Abstract

We report the development of a non-contact no-reagents system operating in the eye-safe 1560-1800 nm wavelength range for standoff trace detection of explosives and high-speed imaging. Experimental results are provided for a number of chemicals including explosives on a variety of surfaces at sub-microgram per cm2 concentration. Chemically specific images were collected at 0.06 ms per pixel. Results from this effort indicate that the combination of modern industrial fiber lasers and nonlinear optical spectroscopy can address next generation eye-safe trace detection of chemicals including explosives.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Standoff and arms-length detection of chemicals with single-beam coherent anti-Stokes Raman scattering

Haowen Li, D. Ahmasi Harris, Bingwei Xu, Paul J. Wrzesinski, Vadim V. Lozovoy, and Marcos Dantus
Appl. Opt. 48(4) B17-B22 (2009)

Multiplex coherent anti-Stokes Raman scattering spectroscopy for trace chemical detection

Sherrie B. Pilkington, Stephen D. Roberson, and Paul M. Pellegrino
Appl. Opt. 56(3) B159-B168 (2017)

Non-resonant background suppression by destructive interference in coherent anti-Stokes Raman scattering spectroscopy

Stanislav O. Konorov, Michael W. Blades, and Robin F. B. Turner
Opt. Express 19(27) 25925-25934 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. C. Kemp, C. Baker, and I. Gregory, Stand-off Detection of Suicide Bombers and Mobile Subjects, H. Schubert and A. Rimski-Korsakov eds. (Springer, New York, 2006), Chap. 18.
  2. P. M. Pellegrino, E. L. Holthoff, and M. E. Farrell, Laser-Based Optical Detection of Explosives (CRC Press Taylor & Francis Group, 2015).
  3. H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Coherent mode-selective Raman excitation towards standoff detection,” Opt. Express 16(8), 5499–5504 (2008).
    [Crossref] [PubMed]
  4. O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92(17), 171116 (2008).
    [Crossref]
  5. M. Bremer, P. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99(10), 101109 (2011).
    [Crossref]
  6. M. T. Bremer and M. Dantus, “Standoff explosives trace detection and imaging by selective stimulated Raman scattering,” Appl. Phys. Lett. 103(6), 061119 (2013).
    [Crossref]
  7. R. Glenn and M. Dantus, “Single broadband phase-shaped pulse stimulated Raman spectroscopy for standoff trace explosive detection,” J. Phys. Chem. Lett. 7(1), 117–125 (2016).
    [Crossref] [PubMed]
  8. F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
    [Crossref]
  9. M. Gaft and L. Nagli, “UV gated Raman spectroscopy for standoff detection of explosives,” Opt. Mater. 30(11), 1739–1746 (2008).
    [Crossref]
  10. A. Tripathi, E. D. Emmons, P. G. Wilcox, J. A. Guicheteau, D. K. Emge, S. D. Christesen, and A. W. Fountain, “Semi-automated detection of trace explosives in fingerprints on strongly interfering surfaces with Raman chemical imaging,” Appl. Spectrosc. 65(6), 611–619 (2011).
    [Crossref] [PubMed]
  11. B. Zachhuber, G. Ramer, A. Hobro, E. T. Chrysostom, and B. Lendl, “Stand-off Raman spectroscopy: a powerful technique for qualitative and quantitative analysis of inorganic and organic compounds including explosives,” Anal. Bioanal. Chem. 400(8), 2439–2447 (2011).
    [Crossref] [PubMed]
  12. M. L. Lewis, I. R. Lewis, and P. R. Griffiths, “Anti-Stokes Raman spectrometry with 1064-nm excitation: an effective instrumental approach for field detection of explosives,” Appl. Spectrosc. 58(4), 420–427 (2004).
    [Crossref] [PubMed]
  13. R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
    [Crossref]
  14. C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff spectroscopy of surface adsorbed chemicals,” Anal. Chem. 81(5), 1952–1956 (2009).
    [Crossref] [PubMed]
  15. F. Fuchs, Ch. Wild, Y. Rahmouni, W. Bronner, B. Raynor, K. Köhler, and J. Wagner, “Remote sensing of explosives using mid-infrared quantum cascade lasers,” Proc. SPIE 6739, 673904 (2007).
    [Crossref]
  16. C. W. Van Neste, L. R. Senesac, D. Yi, and T. Thundat, “Standoff detection of explosive residues using photothermal microcantilevers,” Appl. Phys. Lett. 92(13), 134102 (2008).
    [Crossref]
  17. C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff photoacoustic spectroscopy,” Appl. Phys. Lett. 92(23), 234102 (2008).
    [Crossref]
  18. C. A. Kendziora, R. Furstenberg, M. Papantonakis, V. Nguyen, J. Byers, and R. Andrew McGill, “Infrared photothermal imaging spectroscopy for detection of trace explosives on surfaces,” Appl. Opt. 54(31), F129–F138 (2015).
    [Crossref] [PubMed]
  19. American National Standards Institute, “American National Standard for Safe Use of Lasers,” ANSI Z 136.1 −2007. Orlando, Laser Institute of America, (2007).
  20. S. A. Asher and C. R. Johnson, “Raman spectroscopy of a coal liquid shows that fluorescence interference is minimized with ultraviolet excitation,” Science 225(4659), 311–313 (1984).
    [Crossref] [PubMed]
  21. D. Oron, N. Dudovich, and Y. Silberberg, “Single-pulse phase-contrast nonlinear Raman spectroscopy,” Phys. Rev. Lett. 89(27), 273001 (2002).
    [Crossref] [PubMed]
  22. H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14(5), 1748 (1976).
    [Crossref]
  23. J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
    [Crossref]
  24. J. L. Oudar, R. W. Smith, and Y. R. Shen, “Polarization-sensitive coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett. 34(11), 758–760 (1979).
    [Crossref]
  25. R. P. Lucht, M. A. Maris, and R. E. Palmer, “Simultaneous acquisition of pure rotational and vibrational nitrogen spectra using three-laser coherent anti-Stokes Raman spectroscopy,” Opt. Lett. 12(6), 386–388 (1987).
    [Crossref] [PubMed]
  26. D. Pestov, G. O. Ariunbold, X. Wang, R. K. Murawski, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Coherent versus incoherent Raman scattering: molecular coherence excitation and measurement,” Opt. Lett. 32(12), 1725–1727 (2007).
    [Crossref] [PubMed]
  27. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11(10), 659–661 (1986).
    [Crossref] [PubMed]
  28. K. Wang, N. G. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20, 6800311 (2014).
  29. B. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B 23(4), 750 (2006).
    [Crossref]
  30. V. V. Lozovoy, B. Xu, Y. Coello, and M. Dantus, “Direct measurement of spectral phase for ultrashort laser pulses,” Opt. Express 16(2), 592–597 (2008).
    [Crossref] [PubMed]

2016 (1)

R. Glenn and M. Dantus, “Single broadband phase-shaped pulse stimulated Raman spectroscopy for standoff trace explosive detection,” J. Phys. Chem. Lett. 7(1), 117–125 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (1)

K. Wang, N. G. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20, 6800311 (2014).

2013 (1)

M. T. Bremer and M. Dantus, “Standoff explosives trace detection and imaging by selective stimulated Raman scattering,” Appl. Phys. Lett. 103(6), 061119 (2013).
[Crossref]

2011 (3)

M. Bremer, P. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99(10), 101109 (2011).
[Crossref]

A. Tripathi, E. D. Emmons, P. G. Wilcox, J. A. Guicheteau, D. K. Emge, S. D. Christesen, and A. W. Fountain, “Semi-automated detection of trace explosives in fingerprints on strongly interfering surfaces with Raman chemical imaging,” Appl. Spectrosc. 65(6), 611–619 (2011).
[Crossref] [PubMed]

B. Zachhuber, G. Ramer, A. Hobro, E. T. Chrysostom, and B. Lendl, “Stand-off Raman spectroscopy: a powerful technique for qualitative and quantitative analysis of inorganic and organic compounds including explosives,” Anal. Bioanal. Chem. 400(8), 2439–2447 (2011).
[Crossref] [PubMed]

2009 (1)

C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff spectroscopy of surface adsorbed chemicals,” Anal. Chem. 81(5), 1952–1956 (2009).
[Crossref] [PubMed]

2008 (7)

M. Gaft and L. Nagli, “UV gated Raman spectroscopy for standoff detection of explosives,” Opt. Mater. 30(11), 1739–1746 (2008).
[Crossref]

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

C. W. Van Neste, L. R. Senesac, D. Yi, and T. Thundat, “Standoff detection of explosive residues using photothermal microcantilevers,” Appl. Phys. Lett. 92(13), 134102 (2008).
[Crossref]

C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff photoacoustic spectroscopy,” Appl. Phys. Lett. 92(23), 234102 (2008).
[Crossref]

H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Coherent mode-selective Raman excitation towards standoff detection,” Opt. Express 16(8), 5499–5504 (2008).
[Crossref] [PubMed]

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92(17), 171116 (2008).
[Crossref]

V. V. Lozovoy, B. Xu, Y. Coello, and M. Dantus, “Direct measurement of spectral phase for ultrashort laser pulses,” Opt. Express 16(2), 592–597 (2008).
[Crossref] [PubMed]

2007 (2)

D. Pestov, G. O. Ariunbold, X. Wang, R. K. Murawski, V. A. Sautenkov, A. V. Sokolov, and M. O. Scully, “Coherent versus incoherent Raman scattering: molecular coherence excitation and measurement,” Opt. Lett. 32(12), 1725–1727 (2007).
[Crossref] [PubMed]

F. Fuchs, Ch. Wild, Y. Rahmouni, W. Bronner, B. Raynor, K. Köhler, and J. Wagner, “Remote sensing of explosives using mid-infrared quantum cascade lasers,” Proc. SPIE 6739, 673904 (2007).
[Crossref]

2006 (1)

2005 (1)

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
[Crossref]

2004 (2)

M. L. Lewis, I. R. Lewis, and P. R. Griffiths, “Anti-Stokes Raman spectrometry with 1064-nm excitation: an effective instrumental approach for field detection of explosives,” Appl. Spectrosc. 58(4), 420–427 (2004).
[Crossref] [PubMed]

J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

2002 (1)

D. Oron, N. Dudovich, and Y. Silberberg, “Single-pulse phase-contrast nonlinear Raman spectroscopy,” Phys. Rev. Lett. 89(27), 273001 (2002).
[Crossref] [PubMed]

1987 (1)

1986 (1)

1984 (1)

S. A. Asher and C. R. Johnson, “Raman spectroscopy of a coal liquid shows that fluorescence interference is minimized with ultraviolet excitation,” Science 225(4659), 311–313 (1984).
[Crossref] [PubMed]

1979 (1)

J. L. Oudar, R. W. Smith, and Y. R. Shen, “Polarization-sensitive coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett. 34(11), 758–760 (1979).
[Crossref]

1976 (1)

H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14(5), 1748 (1976).
[Crossref]

Andrew McGill, R.

Ariunbold, G. O.

Asher, S. A.

S. A. Asher and C. R. Johnson, “Raman spectroscopy of a coal liquid shows that fluorescence interference is minimized with ultraviolet excitation,” Science 225(4659), 311–313 (1984).
[Crossref] [PubMed]

Bloembergen, N.

H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14(5), 1748 (1976).
[Crossref]

Bremer, M.

M. Bremer, P. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99(10), 101109 (2011).
[Crossref]

Bremer, M. T.

M. T. Bremer and M. Dantus, “Standoff explosives trace detection and imaging by selective stimulated Raman scattering,” Appl. Phys. Lett. 103(6), 061119 (2013).
[Crossref]

Bronner, W.

F. Fuchs, Ch. Wild, Y. Rahmouni, W. Bronner, B. Raynor, K. Köhler, and J. Wagner, “Remote sensing of explosives using mid-infrared quantum cascade lasers,” Proc. SPIE 6739, 673904 (2007).
[Crossref]

Butcher, N.

M. Bremer, P. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99(10), 101109 (2011).
[Crossref]

Byers, J.

Charan, K.

K. Wang, N. G. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20, 6800311 (2014).

Cheng, J.-X.

J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

Christesen, S. D.

Chrysostom, E. T.

B. Zachhuber, G. Ramer, A. Hobro, E. T. Chrysostom, and B. Lendl, “Stand-off Raman spectroscopy: a powerful technique for qualitative and quantitative analysis of inorganic and organic compounds including explosives,” Anal. Bioanal. Chem. 400(8), 2439–2447 (2011).
[Crossref] [PubMed]

Coello, Y.

Dantus, M.

R. Glenn and M. Dantus, “Single broadband phase-shaped pulse stimulated Raman spectroscopy for standoff trace explosive detection,” J. Phys. Chem. Lett. 7(1), 117–125 (2016).
[Crossref] [PubMed]

M. T. Bremer and M. Dantus, “Standoff explosives trace detection and imaging by selective stimulated Raman scattering,” Appl. Phys. Lett. 103(6), 061119 (2013).
[Crossref]

M. Bremer, P. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99(10), 101109 (2011).
[Crossref]

V. V. Lozovoy, B. Xu, Y. Coello, and M. Dantus, “Direct measurement of spectral phase for ultrashort laser pulses,” Opt. Express 16(2), 592–597 (2008).
[Crossref] [PubMed]

H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Coherent mode-selective Raman excitation towards standoff detection,” Opt. Express 16(8), 5499–5504 (2008).
[Crossref] [PubMed]

B. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B 23(4), 750 (2006).
[Crossref]

Dela Cruz, J. M.

DeLucia, F. C.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
[Crossref]

Dudovich, N.

D. Oron, N. Dudovich, and Y. Silberberg, “Single-pulse phase-contrast nonlinear Raman spectroscopy,” Phys. Rev. Lett. 89(27), 273001 (2002).
[Crossref] [PubMed]

Emge, D. K.

Emmons, E. D.

Fountain, A. W.

Fuchs, F.

F. Fuchs, Ch. Wild, Y. Rahmouni, W. Bronner, B. Raynor, K. Köhler, and J. Wagner, “Remote sensing of explosives using mid-infrared quantum cascade lasers,” Proc. SPIE 6739, 673904 (2007).
[Crossref]

Furstenberg, R.

C. A. Kendziora, R. Furstenberg, M. Papantonakis, V. Nguyen, J. Byers, and R. Andrew McGill, “Infrared photothermal imaging spectroscopy for detection of trace explosives on surfaces,” Appl. Opt. 54(31), F129–F138 (2015).
[Crossref] [PubMed]

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

Gaft, M.

M. Gaft and L. Nagli, “UV gated Raman spectroscopy for standoff detection of explosives,” Opt. Mater. 30(11), 1739–1746 (2008).
[Crossref]

Glenn, R.

R. Glenn and M. Dantus, “Single broadband phase-shaped pulse stimulated Raman spectroscopy for standoff trace explosive detection,” J. Phys. Chem. Lett. 7(1), 117–125 (2016).
[Crossref] [PubMed]

Griffiths, P. R.

Guicheteau, J. A.

Gunn, J. M.

Harmon, R. S.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
[Crossref]

Harris, D. A.

Hobro, A.

B. Zachhuber, G. Ramer, A. Hobro, E. T. Chrysostom, and B. Lendl, “Stand-off Raman spectroscopy: a powerful technique for qualitative and quantitative analysis of inorganic and organic compounds including explosives,” Anal. Bioanal. Chem. 400(8), 2439–2447 (2011).
[Crossref] [PubMed]

Horton, N. G.

K. Wang, N. G. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20, 6800311 (2014).

Hubler, G. K.

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

Johnson, C. R.

S. A. Asher and C. R. Johnson, “Raman spectroscopy of a coal liquid shows that fluorescence interference is minimized with ultraviolet excitation,” Science 225(4659), 311–313 (1984).
[Crossref] [PubMed]

Katz, O.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92(17), 171116 (2008).
[Crossref]

Kendziora, C. A.

C. A. Kendziora, R. Furstenberg, M. Papantonakis, V. Nguyen, J. Byers, and R. Andrew McGill, “Infrared photothermal imaging spectroscopy for detection of trace explosives on surfaces,” Appl. Opt. 54(31), F129–F138 (2015).
[Crossref] [PubMed]

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

Köhler, K.

F. Fuchs, Ch. Wild, Y. Rahmouni, W. Bronner, B. Raynor, K. Köhler, and J. Wagner, “Remote sensing of explosives using mid-infrared quantum cascade lasers,” Proc. SPIE 6739, 673904 (2007).
[Crossref]

LaPointe, A.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
[Crossref]

Lendl, B.

B. Zachhuber, G. Ramer, A. Hobro, E. T. Chrysostom, and B. Lendl, “Stand-off Raman spectroscopy: a powerful technique for qualitative and quantitative analysis of inorganic and organic compounds including explosives,” Anal. Bioanal. Chem. 400(8), 2439–2447 (2011).
[Crossref] [PubMed]

Lewis, I. R.

Lewis, M. L.

Li, H.

Lotem, H.

H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14(5), 1748 (1976).
[Crossref]

Lozovoy, V. V.

Lucht, R. P.

Lynch, R. T.

H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14(5), 1748 (1976).
[Crossref]

Maris, M. A.

McGill, R. A.

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

McNesby, K. L.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
[Crossref]

Mitschke, F. M.

Miziolek, A. W.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
[Crossref]

Mollenauer, L. F.

Murawski, R. K.

Nagli, L.

M. Gaft and L. Nagli, “UV gated Raman spectroscopy for standoff detection of explosives,” Opt. Mater. 30(11), 1739–1746 (2008).
[Crossref]

Natan, A.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92(17), 171116 (2008).
[Crossref]

Nguyen, V.

C. A. Kendziora, R. Furstenberg, M. Papantonakis, V. Nguyen, J. Byers, and R. Andrew McGill, “Infrared photothermal imaging spectroscopy for detection of trace explosives on surfaces,” Appl. Opt. 54(31), F129–F138 (2015).
[Crossref] [PubMed]

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

Oron, D.

D. Oron, N. Dudovich, and Y. Silberberg, “Single-pulse phase-contrast nonlinear Raman spectroscopy,” Phys. Rev. Lett. 89(27), 273001 (2002).
[Crossref] [PubMed]

Oudar, J. L.

J. L. Oudar, R. W. Smith, and Y. R. Shen, “Polarization-sensitive coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett. 34(11), 758–760 (1979).
[Crossref]

Palmer, R. E.

Papantonakis, M.

Papantonakis, M. R.

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

Pestov, D.

Rahmouni, Y.

F. Fuchs, Ch. Wild, Y. Rahmouni, W. Bronner, B. Raynor, K. Köhler, and J. Wagner, “Remote sensing of explosives using mid-infrared quantum cascade lasers,” Proc. SPIE 6739, 673904 (2007).
[Crossref]

Rake, M.

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

Ramer, G.

B. Zachhuber, G. Ramer, A. Hobro, E. T. Chrysostom, and B. Lendl, “Stand-off Raman spectroscopy: a powerful technique for qualitative and quantitative analysis of inorganic and organic compounds including explosives,” Anal. Bioanal. Chem. 400(8), 2439–2447 (2011).
[Crossref] [PubMed]

Raynor, B.

F. Fuchs, Ch. Wild, Y. Rahmouni, W. Bronner, B. Raynor, K. Köhler, and J. Wagner, “Remote sensing of explosives using mid-infrared quantum cascade lasers,” Proc. SPIE 6739, 673904 (2007).
[Crossref]

Rosenwaks, S.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92(17), 171116 (2008).
[Crossref]

Samuels, A. C.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
[Crossref]

Sautenkov, V. A.

Scully, M. O.

Senesac, L. R.

C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff spectroscopy of surface adsorbed chemicals,” Anal. Chem. 81(5), 1952–1956 (2009).
[Crossref] [PubMed]

C. W. Van Neste, L. R. Senesac, D. Yi, and T. Thundat, “Standoff detection of explosive residues using photothermal microcantilevers,” Appl. Phys. Lett. 92(13), 134102 (2008).
[Crossref]

C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff photoacoustic spectroscopy,” Appl. Phys. Lett. 92(23), 234102 (2008).
[Crossref]

Shen, Y. R.

J. L. Oudar, R. W. Smith, and Y. R. Shen, “Polarization-sensitive coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett. 34(11), 758–760 (1979).
[Crossref]

Silberberg, Y.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92(17), 171116 (2008).
[Crossref]

D. Oron, N. Dudovich, and Y. Silberberg, “Single-pulse phase-contrast nonlinear Raman spectroscopy,” Phys. Rev. Lett. 89(27), 273001 (2002).
[Crossref] [PubMed]

Smith, R. W.

J. L. Oudar, R. W. Smith, and Y. R. Shen, “Polarization-sensitive coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett. 34(11), 758–760 (1979).
[Crossref]

Sokolov, A. V.

Stepnowski, J.

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

Stepnowski, S. V.

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

Thundat, T.

C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff spectroscopy of surface adsorbed chemicals,” Anal. Chem. 81(5), 1952–1956 (2009).
[Crossref] [PubMed]

C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff photoacoustic spectroscopy,” Appl. Phys. Lett. 92(23), 234102 (2008).
[Crossref]

C. W. Van Neste, L. R. Senesac, D. Yi, and T. Thundat, “Standoff detection of explosive residues using photothermal microcantilevers,” Appl. Phys. Lett. 92(13), 134102 (2008).
[Crossref]

Tripathi, A.

Van Neste, C. W.

C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff spectroscopy of surface adsorbed chemicals,” Anal. Chem. 81(5), 1952–1956 (2009).
[Crossref] [PubMed]

C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff photoacoustic spectroscopy,” Appl. Phys. Lett. 92(23), 234102 (2008).
[Crossref]

C. W. Van Neste, L. R. Senesac, D. Yi, and T. Thundat, “Standoff detection of explosive residues using photothermal microcantilevers,” Appl. Phys. Lett. 92(13), 134102 (2008).
[Crossref]

Wagner, J.

F. Fuchs, Ch. Wild, Y. Rahmouni, W. Bronner, B. Raynor, K. Köhler, and J. Wagner, “Remote sensing of explosives using mid-infrared quantum cascade lasers,” Proc. SPIE 6739, 673904 (2007).
[Crossref]

Walters, R. A.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
[Crossref]

Wang, K.

K. Wang, N. G. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20, 6800311 (2014).

Wang, X.

Wilcox, P. G.

Wild, Ch.

F. Fuchs, Ch. Wild, Y. Rahmouni, W. Bronner, B. Raynor, K. Köhler, and J. Wagner, “Remote sensing of explosives using mid-infrared quantum cascade lasers,” Proc. SPIE 6739, 673904 (2007).
[Crossref]

Winkel, R. J.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
[Crossref]

Wrzesinski, P.

M. Bremer, P. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99(10), 101109 (2011).
[Crossref]

Wrzesinski, P. J.

Xie, X. S.

J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

Xu, B.

Xu, C.

K. Wang, N. G. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20, 6800311 (2014).

Yi, D.

C. W. Van Neste, L. R. Senesac, D. Yi, and T. Thundat, “Standoff detection of explosive residues using photothermal microcantilevers,” Appl. Phys. Lett. 92(13), 134102 (2008).
[Crossref]

Zachhuber, B.

B. Zachhuber, G. Ramer, A. Hobro, E. T. Chrysostom, and B. Lendl, “Stand-off Raman spectroscopy: a powerful technique for qualitative and quantitative analysis of inorganic and organic compounds including explosives,” Anal. Bioanal. Chem. 400(8), 2439–2447 (2011).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

B. Zachhuber, G. Ramer, A. Hobro, E. T. Chrysostom, and B. Lendl, “Stand-off Raman spectroscopy: a powerful technique for qualitative and quantitative analysis of inorganic and organic compounds including explosives,” Anal. Bioanal. Chem. 400(8), 2439–2447 (2011).
[Crossref] [PubMed]

Anal. Chem. (1)

C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff spectroscopy of surface adsorbed chemicals,” Anal. Chem. 81(5), 1952–1956 (2009).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (7)

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

J. L. Oudar, R. W. Smith, and Y. R. Shen, “Polarization-sensitive coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett. 34(11), 758–760 (1979).
[Crossref]

C. W. Van Neste, L. R. Senesac, D. Yi, and T. Thundat, “Standoff detection of explosive residues using photothermal microcantilevers,” Appl. Phys. Lett. 92(13), 134102 (2008).
[Crossref]

C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff photoacoustic spectroscopy,” Appl. Phys. Lett. 92(23), 234102 (2008).
[Crossref]

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92(17), 171116 (2008).
[Crossref]

M. Bremer, P. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 99(10), 101109 (2011).
[Crossref]

M. T. Bremer and M. Dantus, “Standoff explosives trace detection and imaging by selective stimulated Raman scattering,” Appl. Phys. Lett. 103(6), 061119 (2013).
[Crossref]

Appl. Spectrosc. (2)

IEEE J. Sel. Top. Quantum Electron. (1)

K. Wang, N. G. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20, 6800311 (2014).

IEEE Sens. J. (1)

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

J. Phys. Chem. Lett. (1)

R. Glenn and M. Dantus, “Single broadband phase-shaped pulse stimulated Raman spectroscopy for standoff trace explosive detection,” J. Phys. Chem. Lett. 7(1), 117–125 (2016).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Opt. Mater. (1)

M. Gaft and L. Nagli, “UV gated Raman spectroscopy for standoff detection of explosives,” Opt. Mater. 30(11), 1739–1746 (2008).
[Crossref]

Phys. Rev. A (1)

H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14(5), 1748 (1976).
[Crossref]

Phys. Rev. Lett. (1)

D. Oron, N. Dudovich, and Y. Silberberg, “Single-pulse phase-contrast nonlinear Raman spectroscopy,” Phys. Rev. Lett. 89(27), 273001 (2002).
[Crossref] [PubMed]

Proc. SPIE (1)

F. Fuchs, Ch. Wild, Y. Rahmouni, W. Bronner, B. Raynor, K. Köhler, and J. Wagner, “Remote sensing of explosives using mid-infrared quantum cascade lasers,” Proc. SPIE 6739, 673904 (2007).
[Crossref]

Science (1)

S. A. Asher and C. R. Johnson, “Raman spectroscopy of a coal liquid shows that fluorescence interference is minimized with ultraviolet excitation,” Science 225(4659), 311–313 (1984).
[Crossref] [PubMed]

Other (3)

American National Standards Institute, “American National Standard for Safe Use of Lasers,” ANSI Z 136.1 −2007. Orlando, Laser Institute of America, (2007).

M. C. Kemp, C. Baker, and I. Gregory, Stand-off Detection of Suicide Bombers and Mobile Subjects, H. Schubert and A. Rimski-Korsakov eds. (Springer, New York, 2006), Chap. 18.

P. M. Pellegrino, E. L. Holthoff, and M. E. Farrell, Laser-Based Optical Detection of Explosives (CRC Press Taylor & Francis Group, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Energy diagram showing how the redder wavelengths of the broadband laser spectrum act as both pump and Stokes to stimulate multiple Raman transitions (broad red arrows). The narrowband (green arrow) is the probe and leads to broadband anti-Stokes emission (broad blue arrow). (b) Broadband laser spectrum indicating how different portions act as pump ΔωP, Stokes ΔωS and probe ωprobe. The diagram shows multipleΩtransitions probed simultaneously ω aS .

Fig. 2
Fig. 2

Experimental setup: L1,2, are lenses; PBS is a polarizing beam splitter; PD is a fast photodiode. The inset shows a typical output spectrum after the second PBS. The delay stage and the scanning galvo-mirrors are not shown for simplicity.

Fig. 3
Fig. 3

Spectra of narrowband and broadband laser parts and typical CARS signal (sulfur Raman line at 217 cm−1). No spontaneus Raman signal is osberved from the narrowband pulses alone. The signal within the gray area corresponds to Rayleigh scattering from the substrate, attenuated by an OD5 filter. The signal for wavelengths shorter than 1525 nm corresponds to the CARS signal.

Fig. 4
Fig. 4

(a) Dependence between positive identification rate versus number of laser pulses in log scale. It shows that three-sigma probability is achieved with 128 laser shots at 2MHz, which takes 0.06 ms per pixel. (b) 100x100pxl, 3x3mm image (single scan) of sulfur particles (<75 μm diameter) on aluminum substrate, detecting the sulfur Raman line at 217cm−1 obtained at 0.06 ms per pixel. Total acquisition time (0.6 s).

Fig. 5
Fig. 5

Images of sulfur microparticles, 2 × 2 mm, 100 × 100 pixels, obtained at 0.25 ms per pixel. (a) Sulfur fingerprint on a metallic red car body panel with a showing average of 10; (b) on the front and (c) back surfaces of a 6 mm thick laminated windshield, showing average of 5. Note that (c) has a blurred edge showing both laser beam and Raman signal travel through a windshield. (d) Sulfur microcrystals on nylon, showing average of 20. The scale bar is 1 mm.

Fig. 6
Fig. 6

Images of potassium perchlorate and TATP. Potassium perchlorate images at 1.5 × 1.5mm, 100 × 100 pixels obtained at 0.25 ms per pixel, showing average of 5. (a) KClO4 on aluminum substrate with a threshold correction of 1 STDev above the mean, (b) on a car windshield (6 mm thick), no threshold correction. (c) Image of TATP microparticles at 2 × 2 mm, 100 × 100 pixels at 0.25 ms per pixel on automotive glass (6 mm thick), showing average of 10. The scale bar is 1 mm. Red square indicates the scanned region.

Fig. 7
Fig. 7

CARS spectrum of carbon tetrachloride. The different frequencies (A) 217 cm−1, (B) 314 cm−1 and (C) 460 cm−1 correspond to the vibrational modes shown on the right. The wavelength axis (top) is not linear and is included for reference only.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

A 21 = 16 π 3 c 3 ε 0 h λ 3 | M 21 | 2 ,
B 21 = 2 π 3 3 ε 0 h 2 | M 21 | 2 .
| dωE( ω ) E * ( ω Ω i ) | 2 = | dωA( ω ) A * ( ω Ω i ) e iϕ( ω )ϕ( ω Ω i ) | 2 ,
P (3) ( ω )= P NR (3) ( ω )+ P R (3) ( ω ),
P R (3) ( ω ) 0 + dΩ 1 Ω Ω i i Γ R E pr ( ωΩ ) × 0 + dω E P * ( ω ) E S ( Ω+ω ) ,
P NR (3) ( ω ) 0 + dΩ 1 Ω E pr ( ωΩ ) × 0 + dω E P * ( ω ) E S ( Ω+ω )

Metrics