Abstract

Bloch surface waves (BSWs) are recently developing alternative to surface plasmon polaritons (SPPs). Due to dramatically enhanced propagation distance and strong field confinement these surface states can be successfully used in on-chip all-optical integrated devices of increased complexity. In this work we propose a highly miniaturized grating based BSW coupler which is gathering launching and directional switching functionalities in a single element. This device allows to control with polarization the propagation direction of Bloch surface waves at subwavelength scale, thus impacting a large panel of domains such as optical circuitry, function design, quantum optics, etc.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spin-orbit coupling controlled near-field propagation and focusing of Bloch surface wave

Fu Feng, Shi-Biao Wei, Ling Li, Chang-Jun Min, Xiao-Cong Yuan, and Michael Somekh
Opt. Express 27(20) 27536-27545 (2019)

Bloch surface waves at the telecommunication wavelength with lithium niobate as the top layer for integrated optics

Tatiana Kovalevich, Djaffar Belharet, Laurent Robert, Gwenn Ulliac, Myun-Sik Kim, Hans Peter Herzig, Thierry Grosjean, and Maria-Pilar Bernal
Appl. Opt. 58(7) 1757-1762 (2019)

Experimental evidence of Bloch surface waves on photonic crystals with thin-film LiNbO3 as a top layer

Tatiana Kovalevich, Djaffar Belharet, Laurent Robert, Myun-Sik Kim, Hans Peter Herzig, Thierry Grosjean, and Maria-Pilar Bernal
Photon. Res. 5(6) 649-653 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh, A. Yariv, L. Sun, and C.S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67(4), 423–438 (1977).
    [Crossref]
  2. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [Crossref] [PubMed]
  3. M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93(11), 113110 (2008).
    [Crossref]
  4. V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79(12), 4729–4735 (2007).
    [Crossref] [PubMed]
  5. R. Dubey, E. Barakat, M. Häyrinen, M. Roussey, S. Honkanen, M. Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of Bloch surface waves on dielectric multilayer platform,” JEOS:RP 13(1), 5 (2017).
    [Crossref]
  6. J. C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64(4), 045411 (2001).
    [Crossref]
  7. V. N. Konopsky, “Plasmon-polariton waves in nanofilms on one-dimensional photonic crystal surfaces,” New J. Phys. 12(9), 093006 (2010).
    [Crossref]
  8. F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2010).
    [Crossref]
  9. A. Sinibaldi, A. Fieramosca, R. Rizzo, A. Anopchenko, N. Danz, P. Munzert, C. Magistris, C. Barolo, and F. Michelotti, “Combining label-free and fluorescence operation of Bloch surface wave optical sensors,” Opt. Lett. 39(10), 2947–2950 (2014).
    [Crossref] [PubMed]
  10. L. Yu, B. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” LIGHT-SCI APPL 3(1), 124 (2014).
    [Crossref]
  11. E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
    [Crossref] [PubMed]
  12. L. Yu, “Near-field imaging: investigations on Bloch surface wave based 2D optics and the development of polarization-retrieved characterization,” Doctoral dissertation, Ecole Polytechnique Fédérale de Lausanne (2013).
  13. X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, and H. P. Herzig, “Phase-sensitive near field Investigation of Bloch surface wave propagation in curved waveguides,” JEOS:RP 9, 14049 (2014).
    [Crossref]
  14. R. Dubey, B. Vosoughi Lahijani, E. Barakat, M. Häyrinen, M. Roussey, M. Kuittinen, and H. P. Herzig, “Near-field characterization of a Bloch-surface-wave-based 2D disk resonator,” Opt. Lett. 41(21), 4867–4870 (2016).
    [Crossref] [PubMed]
  15. T. Kovalevich, A. Ndao, M. Suarez, M. Häyrinen, M. Roussey, M. Kuittinen, T. Grosjean, and M. P. Bernal, “Tunable Bloch surface waves in anisotropic photonic crystals based on lithium niobate thin films,” Opt. Lett. 41(23), 5616–5619 (2016).
    [Crossref] [PubMed]
  16. S. T. Koev, A. Agrawal, H. J. Lezec, and V. A. Aksyuk, “An efficient large-area grating coupler for surface plasmon polaritons,” Plasmonics 7(2), 269–277 (2012).
    [Crossref]
  17. D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett. 15(9), 1249–1251 (2003).
    [Crossref]
  18. M. Scaravilli, G. Castaldi, A. Cusano, and V. Galdi, “Grating-coupling-based excitation of Bloch surface waves for lab-on-fiber optrodes,” Opt. Express 24(24), 27771–27784 (2016).
    [Crossref] [PubMed]
  19. X. B. Kang, L. J. Liu, H. Lu, H. D. Li, and Z. G. Wang, “Guided Bloch surface wave resonance for biosensor designs,” J. Opt. Soc. Am. A 33(5), 997–1003 (2016).
    [Crossref]
  20. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
    [Crossref] [PubMed]
  21. T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
    [Crossref]

2017 (1)

R. Dubey, E. Barakat, M. Häyrinen, M. Roussey, S. Honkanen, M. Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of Bloch surface waves on dielectric multilayer platform,” JEOS:RP 13(1), 5 (2017).
[Crossref]

2016 (4)

2014 (3)

A. Sinibaldi, A. Fieramosca, R. Rizzo, A. Anopchenko, N. Danz, P. Munzert, C. Magistris, C. Barolo, and F. Michelotti, “Combining label-free and fluorescence operation of Bloch surface wave optical sensors,” Opt. Lett. 39(10), 2947–2950 (2014).
[Crossref] [PubMed]

L. Yu, B. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” LIGHT-SCI APPL 3(1), 124 (2014).
[Crossref]

X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, and H. P. Herzig, “Phase-sensitive near field Investigation of Bloch surface wave propagation in curved waveguides,” JEOS:RP 9, 14049 (2014).
[Crossref]

2012 (1)

S. T. Koev, A. Agrawal, H. J. Lezec, and V. A. Aksyuk, “An efficient large-area grating coupler for surface plasmon polaritons,” Plasmonics 7(2), 269–277 (2012).
[Crossref]

2010 (3)

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

V. N. Konopsky, “Plasmon-polariton waves in nanofilms on one-dimensional photonic crystal surfaces,” New J. Phys. 12(9), 093006 (2010).
[Crossref]

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2010).
[Crossref]

2008 (2)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93(11), 113110 (2008).
[Crossref]

2007 (3)

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79(12), 4729–4735 (2007).
[Crossref] [PubMed]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
[Crossref] [PubMed]

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

2003 (1)

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

2001 (1)

J. C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64(4), 045411 (2001).
[Crossref]

1977 (1)

Agrawal, A.

S. T. Koev, A. Agrawal, H. J. Lezec, and V. A. Aksyuk, “An efficient large-area grating coupler for surface plasmon polaritons,” Plasmonics 7(2), 269–277 (2012).
[Crossref]

Aksyuk, V. A.

S. T. Koev, A. Agrawal, H. J. Lezec, and V. A. Aksyuk, “An efficient large-area grating coupler for surface plasmon polaritons,” Plasmonics 7(2), 269–277 (2012).
[Crossref]

Alieva, E. V.

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79(12), 4729–4735 (2007).
[Crossref] [PubMed]

Anopchenko, A.

Atwater, H. A.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93(11), 113110 (2008).
[Crossref]

Baets, R.

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
[Crossref] [PubMed]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

Barakat, B.

L. Yu, B. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” LIGHT-SCI APPL 3(1), 124 (2014).
[Crossref]

Barakat, E.

R. Dubey, E. Barakat, M. Häyrinen, M. Roussey, S. Honkanen, M. Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of Bloch surface waves on dielectric multilayer platform,” JEOS:RP 13(1), 5 (2017).
[Crossref]

R. Dubey, B. Vosoughi Lahijani, E. Barakat, M. Häyrinen, M. Roussey, M. Kuittinen, and H. P. Herzig, “Near-field characterization of a Bloch-surface-wave-based 2D disk resonator,” Opt. Lett. 41(21), 4867–4870 (2016).
[Crossref] [PubMed]

X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, and H. P. Herzig, “Phase-sensitive near field Investigation of Bloch surface wave propagation in curved waveguides,” JEOS:RP 9, 14049 (2014).
[Crossref]

Barolo, C.

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Bernal, M. P.

Bogaerts, W.

Borel, P. I.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

Brunazzo, D.

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

Castaldi, G.

Chong, H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

Cusano, A.

Danz, N.

De La Rue, R. M.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

Dereux, A.

J. C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64(4), 045411 (2001).
[Crossref]

Descrovi, E.

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2010).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

Di Francesco, J.

L. Yu, B. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” LIGHT-SCI APPL 3(1), 124 (2014).
[Crossref]

Dominici, L.

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2010).
[Crossref]

Dubey, R.

R. Dubey, E. Barakat, M. Häyrinen, M. Roussey, S. Honkanen, M. Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of Bloch surface waves on dielectric multilayer platform,” JEOS:RP 13(1), 5 (2017).
[Crossref]

R. Dubey, B. Vosoughi Lahijani, E. Barakat, M. Häyrinen, M. Roussey, M. Kuittinen, and H. P. Herzig, “Near-field characterization of a Bloch-surface-wave-based 2D disk resonator,” Opt. Lett. 41(21), 4867–4870 (2016).
[Crossref] [PubMed]

Dumon, P.

Fieramosca, A.

Frandsen, L. H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

Galdi, V.

Geobaldo, F.

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2010).
[Crossref]

Giorgis, F.

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2010).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

Goudonnet, J. P.

J. C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64(4), 045411 (2001).
[Crossref]

Grosjean, T.

Häyrinen, M.

Herzig, H. P.

R. Dubey, E. Barakat, M. Häyrinen, M. Roussey, S. Honkanen, M. Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of Bloch surface waves on dielectric multilayer platform,” JEOS:RP 13(1), 5 (2017).
[Crossref]

R. Dubey, B. Vosoughi Lahijani, E. Barakat, M. Häyrinen, M. Roussey, M. Kuittinen, and H. P. Herzig, “Near-field characterization of a Bloch-surface-wave-based 2D disk resonator,” Opt. Lett. 41(21), 4867–4870 (2016).
[Crossref] [PubMed]

X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, and H. P. Herzig, “Phase-sensitive near field Investigation of Bloch surface wave propagation in curved waveguides,” JEOS:RP 9, 14049 (2014).
[Crossref]

L. Yu, B. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” LIGHT-SCI APPL 3(1), 124 (2014).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

Hong, C.S.

Honkanen, S.

R. Dubey, E. Barakat, M. Häyrinen, M. Roussey, S. Honkanen, M. Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of Bloch surface waves on dielectric multilayer platform,” JEOS:RP 13(1), 5 (2017).
[Crossref]

Hvozdara, L.

L. Yu, B. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” LIGHT-SCI APPL 3(1), 124 (2014).
[Crossref]

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Kang, X. B.

Kärtner, F. X.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Koev, S. T.

S. T. Koev, A. Agrawal, H. J. Lezec, and V. A. Aksyuk, “An efficient large-area grating coupler for surface plasmon polaritons,” Plasmonics 7(2), 269–277 (2012).
[Crossref]

Konopsky, V. N.

V. N. Konopsky, “Plasmon-polariton waves in nanofilms on one-dimensional photonic crystal surfaces,” New J. Phys. 12(9), 093006 (2010).
[Crossref]

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79(12), 4729–4735 (2007).
[Crossref] [PubMed]

Kovalevich, T.

Krenn, J. R.

J. C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64(4), 045411 (2001).
[Crossref]

Kuittinen, M.

Kuttge, M.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93(11), 113110 (2008).
[Crossref]

Lacroute, Y.

J. C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64(4), 045411 (2001).
[Crossref]

Lamprecht, B.

J. C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64(4), 045411 (2001).
[Crossref]

Lezec, H. J.

S. T. Koev, A. Agrawal, H. J. Lezec, and V. A. Aksyuk, “An efficient large-area grating coupler for surface plasmon polaritons,” Plasmonics 7(2), 269–277 (2012).
[Crossref]

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93(11), 113110 (2008).
[Crossref]

Li, H. D.

Liu, L. J.

Lu, H.

Magistris, C.

Martin, O.

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

Michelotti, F.

A. Sinibaldi, A. Fieramosca, R. Rizzo, A. Anopchenko, N. Danz, P. Munzert, C. Magistris, C. Barolo, and F. Michelotti, “Combining label-free and fluorescence operation of Bloch surface wave optical sensors,” Opt. Lett. 39(10), 2947–2950 (2014).
[Crossref] [PubMed]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2010).
[Crossref]

Munzert, P.

Ndao, A.

Pluk, E.

Polman, A.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93(11), 113110 (2008).
[Crossref]

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Quaglio, M.

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2010).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Rizzo, R.

Roussey, M.

Scaravilli, M.

Sciacca, B.

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2010).
[Crossref]

Sfez, T.

L. Yu, B. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” LIGHT-SCI APPL 3(1), 124 (2014).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

Sinibaldi, A.

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Suarez, M.

Sun, L.

X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, and H. P. Herzig, “Phase-sensitive near field Investigation of Bloch surface wave propagation in curved waveguides,” JEOS:RP 9, 14049 (2014).
[Crossref]

P. Yeh, A. Yariv, L. Sun, and C.S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67(4), 423–438 (1977).
[Crossref]

Taillaert, D.

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
[Crossref] [PubMed]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

Tan, Q.

X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, and H. P. Herzig, “Phase-sensitive near field Investigation of Bloch surface wave propagation in curved waveguides,” JEOS:RP 9, 14049 (2014).
[Crossref]

Van Thourhout, D.

Verhoeven, J.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93(11), 113110 (2008).
[Crossref]

Vesseur, E. J. R.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93(11), 113110 (2008).
[Crossref]

Vosoughi Lahijani, B.

Wang, J.

X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, and H. P. Herzig, “Phase-sensitive near field Investigation of Bloch surface wave propagation in curved waveguides,” JEOS:RP 9, 14049 (2014).
[Crossref]

Wang, Z. G.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Weeber, J. C.

J. C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64(4), 045411 (2001).
[Crossref]

Wu, X.

X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, and H. P. Herzig, “Phase-sensitive near field Investigation of Bloch surface wave propagation in curved waveguides,” JEOS:RP 9, 14049 (2014).
[Crossref]

Yariv, A.

Yeh, P.

Yu, L.

X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, and H. P. Herzig, “Phase-sensitive near field Investigation of Bloch surface wave propagation in curved waveguides,” JEOS:RP 9, 14049 (2014).
[Crossref]

L. Yu, B. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” LIGHT-SCI APPL 3(1), 124 (2014).
[Crossref]

L. Yu, “Near-field imaging: investigations on Bloch surface wave based 2D optics and the development of polarization-retrieved characterization,” Doctoral dissertation, Ecole Polytechnique Fédérale de Lausanne (2013).

Anal. Chem. (1)

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79(12), 4729–4735 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93(11), 113110 (2008).
[Crossref]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (1)

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett. 15(9), 1249–1251 (2003).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

JEOS:RP (2)

X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, and H. P. Herzig, “Phase-sensitive near field Investigation of Bloch surface wave propagation in curved waveguides,” JEOS:RP 9, 14049 (2014).
[Crossref]

R. Dubey, E. Barakat, M. Häyrinen, M. Roussey, S. Honkanen, M. Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of Bloch surface waves on dielectric multilayer platform,” JEOS:RP 13(1), 5 (2017).
[Crossref]

LIGHT-SCI APPL (1)

L. Yu, B. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” LIGHT-SCI APPL 3(1), 124 (2014).
[Crossref]

Nano Lett. (1)

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10(6), 2087–2091 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

New J. Phys. (1)

V. N. Konopsky, “Plasmon-polariton waves in nanofilms on one-dimensional photonic crystal surfaces,” New J. Phys. 12(9), 093006 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys. Chem. Chem. Phys. (1)

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2010).
[Crossref]

Phys. Rev. B (1)

J. C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64(4), 045411 (2001).
[Crossref]

Plasmonics (1)

S. T. Koev, A. Agrawal, H. J. Lezec, and V. A. Aksyuk, “An efficient large-area grating coupler for surface plasmon polaritons,” Plasmonics 7(2), 269–277 (2012).
[Crossref]

Other (1)

L. Yu, “Near-field imaging: investigations on Bloch surface wave based 2D optics and the development of polarization-retrieved characterization,” Doctoral dissertation, Ecole Polytechnique Fédérale de Lausanne (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Band gap diagram of the 1DPhC; (b) Calculated reflectance at 1550 nm wavelength; (c) Field profile in the 1DPhC for the BSW at 1550 nm wavelength; (d) FIB-SEM image of 1DPhC.
Fig. 2
Fig. 2 (a) Polarization with respect to gratings; (b) Field profile in 1DPhC for the grating illuminated by TE polarized light; (c) Field profile in 1DPhC for the grating illuminated by TM polarized light; (d) Illustration of the BSW coupling at the single grating; (e) Illustration of the BSW coupling at the inter-crossed grating.
Fig. 3
Fig. 3 (a) Schema of light propagation in 1DPhC for RCWA; (b) Field profile in 1DPhC for optimized grating parameters (RCWA simulations); (c) SEM image of the grating cross-section; (d) SEM image of the manufactured grating.
Fig. 4
Fig. 4 (a) Experimental setup for sample characterization; (b) SEM image of the sample; (c) Camera image of the horizontally coupled BSW; (d) Camera image of the vertically coupled BSW; (e) Cross-sections for vertically and horizontally coupled BSWs.
Fig. 5
Fig. 5 (a) Intensity of the the decoupled light at the ridge A and B depending on polarization of incident beam; (b) Field profile of 1DPhC with the optimized grating and diffusers made by FDTD simulations.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k = k BSW ± m K ,

Metrics