Abstract

In this work, we present in-plane propagation of surface plasmon polaritons (SPPs) guided by a single dielectric (Al2O3) subwavelength lens. By mounting a designed Al2O3 nanoparticle on the silver film, the effective index of a silver-Al2O3 interface is influenced by the particle thickness, then the phase difference between the silver-air and silver-Al2O3 interface can be utilized to modulate the in-plane propagation of SPPs. We show that an elliptical Al2O3 lens transforms the diffusive SPPs into a collimated beam, whose direction of propagation and beam width can be easily controlled. We also present that a triangular Al2O3 lens significantly reforms the SPPs to a Bessel beam, which possesses non-diffractive and self-healing properties. Our investigation provides unique way to guide the in-plane transport of SPPs by using dielectric subwavelength elements, which may achieve potential applications in plasmonic integrated circuits.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Aluminum based structures for manipulating short visible wavelength in-plane surface plasmon polariton propagation

Zhengji Xu, Landobasa Y. M. Tobing, Yiyang Xie, Jinchao Tong, Peinan Ni, Shupeng Qiu, Ting Yu, and Dao Hua Zhang
Opt. Express 23(17) 22883-22889 (2015)

Parametric compensation of power losses in surface plasmon polaritons

A. T. Georges
J. Opt. Soc. Am. B 30(4) 904-908 (2013)

Observation of propagation of surface plasmon polaritons along line defects in a periodically corrugated metal surface

Sergey I. Bozhevolnyi, Valentyn S. Volkov, Kristjan Leosson, and John Erland
Opt. Lett. 26(10) 734-736 (2001)

References

  • View by:
  • |
  • |
  • |

  1. K. C. Y. Huang, M. K. Seo, T. Sarmiento, Y. J. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photonics 8(3), 244–249 (2014).
    [Crossref]
  2. J. Wang, C. Hu, and J. Zhang, “Multifunctional and multi-output plasmonic meta-elements for integrated optical circuits,” Opt. Express 22(19), 22753–22762 (2014).
    [Crossref] [PubMed]
  3. Y. Yang, Q. Li, and M. Qiu, “Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas,” Sci. Rep. 6, 19490 (2016).
    [Crossref] [PubMed]
  4. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Grating (Springer, 1988).
  5. S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  6. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  7. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref] [PubMed]
  8. Y. J. Bao, B. Zhang, Z. Wu, J. W. Si, M. Wang, R. W. Peng, X. Lu, J. Shao, Z. F. Li, X. P. Hao, and N.-B. Ming, “Surface-plasmon-enhanced transmission through metallic film perforated with fractal -featured aperture array,” Appl. Phys. Lett. 90(25), 251914 (2007).
    [Crossref]
  9. Z. J. Zhang, R. W. Peng, Z. Wang, F. Gao, X. R. Huang, W. H. Sun, Q. J. Wang, and M. Wang, “Plasmonic antenna array at optical frequency made by nano-apertures,” Appl. Phys. Lett. 93(17), 171110 (2008).
    [Crossref]
  10. M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
    [Crossref] [PubMed]
  11. W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22(45), 5120–5124 (2010).
    [Crossref] [PubMed]
  12. Q. Hu, D. H. Xu, Y. Zhou, R. W. Peng, R. H. Fan, N. X. Fang, Q. J. Wang, X. R. Huang, and M. Wang, “Position-sensitive spectral splitting with a plasmonic nanowire on silicon chip,” Sci. Rep. 3, 3095 (2013).
    [Crossref] [PubMed]
  13. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
    [Crossref] [PubMed]
  14. A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Opt. Express 15(25), 16667–16680 (2007).
    [Crossref] [PubMed]
  15. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [Crossref]
  16. Q. Wang, X. Yuan, P. Tan, and D. Zhang, “Phase modulation of surface plasmon polaritons by surface relief dielectric structures,” Opt. Express 16(23), 19271–19276 (2008).
    [Crossref] [PubMed]
  17. H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
    [Crossref] [PubMed]
  18. H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
    [Crossref] [PubMed]
  19. T. Matsui, T. Nomura, A. Miura, H. Fujikawa, N. Ikeda, D. Tsuya, H. T. Miyazaki, Y. Sugimoto, M. Ozaki, M. Hangyo, and K. Asakawa, “Wavefront control by stacked metal-dielectric hole array with variable hole shapes,” Opt. Express 21(5), 6153–6161 (2013).
    [Crossref] [PubMed]
  20. D. H. Xu, K. Zhang, M. R. Shao, H. W. Wu, R. H. Fan, R. W. Peng, and M. Wang, “Band modulation and in-plane propagation of surface plasmons in composite nanostructures,” Opt. Express 22(21), 25700–25709 (2014).
    [Crossref] [PubMed]
  21. Z. Li, J. Hao, L. Huang, H. Li, H. Xu, Y. Sun, and N. Dai, “Manipulating the wavefront of light by plasmonic metasurfaces operating in high order modes,” Opt. Express 24(8), 8788–8796 (2016).
    [Crossref] [PubMed]
  22. M. U. González, A. L. Stepanov, J. C. Weeber, A. Hohenau, A. Dereux, R. Quidant, and J. R. Krenn, “Analysis of the angular acceptance of surface plasmon Bragg mirrors,” Opt. Lett. 32(18), 2704–2706 (2007).
    [Crossref] [PubMed]
  23. S. Randhawa, M. U. González, J. Renger, S. Enoch, and R. Quidant, “Design and properties of dielectric surface plasmon Bragg mirrors,” Opt. Express 18(14), 14496–14510 (2010).
    [Crossref] [PubMed]
  24. S. Griesing, A. Englisch, and U. Hartmann, “Refractive and reflective behavior of polymer prisms used for surface plasmon guidance,” Opt. Lett. 33(6), 575–577 (2008).
    [Crossref] [PubMed]
  25. L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, “Fourier plasmonics: Diffractive focusing of inplane surface plasmon polariton waves,” Appl. Phys. Lett. 91(8), 081101 (2007).
    [Crossref]
  26. J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express 14(12), 5664–5670 (2006).
    [Crossref] [PubMed]
  27. I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva, “Surface plasmon polariton beam focusing with parabolic nanoparticle chains,” Opt. Express 15(11), 6576–6582 (2007).
    [Crossref] [PubMed]
  28. A. Yanai and U. Levy, “Plasmonic focusing with a coaxial structure illuminated by radially polarized light,” Opt. Express 17(2), 924–932 (2009).
    [Crossref] [PubMed]
  29. H. Sakai, S. Okahisa, Y. Nakayama, K. Nakayama, M. Fukuhara, Y. Ishii, and M. Fukuda, “Plasmonic integrated circuit operating with coherent plasmonic signals,” in Asia Communications and Photonics Conference (OSA, 2015), paper ASu1D.4.
    [Crossref]
  30. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
    [Crossref] [PubMed]
  31. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
    [Crossref] [PubMed]
  32. A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30(8), 893–895 (2005).
    [Crossref] [PubMed]
  33. E. A. Bezus, L. L. Doskolovich, and N. L. Kazanskiy, “Scattering suppression in plasmonic optics using a simple two-layer dielectric structure,” Appl. Phys. Lett. 98(22), 221108 (2011).
    [Crossref]
  34. T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6(3), 151–155 (2011).
    [Crossref] [PubMed]
  35. K. Lee, S. Y. Lee, J. Jung, and B. Lee, “Plasmonic achromatic doublet lens,” Opt. Express 23(5), 5800–5808 (2015).
    [Crossref] [PubMed]
  36. Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. 31(11), 1726–1728 (2006).
    [Crossref] [PubMed]

2016 (3)

Y. Yang, Q. Li, and M. Qiu, “Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas,” Sci. Rep. 6, 19490 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Z. Li, J. Hao, L. Huang, H. Li, H. Xu, Y. Sun, and N. Dai, “Manipulating the wavefront of light by plasmonic metasurfaces operating in high order modes,” Opt. Express 24(8), 8788–8796 (2016).
[Crossref] [PubMed]

2015 (2)

K. Lee, S. Y. Lee, J. Jung, and B. Lee, “Plasmonic achromatic doublet lens,” Opt. Express 23(5), 5800–5808 (2015).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (2)

Q. Hu, D. H. Xu, Y. Zhou, R. W. Peng, R. H. Fan, N. X. Fang, Q. J. Wang, X. R. Huang, and M. Wang, “Position-sensitive spectral splitting with a plasmonic nanowire on silicon chip,” Sci. Rep. 3, 3095 (2013).
[Crossref] [PubMed]

T. Matsui, T. Nomura, A. Miura, H. Fujikawa, N. Ikeda, D. Tsuya, H. T. Miyazaki, Y. Sugimoto, M. Ozaki, M. Hangyo, and K. Asakawa, “Wavefront control by stacked metal-dielectric hole array with variable hole shapes,” Opt. Express 21(5), 6153–6161 (2013).
[Crossref] [PubMed]

2011 (3)

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

E. A. Bezus, L. L. Doskolovich, and N. L. Kazanskiy, “Scattering suppression in plasmonic optics using a simple two-layer dielectric structure,” Appl. Phys. Lett. 98(22), 221108 (2011).
[Crossref]

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6(3), 151–155 (2011).
[Crossref] [PubMed]

2010 (4)

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref] [PubMed]

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22(45), 5120–5124 (2010).
[Crossref] [PubMed]

S. Randhawa, M. U. González, J. Renger, S. Enoch, and R. Quidant, “Design and properties of dielectric surface plasmon Bragg mirrors,” Opt. Express 18(14), 14496–14510 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (4)

S. Griesing, A. Englisch, and U. Hartmann, “Refractive and reflective behavior of polymer prisms used for surface plasmon guidance,” Opt. Lett. 33(6), 575–577 (2008).
[Crossref] [PubMed]

Q. Wang, X. Yuan, P. Tan, and D. Zhang, “Phase modulation of surface plasmon polaritons by surface relief dielectric structures,” Opt. Express 16(23), 19271–19276 (2008).
[Crossref] [PubMed]

Z. J. Zhang, R. W. Peng, Z. Wang, F. Gao, X. R. Huang, W. H. Sun, Q. J. Wang, and M. Wang, “Plasmonic antenna array at optical frequency made by nano-apertures,” Appl. Phys. Lett. 93(17), 171110 (2008).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

2007 (5)

2006 (3)

2005 (2)

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30(8), 893–895 (2005).
[Crossref] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Arbabi, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Asakawa, K.

Aussenegg, F. R.

Bagheri, M.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Bao, Y. J.

Y. J. Bao, B. Zhang, Z. Wu, J. W. Si, M. Wang, R. W. Peng, X. Lu, J. Shao, Z. F. Li, X. P. Hao, and N.-B. Ming, “Surface-plasmon-enhanced transmission through metallic film perforated with fractal -featured aperture array,” Appl. Phys. Lett. 90(25), 251914 (2007).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bezus, E. A.

E. A. Bezus, L. L. Doskolovich, and N. L. Kazanskiy, “Scattering suppression in plasmonic optics using a simple two-layer dielectric structure,” Appl. Phys. Lett. 98(22), 221108 (2011).
[Crossref]

Boltasseva, A.

Bozhevolnyi, S. I.

Brongersma, M. L.

K. C. Y. Huang, M. K. Seo, T. Sarmiento, Y. J. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photonics 8(3), 244–249 (2014).
[Crossref]

M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref] [PubMed]

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22(45), 5120–5124 (2010).
[Crossref] [PubMed]

Brown, D. E.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Cai, W.

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22(45), 5120–5124 (2010).
[Crossref] [PubMed]

Capasso, F.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Chen, W. T.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Chichkov, B. N.

Cho, S. W.

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

Dai, N.

Dereux, A.

Devlin, R. C.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Ditlbacher, H.

Doskolovich, L. L.

E. A. Bezus, L. L. Doskolovich, and N. L. Kazanskiy, “Scattering suppression in plasmonic optics using a simple two-layer dielectric structure,” Appl. Phys. Lett. 98(22), 221108 (2011).
[Crossref]

Drezet, A.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Englisch, A.

Enoch, S.

Evlyukhin, A. B.

Fainman, Y.

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, “Fourier plasmonics: Diffractive focusing of inplane surface plasmon polariton waves,” Appl. Phys. Lett. 91(8), 081101 (2007).
[Crossref]

Fan, R. H.

D. H. Xu, K. Zhang, M. R. Shao, H. W. Wu, R. H. Fan, R. W. Peng, and M. Wang, “Band modulation and in-plane propagation of surface plasmons in composite nanostructures,” Opt. Express 22(21), 25700–25709 (2014).
[Crossref] [PubMed]

Q. Hu, D. H. Xu, Y. Zhou, R. W. Peng, R. H. Fan, N. X. Fang, Q. J. Wang, X. R. Huang, and M. Wang, “Position-sensitive spectral splitting with a plasmonic nanowire on silicon chip,” Sci. Rep. 3, 3095 (2013).
[Crossref] [PubMed]

Fan, S.

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22(45), 5120–5124 (2010).
[Crossref] [PubMed]

Fang, N. X.

Q. Hu, D. H. Xu, Y. Zhou, R. W. Peng, R. H. Fan, N. X. Fang, Q. J. Wang, X. R. Huang, and M. Wang, “Position-sensitive spectral splitting with a plasmonic nanowire on silicon chip,” Sci. Rep. 3, 3095 (2013).
[Crossref] [PubMed]

Faraon, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Feng, L.

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, “Fourier plasmonics: Diffractive focusing of inplane surface plasmon polariton waves,” Appl. Phys. Lett. 91(8), 081101 (2007).
[Crossref]

Fujikawa, H.

Gao, F.

Z. J. Zhang, R. W. Peng, Z. Wang, F. Gao, X. R. Huang, W. H. Sun, Q. J. Wang, and M. Wang, “Plasmonic antenna array at optical frequency made by nano-apertures,” Appl. Phys. Lett. 93(17), 171110 (2008).
[Crossref]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

González, M. U.

Griesing, S.

Hangyo, M.

Hao, J.

Hao, X. P.

Y. J. Bao, B. Zhang, Z. Wu, J. W. Si, M. Wang, R. W. Peng, X. Lu, J. Shao, Z. F. Li, X. P. Hao, and N.-B. Ming, “Surface-plasmon-enhanced transmission through metallic film perforated with fractal -featured aperture array,” Appl. Phys. Lett. 90(25), 251914 (2007).
[Crossref]

Harris, J. S.

K. C. Y. Huang, M. K. Seo, T. Sarmiento, Y. J. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photonics 8(3), 244–249 (2014).
[Crossref]

Hartmann, U.

Hiller, J. M.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Hohenau, A.

Horie, Y.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Hu, C.

Hu, Q.

Q. Hu, D. H. Xu, Y. Zhou, R. W. Peng, R. H. Fan, N. X. Fang, Q. J. Wang, X. R. Huang, and M. Wang, “Position-sensitive spectral splitting with a plasmonic nanowire on silicon chip,” Sci. Rep. 3, 3095 (2013).
[Crossref] [PubMed]

Hua, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Huang, K. C. Y.

K. C. Y. Huang, M. K. Seo, T. Sarmiento, Y. J. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photonics 8(3), 244–249 (2014).
[Crossref]

Huang, L.

Huang, X. R.

Q. Hu, D. H. Xu, Y. Zhou, R. W. Peng, R. H. Fan, N. X. Fang, Q. J. Wang, X. R. Huang, and M. Wang, “Position-sensitive spectral splitting with a plasmonic nanowire on silicon chip,” Sci. Rep. 3, 3095 (2013).
[Crossref] [PubMed]

Z. J. Zhang, R. W. Peng, Z. Wang, F. Gao, X. R. Huang, W. H. Sun, Q. J. Wang, and M. Wang, “Plasmonic antenna array at optical frequency made by nano-apertures,” Appl. Phys. Lett. 93(17), 171110 (2008).
[Crossref]

Huo, Y. J.

K. C. Y. Huang, M. K. Seo, T. Sarmiento, Y. J. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photonics 8(3), 244–249 (2014).
[Crossref]

Ikeda, N.

Jung, J.

Käll, M.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

Kang, M.

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

Kazanskiy, N. L.

E. A. Bezus, L. L. Doskolovich, and N. L. Kazanskiy, “Scattering suppression in plasmonic optics using a simple two-layer dielectric structure,” Appl. Phys. Lett. 98(22), 221108 (2011).
[Crossref]

Khorasaninejad, M.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Kim, H.

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

Kimball, C. W.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Kiyan, R.

Krenn, J. R.

Lee, B.

K. Lee, S. Y. Lee, J. Jung, and B. Lee, “Plasmonic achromatic doublet lens,” Opt. Express 23(5), 5800–5808 (2015).
[Crossref] [PubMed]

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

Lee, K.

Lee, S. Y.

K. Lee, S. Y. Lee, J. Jung, and B. Lee, “Plasmonic achromatic doublet lens,” Opt. Express 23(5), 5800–5808 (2015).
[Crossref] [PubMed]

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

Leitner, A.

Levy, U.

Li, H.

Li, Q.

Y. Yang, Q. Li, and M. Qiu, “Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas,” Sci. Rep. 6, 19490 (2016).
[Crossref] [PubMed]

Li, Z.

Li, Z. F.

Y. J. Bao, B. Zhang, Z. Wu, J. W. Si, M. Wang, R. W. Peng, X. Lu, J. Shao, Z. F. Li, X. P. Hao, and N.-B. Ming, “Surface-plasmon-enhanced transmission through metallic film perforated with fractal -featured aperture array,” Appl. Phys. Lett. 90(25), 251914 (2007).
[Crossref]

Liu, Y.

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6(3), 151–155 (2011).
[Crossref] [PubMed]

Liu, Z.

Lomakin, V.

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, “Fourier plasmonics: Diffractive focusing of inplane surface plasmon polariton waves,” Appl. Phys. Lett. 91(8), 081101 (2007).
[Crossref]

Lu, X.

Y. J. Bao, B. Zhang, Z. Wu, J. W. Si, M. Wang, R. W. Peng, X. Lu, J. Shao, Z. F. Li, X. P. Hao, and N.-B. Ming, “Surface-plasmon-enhanced transmission through metallic film perforated with fractal -featured aperture array,” Appl. Phys. Lett. 90(25), 251914 (2007).
[Crossref]

Matsui, T.

Mikkelsen, M. H.

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6(3), 151–155 (2011).
[Crossref] [PubMed]

Ming, N.-B.

Y. J. Bao, B. Zhang, Z. Wu, J. W. Si, M. Wang, R. W. Peng, X. Lu, J. Shao, Z. F. Li, X. P. Hao, and N.-B. Ming, “Surface-plasmon-enhanced transmission through metallic film perforated with fractal -featured aperture array,” Appl. Phys. Lett. 90(25), 251914 (2007).
[Crossref]

Miura, A.

Miyazaki, H. T.

Nomura, T.

Oh, J.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Ozaki, M.

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Park, J.

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

Passinger, S.

Pearson, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Peng, R. W.

D. H. Xu, K. Zhang, M. R. Shao, H. W. Wu, R. H. Fan, R. W. Peng, and M. Wang, “Band modulation and in-plane propagation of surface plasmons in composite nanostructures,” Opt. Express 22(21), 25700–25709 (2014).
[Crossref] [PubMed]

Q. Hu, D. H. Xu, Y. Zhou, R. W. Peng, R. H. Fan, N. X. Fang, Q. J. Wang, X. R. Huang, and M. Wang, “Position-sensitive spectral splitting with a plasmonic nanowire on silicon chip,” Sci. Rep. 3, 3095 (2013).
[Crossref] [PubMed]

Z. J. Zhang, R. W. Peng, Z. Wang, F. Gao, X. R. Huang, W. H. Sun, Q. J. Wang, and M. Wang, “Plasmonic antenna array at optical frequency made by nano-apertures,” Appl. Phys. Lett. 93(17), 171110 (2008).
[Crossref]

Y. J. Bao, B. Zhang, Z. Wu, J. W. Si, M. Wang, R. W. Peng, X. Lu, J. Shao, Z. F. Li, X. P. Hao, and N.-B. Ming, “Surface-plasmon-enhanced transmission through metallic film perforated with fractal -featured aperture array,” Appl. Phys. Lett. 90(25), 251914 (2007).
[Crossref]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Qiu, M.

Y. Yang, Q. Li, and M. Qiu, “Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas,” Sci. Rep. 6, 19490 (2016).
[Crossref] [PubMed]

Quidant, R.

Radko, I. P.

Randhawa, S.

Reinhardt, C.

Renger, J.

Sarmiento, T.

K. C. Y. Huang, M. K. Seo, T. Sarmiento, Y. J. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photonics 8(3), 244–249 (2014).
[Crossref]

Seo, M. K.

K. C. Y. Huang, M. K. Seo, T. Sarmiento, Y. J. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photonics 8(3), 244–249 (2014).
[Crossref]

Shalaev, V. M.

M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref] [PubMed]

Shao, J.

Y. J. Bao, B. Zhang, Z. Wu, J. W. Si, M. Wang, R. W. Peng, X. Lu, J. Shao, Z. F. Li, X. P. Hao, and N.-B. Ming, “Surface-plasmon-enhanced transmission through metallic film perforated with fractal -featured aperture array,” Appl. Phys. Lett. 90(25), 251914 (2007).
[Crossref]

Shao, M. R.

Shin, W.

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22(45), 5120–5124 (2010).
[Crossref] [PubMed]

Si, J. W.

Y. J. Bao, B. Zhang, Z. Wu, J. W. Si, M. Wang, R. W. Peng, X. Lu, J. Shao, Z. F. Li, X. P. Hao, and N.-B. Ming, “Surface-plasmon-enhanced transmission through metallic film perforated with fractal -featured aperture array,” Appl. Phys. Lett. 90(25), 251914 (2007).
[Crossref]

Slutsky, B.

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, “Fourier plasmonics: Diffractive focusing of inplane surface plasmon polariton waves,” Appl. Phys. Lett. 91(8), 081101 (2007).
[Crossref]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Steele, J. M.

Steinberger, B.

Stepanov, A. L.

Sugimoto, Y.

Sun, W. H.

Z. J. Zhang, R. W. Peng, Z. Wang, F. Gao, X. R. Huang, W. H. Sun, Q. J. Wang, and M. Wang, “Plasmonic antenna array at optical frequency made by nano-apertures,” Appl. Phys. Lett. 93(17), 171110 (2008).
[Crossref]

Sun, Y.

Tan, P.

Tetz, K. A.

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, “Fourier plasmonics: Diffractive focusing of inplane surface plasmon polariton waves,” Appl. Phys. Lett. 91(8), 081101 (2007).
[Crossref]

Tian, X.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

Tsuya, D.

Valentine, J.

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6(3), 151–155 (2011).
[Crossref] [PubMed]

Vlasko-Vlasov, V. K.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Wang, J.

Wang, M.

D. H. Xu, K. Zhang, M. R. Shao, H. W. Wu, R. H. Fan, R. W. Peng, and M. Wang, “Band modulation and in-plane propagation of surface plasmons in composite nanostructures,” Opt. Express 22(21), 25700–25709 (2014).
[Crossref] [PubMed]

Q. Hu, D. H. Xu, Y. Zhou, R. W. Peng, R. H. Fan, N. X. Fang, Q. J. Wang, X. R. Huang, and M. Wang, “Position-sensitive spectral splitting with a plasmonic nanowire on silicon chip,” Sci. Rep. 3, 3095 (2013).
[Crossref] [PubMed]

Z. J. Zhang, R. W. Peng, Z. Wang, F. Gao, X. R. Huang, W. H. Sun, Q. J. Wang, and M. Wang, “Plasmonic antenna array at optical frequency made by nano-apertures,” Appl. Phys. Lett. 93(17), 171110 (2008).
[Crossref]

Y. J. Bao, B. Zhang, Z. Wu, J. W. Si, M. Wang, R. W. Peng, X. Lu, J. Shao, Z. F. Li, X. P. Hao, and N.-B. Ming, “Surface-plasmon-enhanced transmission through metallic film perforated with fractal -featured aperture array,” Appl. Phys. Lett. 90(25), 251914 (2007).
[Crossref]

Wang, Q.

Wang, Q. J.

Q. Hu, D. H. Xu, Y. Zhou, R. W. Peng, R. H. Fan, N. X. Fang, Q. J. Wang, X. R. Huang, and M. Wang, “Position-sensitive spectral splitting with a plasmonic nanowire on silicon chip,” Sci. Rep. 3, 3095 (2013).
[Crossref] [PubMed]

Z. J. Zhang, R. W. Peng, Z. Wang, F. Gao, X. R. Huang, W. H. Sun, Q. J. Wang, and M. Wang, “Plasmonic antenna array at optical frequency made by nano-apertures,” Appl. Phys. Lett. 93(17), 171110 (2008).
[Crossref]

Wang, Y.

Wang, Z.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

Z. J. Zhang, R. W. Peng, Z. Wang, F. Gao, X. R. Huang, W. H. Sun, Q. J. Wang, and M. Wang, “Plasmonic antenna array at optical frequency made by nano-apertures,” Appl. Phys. Lett. 93(17), 171110 (2008).
[Crossref]

Weeber, J. C.

Wei, H.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

Welp, U.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Wu, H. W.

Wu, Z.

Y. J. Bao, B. Zhang, Z. Wu, J. W. Si, M. Wang, R. W. Peng, X. Lu, J. Shao, Z. F. Li, X. P. Hao, and N.-B. Ming, “Surface-plasmon-enhanced transmission through metallic film perforated with fractal -featured aperture array,” Appl. Phys. Lett. 90(25), 251914 (2007).
[Crossref]

Xu, D. H.

D. H. Xu, K. Zhang, M. R. Shao, H. W. Wu, R. H. Fan, R. W. Peng, and M. Wang, “Band modulation and in-plane propagation of surface plasmons in composite nanostructures,” Opt. Express 22(21), 25700–25709 (2014).
[Crossref] [PubMed]

Q. Hu, D. H. Xu, Y. Zhou, R. W. Peng, R. H. Fan, N. X. Fang, Q. J. Wang, X. R. Huang, and M. Wang, “Position-sensitive spectral splitting with a plasmonic nanowire on silicon chip,” Sci. Rep. 3, 3095 (2013).
[Crossref] [PubMed]

Xu, H.

Yanai, A.

Yang, Y.

Y. Yang, Q. Li, and M. Qiu, “Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas,” Sci. Rep. 6, 19490 (2016).
[Crossref] [PubMed]

Yin, L.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Yuan, X.

Zentgraf, T.

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6(3), 151–155 (2011).
[Crossref] [PubMed]

Zhan, Q.

Zhang, B.

Y. J. Bao, B. Zhang, Z. Wu, J. W. Si, M. Wang, R. W. Peng, X. Lu, J. Shao, Z. F. Li, X. P. Hao, and N.-B. Ming, “Surface-plasmon-enhanced transmission through metallic film perforated with fractal -featured aperture array,” Appl. Phys. Lett. 90(25), 251914 (2007).
[Crossref]

Zhang, D.

Zhang, J.

Zhang, K.

Zhang, X.

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6(3), 151–155 (2011).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express 14(12), 5664–5670 (2006).
[Crossref] [PubMed]

Zhang, Z. J.

Z. J. Zhang, R. W. Peng, Z. Wang, F. Gao, X. R. Huang, W. H. Sun, Q. J. Wang, and M. Wang, “Plasmonic antenna array at optical frequency made by nano-apertures,” Appl. Phys. Lett. 93(17), 171110 (2008).
[Crossref]

Zhou, Y.

Q. Hu, D. H. Xu, Y. Zhou, R. W. Peng, R. H. Fan, N. X. Fang, Q. J. Wang, X. R. Huang, and M. Wang, “Position-sensitive spectral splitting with a plasmonic nanowire on silicon chip,” Sci. Rep. 3, 3095 (2013).
[Crossref] [PubMed]

Zhu, A. Y.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Adv. Mater. (1)

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22(45), 5120–5124 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

Y. J. Bao, B. Zhang, Z. Wu, J. W. Si, M. Wang, R. W. Peng, X. Lu, J. Shao, Z. F. Li, X. P. Hao, and N.-B. Ming, “Surface-plasmon-enhanced transmission through metallic film perforated with fractal -featured aperture array,” Appl. Phys. Lett. 90(25), 251914 (2007).
[Crossref]

Z. J. Zhang, R. W. Peng, Z. Wang, F. Gao, X. R. Huang, W. H. Sun, Q. J. Wang, and M. Wang, “Plasmonic antenna array at optical frequency made by nano-apertures,” Appl. Phys. Lett. 93(17), 171110 (2008).
[Crossref]

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, “Fourier plasmonics: Diffractive focusing of inplane surface plasmon polariton waves,” Appl. Phys. Lett. 91(8), 081101 (2007).
[Crossref]

E. A. Bezus, L. L. Doskolovich, and N. L. Kazanskiy, “Scattering suppression in plasmonic optics using a simple two-layer dielectric structure,” Appl. Phys. Lett. 98(22), 221108 (2011).
[Crossref]

Nano Lett. (2)

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6(3), 151–155 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

K. C. Y. Huang, M. K. Seo, T. Sarmiento, Y. J. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photonics 8(3), 244–249 (2014).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (11)

J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express 14(12), 5664–5670 (2006).
[Crossref] [PubMed]

I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva, “Surface plasmon polariton beam focusing with parabolic nanoparticle chains,” Opt. Express 15(11), 6576–6582 (2007).
[Crossref] [PubMed]

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Opt. Express 15(25), 16667–16680 (2007).
[Crossref] [PubMed]

Q. Wang, X. Yuan, P. Tan, and D. Zhang, “Phase modulation of surface plasmon polaritons by surface relief dielectric structures,” Opt. Express 16(23), 19271–19276 (2008).
[Crossref] [PubMed]

A. Yanai and U. Levy, “Plasmonic focusing with a coaxial structure illuminated by radially polarized light,” Opt. Express 17(2), 924–932 (2009).
[Crossref] [PubMed]

S. Randhawa, M. U. González, J. Renger, S. Enoch, and R. Quidant, “Design and properties of dielectric surface plasmon Bragg mirrors,” Opt. Express 18(14), 14496–14510 (2010).
[Crossref] [PubMed]

T. Matsui, T. Nomura, A. Miura, H. Fujikawa, N. Ikeda, D. Tsuya, H. T. Miyazaki, Y. Sugimoto, M. Ozaki, M. Hangyo, and K. Asakawa, “Wavefront control by stacked metal-dielectric hole array with variable hole shapes,” Opt. Express 21(5), 6153–6161 (2013).
[Crossref] [PubMed]

J. Wang, C. Hu, and J. Zhang, “Multifunctional and multi-output plasmonic meta-elements for integrated optical circuits,” Opt. Express 22(19), 22753–22762 (2014).
[Crossref] [PubMed]

D. H. Xu, K. Zhang, M. R. Shao, H. W. Wu, R. H. Fan, R. W. Peng, and M. Wang, “Band modulation and in-plane propagation of surface plasmons in composite nanostructures,” Opt. Express 22(21), 25700–25709 (2014).
[Crossref] [PubMed]

K. Lee, S. Y. Lee, J. Jung, and B. Lee, “Plasmonic achromatic doublet lens,” Opt. Express 23(5), 5800–5808 (2015).
[Crossref] [PubMed]

Z. Li, J. Hao, L. Huang, H. Li, H. Xu, Y. Sun, and N. Dai, “Manipulating the wavefront of light by plasmonic metasurfaces operating in high order modes,” Opt. Express 24(8), 8788–8796 (2016).
[Crossref] [PubMed]

Opt. Lett. (4)

Sci. Rep. (2)

Y. Yang, Q. Li, and M. Qiu, “Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas,” Sci. Rep. 6, 19490 (2016).
[Crossref] [PubMed]

Q. Hu, D. H. Xu, Y. Zhou, R. W. Peng, R. H. Fan, N. X. Fang, Q. J. Wang, X. R. Huang, and M. Wang, “Position-sensitive spectral splitting with a plasmonic nanowire on silicon chip,” Sci. Rep. 3, 3095 (2013).
[Crossref] [PubMed]

Science (3)

M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Other (3)

H. Sakai, S. Okahisa, Y. Nakayama, K. Nakayama, M. Fukuhara, Y. Ishii, and M. Fukuda, “Plasmonic integrated circuit operating with coherent plasmonic signals,” in Asia Communications and Photonics Conference (OSA, 2015), paper ASu1D.4.
[Crossref]

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Grating (Springer, 1988).

S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic view of the designed elliptical lens on the silver film. The silver is 100 nm thick and covers the SiO2 substrate. A slit is etched on the silver film to excite SPPs, and the Al2O3 elliptical lens is placed on the propagation path of the SPPs. The thickness of Al2O3 is t. (b) Top view of the structure. The width and height of lens are a and b, and the distance from lens to slit is l. (c) Calculated electric field distributions of SPPs generated by a plane wave source when there is no any lens in the system. (d) Calculated electric field distributions of SPPs generated by a plane wave source when there exists an elliptical Al2O3 lens in the system. The width and height of lens are a = 2μm and b = 6μm, the thickness is t = 200nm, and the distance from lens to slit is l = 1μm. The SPPs are focused by the lens and the focal length is f.

Fig. 2
Fig. 2

(a) - (c) Calculated electric field distributions of focused SPPs for different thicknesses of Al2O3. The width and height of lens are a = 2μm and b = 6μm, and the distance from lens to slit is l = 1μm.The excitation source is a plane wave source of wavelength 600 nm. The focal length f clearly varies with change in thicknesses t. (d) Relationship of the thickness of Al2O3 t with focal length f (blue line) and effective index neff (red line) as derived from the calculation data.

Fig. 3
Fig. 3

(a) Calculated electric field distribution of propagation of SPPs without elliptical lens. (b) Calculated electric field distribution of the propagation of SPPs with elliptical lens. The parameters of elliptical lens are t = 200nm, a = 2μm and b = 6μm. A collimated beam is generated after the lens. (c) Density distributions at P1 (x = 2 μm) extracted from (a) and (b). (d) Density distributions at P2 (x = 10 μm) extracted from (a) and (b).

Fig. 4
Fig. 4

Calculated electric field distributions (a) When the source is put downwards at y = −1μm. (b) When the source is put upwards at y = 1μm. (c) After adding another lens to focus the SPPs of thickness t = 50nm. (d) Adding another lens to focus the SPPs of thickness t = 80nm. The focus point can be tuned by changing the thickness.

Fig. 5
Fig. 5

Calculated electric field distributions when (a) Height of the elliptical lens is b = 8μm. (b) Height of the elliptical lens is b = 10μm. (c) Wavelength of excitation laser is 580nm. (c) Wavelength of excitation laser is 620nm. The straight dash lines mark the profiles of the collimated beams.

Fig. 6
Fig. 6

(a) Top view of the structure with the triangular lens. (b) Calculated electric field distribution of the propagation of SPPs with the triangular lens with a = 3 μm, b = 6 μm, t = 50 nm, and l = 8 μm. (c) Intensity distributions at points P1, P2, P3 shown in (b). (d) Calculated electric field distribution when a circular defect is added in the propagation path of the main lobe

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f= n eff r 1 r 2 ( n eff n 1 )[ n eff ( r 2 r 1 )+a( n eff n 1 )] .

Metrics