Abstract

We design a new kind of metamaterial absorber in the form of an ultrathin silicon nanostructure capable of having wideband absorption of visible light. We show that our metamaterial can exhibit almost perfect absorption of incident light even though its thickness is several tens of times smaller than the optical wavelength. The combination of two resonant modes in a single nanostructure allows us to achieve absorptivities exceeding 80% in a wide band spanning from 437.9 to 578.3 nm. The physical origins of the two modes, elucidated via the analysis of current distribution inside the nanostructure, explain different metamaterial absorptivities for oblique incidence of TE- and TM-polarized waves. Our study opens a new prospect in designing ultrathin, yet wideband visible-light absorbers based on silicon.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Total absorption of visible light in ultrathin weakly absorbing semiconductor gratings

Björn C. P. Sturmberg, Teck K. Chong, Duk-Yong Choi, Thomas P. White, Lindsay C. Botten, Kokou B. Dossou, Christopher G. Poulton, Kylie R. Catchpole, Ross C. McPhedran, and C. Martijn de Sterke
Optica 3(6) 556-562 (2016)

Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers

Serkan Butun and Koray Aydin
Opt. Express 22(16) 19457-19468 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2009).
  2. N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (John Wiley & Sons, 2006).
    [Crossref]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [Crossref] [PubMed]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [Crossref] [PubMed]
  5. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
    [Crossref] [PubMed]
  6. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
    [Crossref] [PubMed]
  7. Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: Theory, design, and realizations,” Phys. Rev. Appl. 3, 037001 (2015).
    [Crossref]
  8. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [Crossref] [PubMed]
  9. W. Zhu, Y. Huang, I. D. Rukhlenko, G. Wen, and M. Premaratne, “Configurable metamaterial absorber with pseudo wideband spectrum,” Opt. Express 20, 6616–6621 (2012).
    [Crossref] [PubMed]
  10. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
    [Crossref]
  11. H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nature Mater. 10, 709–714 (2016).
  12. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nature Nanotech. 11, 23–36 (2016).
    [Crossref]
  13. X. Liu, K. Bi, B. Li, Q. Zhao, and J. Zhou, “Metamaterial perfect absorber based on artificial dielectric atoms,” Opt. Express 24, 20454–20460 (2016).
    [Crossref] [PubMed]
  14. J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21, 9691–9702 (2013).
    [Crossref] [PubMed]
  15. F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100, 031910 (2012).
    [Crossref]
  16. Y. Huang, G. Wen, W. Zhu, J. Li, L. Si, and M. Premaratne, “Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber,” Opt. Express 22, 16408–16417 (2014).
    [Crossref] [PubMed]
  17. S. Gu, B. Su, and X. Zhao, “Planar isotropic broadband metamaterial absorber,” J. Appl. Phys. 104, 163702 (2013).
    [Crossref]
  18. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
    [Crossref] [PubMed]
  19. Y. Shen, Y. Pang, J. Wang, H. Ma, and Z. Pei, “Ultrabroadband Terahertz Absorption by Uniaxial Anisotropic Nanowire Metamaterials,” IEEE Photon. Technol. Lett. 27, 2284–2287 (2015).
    [Crossref]
  20. M. Pu, M. Wang, C. Hu, C. Huang, Z. Zhao, Y. Wang, and X. Luo, “Engineering heavily doped silicon for broadband absorber in the terahertz regime,” Opt. Express 20, 25513–25519 (2012).
    [Crossref] [PubMed]
  21. W. Zhu, F. Xiao, M. Kang, D. Sikdar, X. Liang, J. Geng, M. Premaratne, and R. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves,” IEEE Photon. J. 8, 5502207 (2016).
  22. S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107, 073903 (2015).
    [Crossref]
  23. K. Gorgulu, A. Gok, M. Yilmaz, K. Topalli, N. Biyikli, and A. K. Okyay, “All-silicon ultra-broadband infrared light absorbers,” Sci. Rep. 6, 38589 (2016).
    [Crossref] [PubMed]
  24. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
    [Crossref]
  25. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  26. G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
    [Crossref]
  27. P. B. Johnson and R. W. Christy, “Optical constants of the nobel metals,” Phys. Rev. B,  6, 4370–4379 (1972).
    [Crossref]

2016 (5)

H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nature Mater. 10, 709–714 (2016).

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nature Nanotech. 11, 23–36 (2016).
[Crossref]

W. Zhu, F. Xiao, M. Kang, D. Sikdar, X. Liang, J. Geng, M. Premaratne, and R. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves,” IEEE Photon. J. 8, 5502207 (2016).

K. Gorgulu, A. Gok, M. Yilmaz, K. Topalli, N. Biyikli, and A. K. Okyay, “All-silicon ultra-broadband infrared light absorbers,” Sci. Rep. 6, 38589 (2016).
[Crossref] [PubMed]

X. Liu, K. Bi, B. Li, Q. Zhao, and J. Zhou, “Metamaterial perfect absorber based on artificial dielectric atoms,” Opt. Express 24, 20454–20460 (2016).
[Crossref] [PubMed]

2015 (3)

Y. Shen, Y. Pang, J. Wang, H. Ma, and Z. Pei, “Ultrabroadband Terahertz Absorption by Uniaxial Anisotropic Nanowire Metamaterials,” IEEE Photon. Technol. Lett. 27, 2284–2287 (2015).
[Crossref]

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107, 073903 (2015).
[Crossref]

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: Theory, design, and realizations,” Phys. Rev. Appl. 3, 037001 (2015).
[Crossref]

2014 (1)

2013 (2)

2012 (4)

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100, 031910 (2012).
[Crossref]

W. Zhu, Y. Huang, I. D. Rukhlenko, G. Wen, and M. Premaratne, “Configurable metamaterial absorber with pseudo wideband spectrum,” Opt. Express 20, 6616–6621 (2012).
[Crossref] [PubMed]

M. Pu, M. Wang, C. Hu, C. Huang, Z. Zhao, Y. Wang, and X. Luo, “Engineering heavily doped silicon for broadband absorber in the terahertz regime,” Opt. Express 20, 25513–25519 (2012).
[Crossref] [PubMed]

2011 (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

2009 (1)

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

2008 (3)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[Crossref] [PubMed]

2006 (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

1999 (1)

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the nobel metals,” Phys. Rev. B,  6, 4370–4379 (1972).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Averitt, R. D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Bi, K.

Bingham, C. M.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Biyikli, N.

K. Gorgulu, A. Gok, M. Yilmaz, K. Topalli, N. Biyikli, and A. K. Okyay, “All-silicon ultra-broadband infrared light absorbers,” Sci. Rep. 6, 38589 (2016).
[Crossref] [PubMed]

Cai, W.

W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2009).

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Chen, L. Y.

Choi, E. H.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the nobel metals,” Phys. Rev. B,  6, 4370–4379 (1972).
[Crossref]

Corcoran, B.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

Cubukcu, E.

H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nature Mater. 10, 709–714 (2016).

Cui, Y.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100, 031910 (2012).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Ding, F.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100, 031910 (2012).
[Crossref]

Eggleton, B. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

Engheta, N.

N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (John Wiley & Sons, 2006).
[Crossref]

Fan, K.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[Crossref] [PubMed]

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Ge, X.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100, 031910 (2012).
[Crossref]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Geng, J.

W. Zhu, F. Xiao, M. Kang, D. Sikdar, X. Liang, J. Geng, M. Premaratne, and R. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves,” IEEE Photon. J. 8, 5502207 (2016).

Ghosh, G.

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
[Crossref]

Gok, A.

K. Gorgulu, A. Gok, M. Yilmaz, K. Topalli, N. Biyikli, and A. K. Okyay, “All-silicon ultra-broadband infrared light absorbers,” Sci. Rep. 6, 38589 (2016).
[Crossref] [PubMed]

Gorgulu, K.

K. Gorgulu, A. Gok, M. Yilmaz, K. Topalli, N. Biyikli, and A. K. Okyay, “All-silicon ultra-broadband infrared light absorbers,” Sci. Rep. 6, 38589 (2016).
[Crossref] [PubMed]

Grillet, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

Gu, S.

S. Gu, B. Su, and X. Zhao, “Planar isotropic broadband metamaterial absorber,” J. Appl. Phys. 104, 163702 (2013).
[Crossref]

He, S.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100, 031910 (2012).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Hu, C.

Huang, C.

Huang, Y.

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nature Nanotech. 11, 23–36 (2016).
[Crossref]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nature Nanotech. 11, 23–36 (2016).
[Crossref]

Jang, W. H.

Jiang, W.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107, 073903 (2015).
[Crossref]

Jin, R.

W. Zhu, F. Xiao, M. Kang, D. Sikdar, X. Liang, J. Geng, M. Premaratne, and R. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves,” IEEE Photon. J. 8, 5502207 (2016).

Jin, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100, 031910 (2012).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the nobel metals,” Phys. Rev. B,  6, 4370–4379 (1972).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Kang, M.

W. Zhu, F. Xiao, M. Kang, D. Sikdar, X. Liang, J. Geng, M. Premaratne, and R. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves,” IEEE Photon. J. 8, 5502207 (2016).

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Kim, K. W.

Krauss, T. F.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

Landy, N. I.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Lee, Y.

Li, B.

Li, J.

Liang, X.

W. Zhu, F. Xiao, M. Kang, D. Sikdar, X. Liang, J. Geng, M. Premaratne, and R. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves,” IEEE Photon. J. 8, 5502207 (2016).

Liu, X.

Luo, X.

Ma, H.

Y. Shen, Y. Pang, J. Wang, H. Ma, and Z. Pei, “Ultrabroadband Terahertz Absorption by Uniaxial Anisotropic Nanowire Metamaterials,” IEEE Photon. Technol. Lett. 27, 2284–2287 (2015).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Ma, Y.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107, 073903 (2015).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Monat, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

Moss, D. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

O’Faolain, L.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

Okyay, A. K.

K. Gorgulu, A. Gok, M. Yilmaz, K. Topalli, N. Biyikli, and A. K. Okyay, “All-silicon ultra-broadband infrared light absorbers,” Sci. Rep. 6, 38589 (2016).
[Crossref] [PubMed]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Pang, Y.

Y. Shen, Y. Pang, J. Wang, H. Ma, and Z. Pei, “Ultrabroadband Terahertz Absorption by Uniaxial Anisotropic Nanowire Metamaterials,” IEEE Photon. Technol. Lett. 27, 2284–2287 (2015).
[Crossref]

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[Crossref] [PubMed]

Park, J. W.

Pei, Z.

Y. Shen, Y. Pang, J. Wang, H. Ma, and Z. Pei, “Ultrabroadband Terahertz Absorption by Uniaxial Anisotropic Nanowire Metamaterials,” IEEE Photon. Technol. Lett. 27, 2284–2287 (2015).
[Crossref]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

Pilon, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Premaratne, M.

Prosvirnin, S. L.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[Crossref] [PubMed]

Pu, M.

Ra’di, Y.

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: Theory, design, and realizations,” Phys. Rev. Appl. 3, 037001 (2015).
[Crossref]

Rhee, J. Y.

Rukhlenko, I. D.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Shalaev, V.

W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2009).

Shen, Y.

Y. Shen, Y. Pang, J. Wang, H. Ma, and Z. Pei, “Ultrabroadband Terahertz Absorption by Uniaxial Anisotropic Nanowire Metamaterials,” IEEE Photon. Technol. Lett. 27, 2284–2287 (2015).
[Crossref]

Shrekenhamer, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Si, L.

Sikdar, D.

W. Zhu, F. Xiao, M. Kang, D. Sikdar, X. Liang, J. Geng, M. Premaratne, and R. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves,” IEEE Photon. J. 8, 5502207 (2016).

Simovski, C. R.

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: Theory, design, and realizations,” Phys. Rev. Appl. 3, 037001 (2015).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Strikwerda, A. C.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Su, B.

S. Gu, B. Su, and X. Zhao, “Planar isotropic broadband metamaterial absorber,” J. Appl. Phys. 104, 163702 (2013).
[Crossref]

Tao, H.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Topalli, K.

K. Gorgulu, A. Gok, M. Yilmaz, K. Topalli, N. Biyikli, and A. K. Okyay, “All-silicon ultra-broadband infrared light absorbers,” Sci. Rep. 6, 38589 (2016).
[Crossref] [PubMed]

Tretyakov, S. A.

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: Theory, design, and realizations,” Phys. Rev. Appl. 3, 037001 (2015).
[Crossref]

Tuong, P. V.

Wang, J.

Y. Shen, Y. Pang, J. Wang, H. Ma, and Z. Pei, “Ultrabroadband Terahertz Absorption by Uniaxial Anisotropic Nanowire Metamaterials,” IEEE Photon. Technol. Lett. 27, 2284–2287 (2015).
[Crossref]

Wang, M.

Wang, Y.

Wen, G.

White, T. P.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

Xiao, F.

W. Zhu, F. Xiao, M. Kang, D. Sikdar, X. Liang, J. Geng, M. Premaratne, and R. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves,” IEEE Photon. J. 8, 5502207 (2016).

Xie, L.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107, 073903 (2015).
[Crossref]

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Xu, W.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107, 073903 (2015).
[Crossref]

Yi, F.

H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nature Mater. 10, 709–714 (2016).

Yilmaz, M.

K. Gorgulu, A. Gok, M. Yilmaz, K. Topalli, N. Biyikli, and A. K. Okyay, “All-silicon ultra-broadband infrared light absorbers,” Sci. Rep. 6, 38589 (2016).
[Crossref] [PubMed]

Yin, G.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107, 073903 (2015).
[Crossref]

Yin, S.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107, 073903 (2015).
[Crossref]

Ying, Y.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107, 073903 (2015).
[Crossref]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Yuan, J.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107, 073903 (2015).
[Crossref]

Zhang, X.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Zhao, Q.

Zhao, X.

S. Gu, B. Su, and X. Zhao, “Planar isotropic broadband metamaterial absorber,” J. Appl. Phys. 104, 163702 (2013).
[Crossref]

Zhao, Z.

Zheludev, N. I.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[Crossref] [PubMed]

Zhou, J.

Zhu, H.

H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nature Mater. 10, 709–714 (2016).

Zhu, J.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107, 073903 (2015).
[Crossref]

Zhu, W.

Ziolkowski, R. W.

N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (John Wiley & Sons, 2006).
[Crossref]

Appl. Phys. Lett. (2)

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100, 031910 (2012).
[Crossref]

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107, 073903 (2015).
[Crossref]

IEEE Photon. J. (1)

W. Zhu, F. Xiao, M. Kang, D. Sikdar, X. Liang, J. Geng, M. Premaratne, and R. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves,” IEEE Photon. J. 8, 5502207 (2016).

IEEE Photon. Technol. Lett. (1)

Y. Shen, Y. Pang, J. Wang, H. Ma, and Z. Pei, “Ultrabroadband Terahertz Absorption by Uniaxial Anisotropic Nanowire Metamaterials,” IEEE Photon. Technol. Lett. 27, 2284–2287 (2015).
[Crossref]

J. Appl. Phys. (1)

S. Gu, B. Su, and X. Zhao, “Planar isotropic broadband metamaterial absorber,” J. Appl. Phys. 104, 163702 (2013).
[Crossref]

Nano Lett. (1)

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Nature Mater. (1)

H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nature Mater. 10, 709–714 (2016).

Nature Nanotech. (1)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nature Nanotech. 11, 23–36 (2016).
[Crossref]

Nature Photon. (1)

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

Opt. Commun. (1)

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
[Crossref]

Opt. Express (5)

Phys. Rev. Appl. (1)

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: Theory, design, and realizations,” Phys. Rev. Appl. 3, 037001 (2015).
[Crossref]

Phys. Rev. B (2)

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the nobel metals,” Phys. Rev. B,  6, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (3)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

Sci. Rep. (1)

K. Gorgulu, A. Gok, M. Yilmaz, K. Topalli, N. Biyikli, and A. K. Okyay, “All-silicon ultra-broadband infrared light absorbers,” Sci. Rep. 6, 38589 (2016).
[Crossref] [PubMed]

Science (2)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Other (3)

W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2009).

N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (John Wiley & Sons, 2006).
[Crossref]

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of a silicon-based metamaterial absorber and (b) one of its unit cells. Thicknesses of SiO2 and silicon layers are t1 = 10 nm and t2 = 12 nm; the radii of the bases of the conical holes are r1 = 100 nm and r2 = 140 nm; the lattice constants in the x and y directions are 300 nm. The gold layer is thick enough to prevent the transmission of light.

Fig. 2
Fig. 2

Permittivities of silicon and fused silica at optical wavelengths.

Fig. 3
Fig. 3

Absorptivity of silicon-based metamaterial with conical and circular holes.

Fig. 4
Fig. 4

Density plot of x component of current density inside a silicon-based absorber at resonance wavelengths of [(a) and (b)] 499.7 nm and [(c) and (d)] 567.1 nm. Panels (a) and (c) show plane z = 15 nm (silicon), and panels (b) and (d) show plane z = −5 nm (gold).

Fig. 5
Fig. 5

Absorptivity of silicon-based metamaterial for five incident angles of (a) TE-polarized and (b) TM-polarized waves.

Metrics