong, Q. Liao, X. Zhu, and M. Zhao, “Fiber Bragg grating with polyimide-silica hybrid membrane for accurately monitoring cell growth and temperature in a photobioreactor,” Anal. Chem. 86(18), 9278–9285 (2014).
[Crossref] [PubMed]

Zhong, N.

N. Zhong, Q. Liao, X. Zhu, and M. Zhao, “Fiber Bragg grating with polyimide-silica hybrid membrane for accurately monitoring cell growth and temperature in a photobioreactor,” Anal. Chem. 86(18), 9278–9285 (2014).
[Crossref] [PubMed]

N. Zhong, Q. Liao, X. Zhu, and R. Chen, “A fiber-optic sensor for accurately monitoring biofilm growth in a hydrogen production photobioreactor,” Anal. Chem. 86(8), 3994–4001 (2014).
[Crossref] [PubMed]

Zhong, N. B.

Q. Liao, N. B. Zhong, X. Zhu, Y. Huang, and R. Chen, “Enhancement of hydrogen production by optimization of biofilm growth in a photobioreactor,” Int. J. Hydrogen Energy 40(14), 4741–4751 (2015).
[Crossref]

Q. Liao, N. B. Zhong, X. Zhu, and R. Chen, “High-performance biofilm photobioreactor based on a GeO2–SiO2–chitosan-medium-coated hollow optical fiber,” Int. J. Hydrogen Energy 39(19), 10016–10027 (2014).
[Crossref]

N. B. Zhong, X. Zhu, Q. Liao, Y. Z. Wang, and R. Chen, “GeO2-SiO2-chitosan-medium-coated hollow optical fiber for cell immobilization,” Opt. Lett. 38(16), 3115–3118 (2013).
[Crossref] [PubMed]

Y. Li, N. B. Zhong, Q. Liao, Q. Fu, Y. Huang, X. Zhu, and Q. L. Li, “A biomaterial doped with LaB6 nanoparticles as photothermal media for enhancing biofilm growth and hydrogen production in photosynthetic bacteria,” Int. J. Hydrogen Energy, in press (2017).

Zhou, C.

C. Zhou, A. Ontiveros-Valencia, Z. Wang, J. Maldonado, H. P. Zhao, R. Krajmalnik-Brown, and B. E. Rittmann, “Palladium recovery in a H2-based membrane biofilm reactor: formation of Pd (0) nanoparticles through enzymatic and autocatalytic reductions,” Environ. Sci. Technol. 50(5), 2546–2555 (2016).
[Crossref] [PubMed]

Zhu, X.

Q. Liao, N. B. Zhong, X. Zhu, Y. Huang, and R. Chen, “Enhancement of hydrogen production by optimization of biofilm growth in a photobioreactor,” Int. J. Hydrogen Energy 40(14), 4741–4751 (2015).
[Crossref]

N. Zhong, Q. Liao, X. Zhu, and R. Chen, “A fiber-optic sensor for accurately monitoring biofilm growth in a hydrogen production photobioreactor,” Anal. Chem. 86(8), 3994–4001 (2014).
[Crossref] [PubMed]

Q. Liao, N. B. Zhong, X. Zhu, and R. Chen, “High-performance biofilm photobioreactor based on a GeO2–SiO2–chitosan-medium-coated hollow optical fiber,” Int. J. Hydrogen Energy 39(19), 10016–10027 (2014).
[Crossref]

N. Zhong, Q. Liao, X. Zhu, and M. Zhao, “Fiber Bragg grating with polyimide-silica hybrid membrane for accurately monitoring cell growth and temperature in a photobioreactor,” Anal. Chem. 86(18), 9278–9285 (2014).
[Crossref] [PubMed]

N. B. Zhong, X. Zhu, Q. Liao, Y. Z. Wang, and R. Chen, “GeO2-SiO2-chitosan-medium-coated hollow optical fiber for cell immobilization,” Opt. Lett. 38(16), 3115–3118 (2013).
[Crossref] [PubMed]

X. Tian, Q. Liao, X. Zhu, Y. Wang, P. Zhang, J. Li, and H. Wang, “Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production,” Bioresour. Technol. 101(3), 977–983 (2010).
[Crossref] [PubMed]

Q. Liao, Y. J. Wang, Y. Z. Wang, X. Zhu, X. Tian, and J. Li, “Formation and hydrogen production of photosynthetic bacterial biofilm under various illumination conditions,” Bioresour. Technol. 101(14), 5315–5324 (2010).
[Crossref] [PubMed]

C. Zhang, X. Zhu, Q. Liao, Y. Z. Wang, J. Li, Y. D. Ding, and H. Wang, “Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria,” Int. J. Hydrogen Energy 35(11), 5284–5292 (2010).
[Crossref]

Y. Li, N. B. Zhong, Q. Liao, Q. Fu, Y. Huang, X. Zhu, and Q. L. Li, “A biomaterial doped with LaB6 nanoparticles as photothermal media for enhancing biofilm growth and hydrogen production in photosynthetic bacteria,” Int. J. Hydrogen Energy, in press (2017).

Zorreguieta, A.

H. R. Bonomi, D. M. Posadas, G. Paris, M. C. Carrica, M. Frederickson, L. I. Pietrasanta, R. A. Bogomolni, A. Zorreguieta, and F. A. Goldbaum, “Light regulates attachment, exopolysaccharide production, and nodulation in Rhizobium leguminosarum through a LOV-histidine kinase photoreceptor,” Proc. Natl. Acad. Sci. U.S.A. 109(30), 12135–12140 (2012).
[Crossref] [PubMed]

Anal. Chem. (2)

N. Zhong, Q. Liao, X. Zhu, and R. Chen, “A fiber-optic sensor for accurately monitoring biofilm growth in a hydrogen production photobioreactor,” Anal. Chem. 86(8), 3994–4001 (2014).
[Crossref] [PubMed]

N. Zhong, Q. Liao, X. Zhu, and M. Zhao, “Fiber Bragg grating with polyimide-silica hybrid membrane for accurately monitoring cell growth and temperature in a photobioreactor,” Anal. Chem. 86(18), 9278–9285 (2014).
[Crossref] [PubMed]

Appl. Environ. Microbiol. (1)

T. R. Neu, U. Kuhlicke, and J. R. Lawrence, “Assessment of fluorochromes for two-photon laser scanning microscopy of biofilms,” Appl. Environ. Microbiol. 68(2), 901–909 (2002).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

S. Schelm and G. B. Smith, “Dilute LaB6 nanoparticles in polymer as optimized clear solar control glazing,” Appl. Phys. Lett. 82(24), 4346–4348 (2003).
[Crossref]

Biochem. Eng. J. (1)

P. Praveen, D. T. T. Nguyen, and K. C. Loh, “Biodegradation of phenol from saline wastewater using forward osmotic hollow fiber membrane bioreactor coupled chemostat,” Biochem. Eng. J. 94, 125–133 (2015).
[Crossref]

Bioresour. Technol. (3)

Y. Su, A. Mennerich, and B. Urban, “The long-term effects of wall attached microalgal biofilm on algae-based wastewater treatment,” Bioresour. Technol. 218, 1249–1252 (2016).
[Crossref] [PubMed]

X. Tian, Q. Liao, X. Zhu, Y. Wang, P. Zhang, J. Li, and H. Wang, “Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production,” Bioresour. Technol. 101(3), 977–983 (2010).
[Crossref] [PubMed]

Q. Liao, Y. J. Wang, Y. Z. Wang, X. Zhu, X. Tian, and J. Li, “Formation and hydrogen production of photosynthetic bacterial biofilm under various illumination conditions,” Bioresour. Technol. 101(14), 5315–5324 (2010).
[Crossref] [PubMed]

Chem. Eng. J. (1)

C. J. Chen and D. H. Chen, “Preparation of LaB6 nanoparticles as a novel and effective near-infrared photothermal conversion material,” Chem. Eng. J. 180, 337–342 (2012).
[Crossref]

Chem. Mater. (1)

T. M. Mattox, A. Agrawal, and D. J. Milliron, “Low temperature synthesis and surface plasmon resonance of colloidal lanthanum hexaboride (LaB6) nanocrystals,” Chem. Mater. 27(19), 6620–6624 (2015).
[Crossref]

Environ. Microbiol. (1)

K. Wagner, K. Besemer, N. R. Burns, T. J. Battin, and M. M. Bengtsson, “Light availability affects stream biofilm bacterial community composition and function, but not diversity,” Environ. Microbiol. 17(12), 5036–5047 (2015).
[Crossref] [PubMed]

Environ. Sci. Technol. (2)

W. R. Hill and I. L. Larsen, “Growth dilution of metals in microalgal biofilms,” Environ. Sci. Technol. 39(6), 1513–1518 (2005).
[Crossref] [PubMed]

C. Zhou, A. Ontiveros-Valencia, Z. Wang, J. Maldonado, H. P. Zhao, R. Krajmalnik-Brown, and B. E. Rittmann, “Palladium recovery in a H2-based membrane biofilm reactor: formation of Pd (0) nanoparticles through enzymatic and autocatalytic reductions,” Environ. Sci. Technol. 50(5), 2546–2555 (2016).
[Crossref] [PubMed]

Int. J. Hydrogen Energy (3)

Q. Liao, N. B. Zhong, X. Zhu, Y. Huang, and R. Chen, “Enhancement of hydrogen production by optimization of biofilm growth in a photobioreactor,” Int. J. Hydrogen Energy 40(14), 4741–4751 (2015).
[Crossref]

Q. Liao, N. B. Zhong, X. Zhu, and R. Chen, “High-performance biofilm photobioreactor based on a GeO2–SiO2–chitosan-medium-coated hollow optical fiber,” Int. J. Hydrogen Energy 39(19), 10016–10027 (2014).
[Crossref]

C. Zhang, X. Zhu, Q. Liao, Y. Z. Wang, J. Li, Y. D. Ding, and H. Wang, “Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria,” Int. J. Hydrogen Energy 35(11), 5284–5292 (2010).
[Crossref]

J. Am. Ceram. Soc. (1)

H. Takeda, H. Kuno, and K. Adachi, “Solar control dispersions and coatings with rare-earth hexaboride nanoparticles,” J. Am. Ceram. Soc. 91(9), 2897–2902 (2008).
[Crossref]

J. Biotechnol. (1)

H. Liu and H. H. P. Fang, “Extraction of extracellular polymeric substances (EPS) of sludges,” J. Biotechnol. 95(3), 249–256 (2002).
[Crossref] [PubMed]

J. Solid State Chem. (1)

M. F. Zhang, L. Yuan, X. Q. Wang, H. Fan, X. Y. Wang, X. Y. Wu, H. Z. Wang, and Y. T. Qian, “A low-temperature route for the synthesis of nanocrystalline LaB6,” J. Solid State Chem. 181(2), 294–297 (2008).
[Crossref]

Nat. Photonics (1)

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics 5(10), 583–590 (2011).
[Crossref]

Nature (2)

P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries,” Nature 407(6803), 496–499 (2000).
[Crossref] [PubMed]

M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Mariñas, and A. M. Mayes, “Science and technology for water purification in the coming decades,” Nature 452(7185), 301–310 (2008).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. B Condens. Matter (1)

S. Kimura, T. Nanba, S. Kunii, and T. Kasuya, “Low-energy optical excitation in rare-earth hexaborides,” Phys. Rev. B Condens. Matter 50(3), 1406–1414 (1994).
[Crossref] [PubMed]

Polym. Chem.-UK (1)

G. K. Mehta, S. Kondaveeti, and A. K. Siddhanta, “Facile synthesis of agarose-l-phenylalanine ester hydrogels,” Polym. Chem.-UK 2(10), 2334–2340 (2011).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

H. R. Bonomi, D. M. Posadas, G. Paris, M. C. Carrica, M. Frederickson, L. I. Pietrasanta, R. A. Bogomolni, A. Zorreguieta, and F. A. Goldbaum, “Light regulates attachment, exopolysaccharide production, and nodulation in Rhizobium leguminosarum through a LOV-histidine kinase photoreceptor,” Proc. Natl. Acad. Sci. U.S.A. 109(30), 12135–12140 (2012).
[Crossref] [PubMed]

Renew. Energy (1)

P. Carlozzi and M. Lambardi, “Fed-batch operation for Bio-H2 production by Rhodopseudomonas Palustris (Strain 42OL),” Renew. Energy 34(12), 2577–2584 (2009).
[Crossref]

Science (1)

A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science 311(5761), 622–627 (2006).
[Crossref] [PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

C. Krafft, L. Neudert, T. Simat, and R. Salzer, “Near infrared Raman spectra of human brain lipids,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(7), 1529–1535 (2005).
[Crossref] [PubMed]

Other (1)

Y. Li, N. B. Zhong, Q. Liao, Q. Fu, Y. Huang, X. Zhu, and Q. L. Li, “A biomaterial doped with LaB6 nanoparticles as photothermal media for enhancing biofilm growth and hydrogen production in photosynthetic bacteria,” Int. J. Hydrogen Energy, in press (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic representation of the LEHOE biomaterial fabrication.

Fig. 2
Fig. 2

Physical, optical, and photothermal properties of LaB6 NPs. (a) FESEM images, (b) EDX results and (c) DLS size distribution of LaB6 NPs. (d) Absorption spectra of the LaB6 NPs suspension in ethylene glycol (LaB6 NPs at 0.1 wt%, ethylene glycol background). (e) Variations in samples (ethylene glycol with and without LaB6 NPs) temperature with irradiation time under LED irradiation.

Fig. 3
Fig. 3

(a) FESEM images of the LaB6 and LaB6-SAM films. (b–c) 2D and 3D images of the LaB6 and LaB6-SAM films, respectively. (d–e) FT-IR and XPS spectra of the GSCML film, respectively. (f–g) Visible transmittance spectra and photothermal conversion performance of the samples (the mean thickness of the LaB6 and LaB6-SAM films is respectively of 8.7 and 57.5 μm), respectively.

Fig. 4
Fig. 4

Temperature (10 min) and luminous intensity curves (the thickness of the SAM film is 57.5 μm). (a)–(b) Temperature and luminous intensity along the axial direction of the sample fibers (LaB6 film with uniform distribution along the surface of the LEHOEs). (c)–(d) Temperature and luminous intensity at the surface of the samples (LaB6 NPs shows graded distribution along the surface of the LEHOEs, and the quality of LaB6 NPs is in the range of 1.5−9 g (m2) −1). MP, measurement points.

Fig. 5
Fig. 5

FESEM images of surface morphology of (a) SOF, (b) HOE, and (c) LEHOE with graded distribution of LaB6 NPs attached PSB cells. (d–e) Initial adhered cell numbers and biofilm dry weights on SOF, HOE, and LEHOE, respectively.

Fig. 6
Fig. 6

FESEM images of surface morphology of (a) original biofilm from HOE, (b) sliced biofilm from HOE, (c) original biofilm from LEHOE, and (d) sliced biofilm from LEHOE. (e_1)–(e_3) and (g_1)–(g_3) Distribution images of active biomass in biofilm samples which are from the surface of the HOE and LEHOE, respectively. (f_1)–(f_3) and (h_1)–(h_3) Distribution image of protein in biofilm samples which are from the surface of the HOE and LEHOE, respectively. Figures 6(a), 6(e_1) and 6(f_1) from Sample A. Figures 6(e_2) and 6(f_2) from Sample B. Figures 6(b), 6(e_3) and 6(f_3) from Sample C. Figures 6(c), 6(g_1) and 6(h_1) from Sample D. Figures 6(g_2) and 6(h_2) from Sample E. Figures 6(d), 6(g_3) and 6(h_3) from Sample F.

Tables (2)

Tables Icon

Tab. 1 List of Abbreviations

Tables Icon

Tab. 2 Experimental data of the prepared samples at an optical element length of 120 mm

Metrics