Abstract

High spatial multiplicity fiber designs are presented for homogeneous and heterogeneous 4LP-mode multicore fibers (MCFs) that support six spatial modes per core. The high-spatial-density 4LP-mode MCF design methodology is explained in detail. The influence of the number of cores on the cladding diameter (Dcl) and relative core multiplicity factor (RCMF) is investigated. The optimal core designs and MCF layouts with square and triangular lattices maintain glass fiber reliability (maximum Dcl = 250 μm). For homogeneous 4LP-mode MCFs, a 19-core triangular-lattice fiber gives the highest RCMF of 61.7. For heterogeneous 4LP-mode MCFs, an RCMF of 65.4 is obtained for a 21-core square-lattice fiber.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Heterogeneous trench-assisted few-mode multi-core fiber with graded-index profile and square-lattice layout for low differential mode delay

Jiajing Tu, Kunimasa Saitoh, Yoshimichi Amma, Katsuhiro Takenaga, and Shoichiro Matsuo
Opt. Express 23(14) 17783-17792 (2015)

Design and optimization of 32-core rod/trench assisted square-lattice structured single-mode multi-core fiber

Xueqin Xie, Jiajing Tu, Xian Zhou, Keping Long, and Kunimasa Saitoh
Opt. Express 25(5) 5119-5132 (2017)

Heterogeneous trench-assisted few-mode multi-core fiber with low differential mode delay

Jiajing Tu, Kunimasa Saitoh, Katsuhiro Takenaga, and Shoichiro Matsuo
Opt. Express 22(4) 4329-4341 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. B. Desurvire, “Capacity demand and technology challenges for light-wave systems in the next two decades,” J. Lightwave Technol. 24(12), 4697–4710 (2006).
    [Crossref]
  2. T. Morioka, “New generation optical infrastructure technologies: ‘EXAT initiative’ towards 2020 and beyond,” in Proceedings of the 14th OptoElectronics and Communication Conference (IEEE, 2009), paper FT4.
    [Crossref]
  3. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [Crossref]
  4. K. Saitoh and S. Matsuo, “Multicore fibers for large capacity transmission,” Nanophotonics 2(5), 441–454 (2013).
  5. D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  6. T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, S. Matsuo, Y. Tobita, N. Hanzawa, K. Nakajima, and F. Yamamoto, “Few-mode multi-core fibre with highest core multiplicity factor,” in Proceedings of European Conference on Optical Communication (IEEE, 2015), paper We.1.4.3.
    [Crossref]
  7. J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7x97x172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber,” in Optical Fiber Communication Conference / National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB6.
    [Crossref]
  8. B. Zhu, J. M. Fini, M. F. Yan, X. Liu, S. Chandrasekhar, T. F. Taunay, M. Fishteyn, E. Monberg, and F. V. Dimarcello, “High-capacity space-division-multiplexed DWDM transmissions using multicore fiber,” J. Lightwave Technol. 30(4), 486–492 (2012).
    [Crossref]
  9. J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19x100x172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper PDP5C.1.
    [Crossref]
  10. H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, “1.01-Pb/s (12 SMD/222 WDM 456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency,” in Proceedings of European Conference and Exhibition on Optical Communication (IEEE, 2012), paper Th.3.C.1.
    [Crossref]
  11. M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
    [Crossref]
  12. J. Tu, K. Saitoh, K. Takenaga, and S. Matsuo, “Heterogeneous trench-assisted few-mode multi-core fiber with low differential mode delay,” Opt. Express 22(4), 4329–4341 (2014).
    [Crossref] [PubMed]
  13. P. Sillard, M. Bigot-Astruc, and D. Molin, “Few-mode fibers for mode-division-multiplexed systems,” J. Lightwave Technol. 32(16), 2824–2829 (2014).
    [Crossref]
  14. L. Grüner-Nielsen, Y. Sun, R. V. Jensen, J. W. Nicholson, and R. Lingle, “Splicing of few mode fibers,” in Proceedings of European Conference on Optical Communication (IEEE, 2014), paper P.1.15.
  15. Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Saitoh, and M. Koshiba, “Few-mode multicore fibre with 36 spatial modes (three modes (LP01, LP11a, LP11b) × 12 cores),” J. Lightwave Technol. 33(5), 3–5 (2015).
    [Crossref]
  16. R. V. Jensen, L. Grüner-Nielsen, N. H. Wong, Y. Sun, Y. Jung, and D. J. Richardson, “Demonstration of a 9 LP-mode transmission fiber with low DMD and loss,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W2A.34.
    [Crossref]
  17. J. Sakaguchi, W. Klaus, J. D. Mendinueta, B. J. Puttnam, R. S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Realizing a 36-core, 3-mode fiber with 108 spatial channels,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.2.
  18. K. Igarashi, D. Souma, Y. Wakayama, K. Takeshima, Y. Kawaguchi, T. Tsuritani, I. Morita, and M. Suzuki, “114 Space-division-multiplexed transmission over 9.8-km weakly-coupled-6-mode uncoupled-19-core fibers,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.4.
  19. Y. Chen, A. Lobato, Y. Jung, H. Chen, V. A. J. M. Sleiffer, M. Kuschnerov, N. K. Fontaine, R. Ryf, D. J. Richardson, B. Lankl, and N. Hanik, “41.6 Tbit/s C-band SDM OFDM transmission through 12 spatial and polarization modes over 74.17 km few mode fiber,” J. Lightwave Technol. 33(7), 1440–1444 (2015).
    [Crossref]
  20. Y. Tobita, T. Fujisawa, K. Takenaga, S. Matsuo, and K. Saitoh, “Comparison of homogeneous and heterogeneous 2LP-mode multicore fibers for high spatial multiplicity,” in Frontiers in Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper FM1E.2.
  21. R. Ryf, H. Chen, N. K. Fontaine, A. M. Velazquez-Benitez, J. Antonio-Lopez, C. Jin, B. Huang, M. Bigot-Astruc, D. Molin, F. Achten, P. Sillard, and R. Amezcua-Correa, “10-Mode mode-multiplexed transmission over 125-km single-span multimode fiber,” in Proceedings of European Conference and Exhibition on Optical Communication (IEEE, 2015), paper PDP.3.3.
    [Crossref]
  22. K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightwave Technol. 34(1), 55–66 (2016).
    [Crossref]
  23. P. Sillard, D. Molin, M. Bigot-Astruc, K. De Jongh, F. Achten, A. M. Velazquez-Benitez, R. Amezcua-Correa, and C. M. Okonkwo, “Low-differential-mode-group-delay 9-LP-mode fiber,” J. Lightwave Technol. 34(2), 425–430 (2016).
    [Crossref]
  24. P. Sillard, D. Molin, K. De Jongh, and F. Achten, “Micro-bend-resistant low-DMGD 6-LP-mode fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th1J.5.
    [Crossref]
  25. T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, T. Mizuno, Y. Abe, K. Shibahara, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD few-mode multi-core fiber with highest core multiplicity factor,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th5A.2.
  26. T. Mizuno, K. Shibahara, H. Ono, Y. Abe, Y. Miyamoto, F. Ye, T. Morioka, Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Aikawa, K. Saitoh, Y. Jung, D. J. Richardson, K. Pulverer, M. Bohn, and M. Yamada, “32-core dense SDM unidirectional transmission of PDM-16QAM signals over 1600 km using crosstalk-managed single-mode heterogeneous multicore transmission line,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th5C.3.
  27. T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Tobita, N. Hanzawa, K. Nakajima, and F. Yamamoto, “High spatial density few-mode multi-core fiber with low differential mode delay characteristics,” in Proceedings of the 21st OptoElectronics and Communication Conference (IEEE, 2016), paper MC2–3.
  28. Y. Tobita, T. Sakamoto, T. Matsui, S. Saitoh, K. Takenaga, K. Aikawa, T. Fujisawa, S. Aozasa, K. Nakajima, and K. Saitoh, “Optimum design of 4LP-mode multicore fibers with low differential mode delay for high spatial multiplicity,” in Proceedings of IEEE Photonics Conference (IEEE, 2016), paper WF2.3.
    [Crossref]
  29. ITU-T Std., “Characteristics of a cut-off shifted single-mode optical fibre and cable,” ITU-T G.654 (2016).
  30. K. Shibahara, T. Mizuno, H. Takara, A. Sano, H. Kawakami, D. Lee, Y. Miyamoto, H. Ono, M. Oguma, Y. Abe, T. Kobayashi, T. Matsui, R. Fukumoto, Y. Amma, T. Hosokawa, S. Matsuo, K. Saitoh, H. Nasu, and T. Morioka, “Dense SDM (12-core × 3-mode) transmission over 527 km with 33.2-ns mode-dispersion employing low-complexity parallel MIMO frequency-domain equalization,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.3.
  31. T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Mizuno, Y. Abe, S. Kohki, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 µm,” J. Lightwave Technol. (to be published).
  32. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
    [Crossref]
  33. F. Ye, J. Tu, K. Saitoh, and T. Morioka, “Simple analytical expression for crosstalk estimation in homogeneous trench-assisted multi-core fibers,” Opt. Express 22(19), 23007–23018 (2014).
    [Crossref] [PubMed]
  34. Y. Amma, Y. Sasaki, K. Takenaga, S. Matsuo, J. Tu, K. Saitoh, and M. Koshiba, “High-density multicore fiber with heterogeneous core arrangement,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th4C.4.
    [Crossref]
  35. P. Matthijsse, D. Molin, F. Gooijer, and G. Kuyt, “On the design of wide bandwidth window multimode fibers,” in Proceedings of the 54th International Wire and Cable Symposium (IWCS, 2005), pp. 332–337.
  36. K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19(26), B543–B550 (2011).
    [Crossref] [PubMed]
  37. K. Takenaga, Y. Sasaki, S. Ning Guan, M. Matsuo, K. Kasahara, Saitoh, and M. Koshiba, “Large effective-area few-mode multicore fiber,” IEEE Photonics Technol. Lett. 24(21), 1941–1944 (2012).
    [Crossref]
  38. M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
    [Crossref]
  39. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express 19(17), 16576–16592 (2011).
    [Crossref] [PubMed]

2016 (2)

2015 (2)

2014 (3)

2013 (3)

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
[Crossref]

K. Saitoh and S. Matsuo, “Multicore fibers for large capacity transmission,” Nanophotonics 2(5), 441–454 (2013).

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

2012 (2)

B. Zhu, J. M. Fini, M. F. Yan, X. Liu, S. Chandrasekhar, T. F. Taunay, M. Fishteyn, E. Monberg, and F. V. Dimarcello, “High-capacity space-division-multiplexed DWDM transmissions using multicore fiber,” J. Lightwave Technol. 30(4), 486–492 (2012).
[Crossref]

K. Takenaga, Y. Sasaki, S. Ning Guan, M. Matsuo, K. Kasahara, Saitoh, and M. Koshiba, “Large effective-area few-mode multicore fiber,” IEEE Photonics Technol. Lett. 24(21), 1941–1944 (2012).
[Crossref]

2011 (2)

2010 (1)

2009 (1)

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[Crossref]

2006 (1)

2002 (1)

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[Crossref]

Abe, Y.

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Mizuno, Y. Abe, S. Kohki, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 µm,” J. Lightwave Technol. (to be published).

Achten, F.

Aikawa, K.

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Mizuno, Y. Abe, S. Kohki, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 µm,” J. Lightwave Technol. (to be published).

Amezcua-Correa, R.

Amma, Y.

Aozasa, S.

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Mizuno, Y. Abe, S. Kohki, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 µm,” J. Lightwave Technol. (to be published).

Arakawa, Y.

Bigot-Astruc, M.

Chandrasekhar, S.

Chen, H.

Chen, Y.

De Jongh, K.

Desurvire, E. B.

Dimarcello, F. V.

Essiambre, R.-J.

Fini, J.

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Fini, J. M.

Fishteyn, M.

Fontaine, N. K.

Foschini, G. J.

Goebel, B.

Gooijer, F.

P. Matthijsse, D. Molin, F. Gooijer, and G. Kuyt, “On the design of wide bandwidth window multimode fibers,” in Proceedings of the 54th International Wire and Cable Symposium (IWCS, 2005), pp. 332–337.

Hanik, N.

Hanzawa, N.

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
[Crossref]

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Tobita, N. Hanzawa, K. Nakajima, and F. Yamamoto, “High spatial density few-mode multi-core fiber with low differential mode delay characteristics,” in Proceedings of the 21st OptoElectronics and Communication Conference (IEEE, 2016), paper MC2–3.

Hayashi, T.

Jung, Y.

Kasahara, K.

K. Takenaga, Y. Sasaki, S. Ning Guan, M. Matsuo, K. Kasahara, Saitoh, and M. Koshiba, “Large effective-area few-mode multicore fiber,” IEEE Photonics Technol. Lett. 24(21), 1941–1944 (2012).
[Crossref]

Kasahara, M.

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
[Crossref]

Kohki, S.

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Mizuno, Y. Abe, S. Kohki, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 µm,” J. Lightwave Technol. (to be published).

Kokubun, Y.

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[Crossref]

Koshiba, M.

Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Saitoh, and M. Koshiba, “Few-mode multicore fibre with 36 spatial modes (three modes (LP01, LP11a, LP11b) × 12 cores),” J. Lightwave Technol. 33(5), 3–5 (2015).
[Crossref]

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
[Crossref]

K. Takenaga, Y. Sasaki, S. Ning Guan, M. Matsuo, K. Kasahara, Saitoh, and M. Koshiba, “Large effective-area few-mode multicore fiber,” IEEE Photonics Technol. Lett. 24(21), 1941–1944 (2012).
[Crossref]

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19(26), B543–B550 (2011).
[Crossref] [PubMed]

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[Crossref]

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[Crossref]

Kramer, G.

Kuschnerov, M.

Kuyt, G.

P. Matthijsse, D. Molin, F. Gooijer, and G. Kuyt, “On the design of wide bandwidth window multimode fibers,” in Proceedings of the 54th International Wire and Cable Symposium (IWCS, 2005), pp. 332–337.

Lankl, B.

Liu, X.

Lobato, A.

Matsui, T.

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
[Crossref]

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Tobita, N. Hanzawa, K. Nakajima, and F. Yamamoto, “High spatial density few-mode multi-core fiber with low differential mode delay characteristics,” in Proceedings of the 21st OptoElectronics and Communication Conference (IEEE, 2016), paper MC2–3.

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Mizuno, Y. Abe, S. Kohki, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 µm,” J. Lightwave Technol. (to be published).

Matsuo, M.

K. Takenaga, Y. Sasaki, S. Ning Guan, M. Matsuo, K. Kasahara, Saitoh, and M. Koshiba, “Large effective-area few-mode multicore fiber,” IEEE Photonics Technol. Lett. 24(21), 1941–1944 (2012).
[Crossref]

Matsuo, S.

Matthijsse, P.

P. Matthijsse, D. Molin, F. Gooijer, and G. Kuyt, “On the design of wide bandwidth window multimode fibers,” in Proceedings of the 54th International Wire and Cable Symposium (IWCS, 2005), pp. 332–337.

Miyamoto, Y.

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Mizuno, Y. Abe, S. Kohki, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 µm,” J. Lightwave Technol. (to be published).

Mizuno, Y.

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Mizuno, Y. Abe, S. Kohki, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 µm,” J. Lightwave Technol. (to be published).

Molin, D.

Monberg, E.

Morioka, T.

Nakajima, K.

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Mizuno, Y. Abe, S. Kohki, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 µm,” J. Lightwave Technol. (to be published).

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Tobita, N. Hanzawa, K. Nakajima, and F. Yamamoto, “High spatial density few-mode multi-core fiber with low differential mode delay characteristics,” in Proceedings of the 21st OptoElectronics and Communication Conference (IEEE, 2016), paper MC2–3.

Nelson, L.

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Ning Guan, S.

K. Takenaga, Y. Sasaki, S. Ning Guan, M. Matsuo, K. Kasahara, Saitoh, and M. Koshiba, “Large effective-area few-mode multicore fiber,” IEEE Photonics Technol. Lett. 24(21), 1941–1944 (2012).
[Crossref]

Okonkwo, C. M.

Richardson, D.

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Richardson, D. J.

Ryf, R.

Saitoh,

K. Takenaga, Y. Sasaki, S. Ning Guan, M. Matsuo, K. Kasahara, Saitoh, and M. Koshiba, “Large effective-area few-mode multicore fiber,” IEEE Photonics Technol. Lett. 24(21), 1941–1944 (2012).
[Crossref]

Saitoh, K.

K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightwave Technol. 34(1), 55–66 (2016).
[Crossref]

Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Saitoh, and M. Koshiba, “Few-mode multicore fibre with 36 spatial modes (three modes (LP01, LP11a, LP11b) × 12 cores),” J. Lightwave Technol. 33(5), 3–5 (2015).
[Crossref]

J. Tu, K. Saitoh, K. Takenaga, and S. Matsuo, “Heterogeneous trench-assisted few-mode multi-core fiber with low differential mode delay,” Opt. Express 22(4), 4329–4341 (2014).
[Crossref] [PubMed]

F. Ye, J. Tu, K. Saitoh, and T. Morioka, “Simple analytical expression for crosstalk estimation in homogeneous trench-assisted multi-core fibers,” Opt. Express 22(19), 23007–23018 (2014).
[Crossref] [PubMed]

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
[Crossref]

K. Saitoh and S. Matsuo, “Multicore fibers for large capacity transmission,” Nanophotonics 2(5), 441–454 (2013).

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19(26), B543–B550 (2011).
[Crossref] [PubMed]

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[Crossref]

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[Crossref]

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Mizuno, Y. Abe, S. Kohki, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 µm,” J. Lightwave Technol. (to be published).

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Tobita, N. Hanzawa, K. Nakajima, and F. Yamamoto, “High spatial density few-mode multi-core fiber with low differential mode delay characteristics,” in Proceedings of the 21st OptoElectronics and Communication Conference (IEEE, 2016), paper MC2–3.

Saitoh, S.

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Tobita, N. Hanzawa, K. Nakajima, and F. Yamamoto, “High spatial density few-mode multi-core fiber with low differential mode delay characteristics,” in Proceedings of the 21st OptoElectronics and Communication Conference (IEEE, 2016), paper MC2–3.

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Mizuno, Y. Abe, S. Kohki, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 µm,” J. Lightwave Technol. (to be published).

Sakamoto, T.

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
[Crossref]

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Tobita, N. Hanzawa, K. Nakajima, and F. Yamamoto, “High spatial density few-mode multi-core fiber with low differential mode delay characteristics,” in Proceedings of the 21st OptoElectronics and Communication Conference (IEEE, 2016), paper MC2–3.

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Mizuno, Y. Abe, S. Kohki, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 µm,” J. Lightwave Technol. (to be published).

Sasaki, T.

Sasaki, Y.

Sasaoka, E.

Shimakawa, O.

Sillard, P.

Sleiffer, V. A. J. M.

Takenaga, K.

Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Saitoh, and M. Koshiba, “Few-mode multicore fibre with 36 spatial modes (three modes (LP01, LP11a, LP11b) × 12 cores),” J. Lightwave Technol. 33(5), 3–5 (2015).
[Crossref]

J. Tu, K. Saitoh, K. Takenaga, and S. Matsuo, “Heterogeneous trench-assisted few-mode multi-core fiber with low differential mode delay,” Opt. Express 22(4), 4329–4341 (2014).
[Crossref] [PubMed]

K. Takenaga, Y. Sasaki, S. Ning Guan, M. Matsuo, K. Kasahara, Saitoh, and M. Koshiba, “Large effective-area few-mode multicore fiber,” IEEE Photonics Technol. Lett. 24(21), 1941–1944 (2012).
[Crossref]

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19(26), B543–B550 (2011).
[Crossref] [PubMed]

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Mizuno, Y. Abe, S. Kohki, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 µm,” J. Lightwave Technol. (to be published).

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Tobita, N. Hanzawa, K. Nakajima, and F. Yamamoto, “High spatial density few-mode multi-core fiber with low differential mode delay characteristics,” in Proceedings of the 21st OptoElectronics and Communication Conference (IEEE, 2016), paper MC2–3.

Tanigawa, S.

Taru, T.

Taunay, T. F.

Tobita, Y.

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Tobita, N. Hanzawa, K. Nakajima, and F. Yamamoto, “High spatial density few-mode multi-core fiber with low differential mode delay characteristics,” in Proceedings of the 21st OptoElectronics and Communication Conference (IEEE, 2016), paper MC2–3.

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Mizuno, Y. Abe, S. Kohki, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 µm,” J. Lightwave Technol. (to be published).

Tsujikawa, K.

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
[Crossref]

Tu, J.

Velazquez-Benitez, A. M.

Winzer, P. J.

Yamamoto, F.

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
[Crossref]

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Tobita, N. Hanzawa, K. Nakajima, and F. Yamamoto, “High spatial density few-mode multi-core fiber with low differential mode delay characteristics,” in Proceedings of the 21st OptoElectronics and Communication Conference (IEEE, 2016), paper MC2–3.

Yan, M. F.

Ye, F.

Zhu, B.

IEEE J. Quantum Electron. (1)

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[Crossref]

IEEE Photonics J. (1)

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

K. Takenaga, Y. Sasaki, S. Ning Guan, M. Matsuo, K. Kasahara, Saitoh, and M. Koshiba, “Large effective-area few-mode multicore fiber,” IEEE Photonics Technol. Lett. 24(21), 1941–1944 (2012).
[Crossref]

IEICE Electron. Express (1)

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[Crossref]

J. Lightwave Technol. (8)

E. B. Desurvire, “Capacity demand and technology challenges for light-wave systems in the next two decades,” J. Lightwave Technol. 24(12), 4697–4710 (2006).
[Crossref]

R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
[Crossref]

B. Zhu, J. M. Fini, M. F. Yan, X. Liu, S. Chandrasekhar, T. F. Taunay, M. Fishteyn, E. Monberg, and F. V. Dimarcello, “High-capacity space-division-multiplexed DWDM transmissions using multicore fiber,” J. Lightwave Technol. 30(4), 486–492 (2012).
[Crossref]

P. Sillard, M. Bigot-Astruc, and D. Molin, “Few-mode fibers for mode-division-multiplexed systems,” J. Lightwave Technol. 32(16), 2824–2829 (2014).
[Crossref]

Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Saitoh, and M. Koshiba, “Few-mode multicore fibre with 36 spatial modes (three modes (LP01, LP11a, LP11b) × 12 cores),” J. Lightwave Technol. 33(5), 3–5 (2015).
[Crossref]

Y. Chen, A. Lobato, Y. Jung, H. Chen, V. A. J. M. Sleiffer, M. Kuschnerov, N. K. Fontaine, R. Ryf, D. J. Richardson, B. Lankl, and N. Hanik, “41.6 Tbit/s C-band SDM OFDM transmission through 12 spatial and polarization modes over 74.17 km few mode fiber,” J. Lightwave Technol. 33(7), 1440–1444 (2015).
[Crossref]

K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightwave Technol. 34(1), 55–66 (2016).
[Crossref]

P. Sillard, D. Molin, M. Bigot-Astruc, K. De Jongh, F. Achten, A. M. Velazquez-Benitez, R. Amezcua-Correa, and C. M. Okonkwo, “Low-differential-mode-group-delay 9-LP-mode fiber,” J. Lightwave Technol. 34(2), 425–430 (2016).
[Crossref]

Nanophotonics (1)

K. Saitoh and S. Matsuo, “Multicore fibers for large capacity transmission,” Nanophotonics 2(5), 441–454 (2013).

Nat. Photonics (1)

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Opt. Express (4)

Other (21)

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, S. Matsuo, Y. Tobita, N. Hanzawa, K. Nakajima, and F. Yamamoto, “Few-mode multi-core fibre with highest core multiplicity factor,” in Proceedings of European Conference on Optical Communication (IEEE, 2015), paper We.1.4.3.
[Crossref]

J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7x97x172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber,” in Optical Fiber Communication Conference / National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB6.
[Crossref]

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19x100x172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper PDP5C.1.
[Crossref]

H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, “1.01-Pb/s (12 SMD/222 WDM 456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency,” in Proceedings of European Conference and Exhibition on Optical Communication (IEEE, 2012), paper Th.3.C.1.
[Crossref]

Y. Tobita, T. Fujisawa, K. Takenaga, S. Matsuo, and K. Saitoh, “Comparison of homogeneous and heterogeneous 2LP-mode multicore fibers for high spatial multiplicity,” in Frontiers in Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper FM1E.2.

R. Ryf, H. Chen, N. K. Fontaine, A. M. Velazquez-Benitez, J. Antonio-Lopez, C. Jin, B. Huang, M. Bigot-Astruc, D. Molin, F. Achten, P. Sillard, and R. Amezcua-Correa, “10-Mode mode-multiplexed transmission over 125-km single-span multimode fiber,” in Proceedings of European Conference and Exhibition on Optical Communication (IEEE, 2015), paper PDP.3.3.
[Crossref]

Y. Amma, Y. Sasaki, K. Takenaga, S. Matsuo, J. Tu, K. Saitoh, and M. Koshiba, “High-density multicore fiber with heterogeneous core arrangement,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th4C.4.
[Crossref]

P. Matthijsse, D. Molin, F. Gooijer, and G. Kuyt, “On the design of wide bandwidth window multimode fibers,” in Proceedings of the 54th International Wire and Cable Symposium (IWCS, 2005), pp. 332–337.

T. Morioka, “New generation optical infrastructure technologies: ‘EXAT initiative’ towards 2020 and beyond,” in Proceedings of the 14th OptoElectronics and Communication Conference (IEEE, 2009), paper FT4.
[Crossref]

L. Grüner-Nielsen, Y. Sun, R. V. Jensen, J. W. Nicholson, and R. Lingle, “Splicing of few mode fibers,” in Proceedings of European Conference on Optical Communication (IEEE, 2014), paper P.1.15.

R. V. Jensen, L. Grüner-Nielsen, N. H. Wong, Y. Sun, Y. Jung, and D. J. Richardson, “Demonstration of a 9 LP-mode transmission fiber with low DMD and loss,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W2A.34.
[Crossref]

J. Sakaguchi, W. Klaus, J. D. Mendinueta, B. J. Puttnam, R. S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Realizing a 36-core, 3-mode fiber with 108 spatial channels,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.2.

K. Igarashi, D. Souma, Y. Wakayama, K. Takeshima, Y. Kawaguchi, T. Tsuritani, I. Morita, and M. Suzuki, “114 Space-division-multiplexed transmission over 9.8-km weakly-coupled-6-mode uncoupled-19-core fibers,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.4.

P. Sillard, D. Molin, K. De Jongh, and F. Achten, “Micro-bend-resistant low-DMGD 6-LP-mode fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th1J.5.
[Crossref]

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, T. Mizuno, Y. Abe, K. Shibahara, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD few-mode multi-core fiber with highest core multiplicity factor,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th5A.2.

T. Mizuno, K. Shibahara, H. Ono, Y. Abe, Y. Miyamoto, F. Ye, T. Morioka, Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Aikawa, K. Saitoh, Y. Jung, D. J. Richardson, K. Pulverer, M. Bohn, and M. Yamada, “32-core dense SDM unidirectional transmission of PDM-16QAM signals over 1600 km using crosstalk-managed single-mode heterogeneous multicore transmission line,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th5C.3.

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Tobita, N. Hanzawa, K. Nakajima, and F. Yamamoto, “High spatial density few-mode multi-core fiber with low differential mode delay characteristics,” in Proceedings of the 21st OptoElectronics and Communication Conference (IEEE, 2016), paper MC2–3.

Y. Tobita, T. Sakamoto, T. Matsui, S. Saitoh, K. Takenaga, K. Aikawa, T. Fujisawa, S. Aozasa, K. Nakajima, and K. Saitoh, “Optimum design of 4LP-mode multicore fibers with low differential mode delay for high spatial multiplicity,” in Proceedings of IEEE Photonics Conference (IEEE, 2016), paper WF2.3.
[Crossref]

ITU-T Std., “Characteristics of a cut-off shifted single-mode optical fibre and cable,” ITU-T G.654 (2016).

K. Shibahara, T. Mizuno, H. Takara, A. Sano, H. Kawakami, D. Lee, Y. Miyamoto, H. Ono, M. Oguma, Y. Abe, T. Kobayashi, T. Matsui, R. Fukumoto, Y. Amma, T. Hosokawa, S. Matsuo, K. Saitoh, H. Nasu, and T. Morioka, “Dense SDM (12-core × 3-mode) transmission over 527 km with 33.2-ns mode-dispersion employing low-complexity parallel MIMO frequency-domain equalization,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.3.

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Mizuno, Y. Abe, S. Kohki, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 µm,” J. Lightwave Technol. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Refractive index profile of trench-assisted graded index core (left) and cross-sections of 12-core fiber with square (middle) and triangular (right) lattice layouts.
Fig. 2
Fig. 2 Fiber characteristics as a function of r1 and Δ1 at 1550 nm.
Fig. 3
Fig. 3 Max DMD as a function of wavelength for homogeneous 4LP-mode MCFs.
Fig. 4
Fig. 4 Concept figure of XT and λcc as a function of core pitch. (a) Λ λ cc is used as Λ to satisfy both the XT and λcc requirements, although ΛXT is small, and vice versa for (c). (b) Minimum Λ can be obtained when Λ λ cc ≅ ΛXT.
Fig. 5
Fig. 5 Core pitch as a function of W/r1 of 12-core fiber with (a) square and (b) triangular lattice layouts.
Fig. 6
Fig. 6 Relationship between bending loss αb and outer cladding thickness t for homogeneous 4LP-mode MCFs.
Fig. 7
Fig. 7 W/r1 and Λ as a function of the number of cores for homogeneous 4LP-mode MCFs.
Fig. 8
Fig. 8 RCMF as a function of Dcl for homogeneous 4LP-mode MCFs.
Fig. 9
Fig. 9 Total XT and λcc as a function of the core pitch for a heterogeneous 21-core fiber with square lattice layouts.
Fig. 10
Fig. 10 Relationship between bending loss αb and outer cladding thickness t for heterogeneous 4LP-mode MCFs.
Fig. 11
Fig. 11 Max DMD as a function of wavelength for heterogeneous 4LP-mode MCFs.
Fig. 12
Fig. 12 RCMF as a function of Dcl for heterogeneous 4LP-mode MCFs.

Tables (4)

Tables Icon

Table 1 Parameters of refractive index profile for homogeneous 4LP-mode MCF

Tables Icon

Table 2 Parameters of the refractive index profile for heterogeneous 4LP-mode MCFs

Tables Icon

Table 3 Dependence of structural parameters W/r1 Core 1 and W/r1 Core 2 on RCMF

Tables Icon

Table 4 Optimized structural parameters for heterogeneous 4LP-mode MCFs

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

CMF= { [ N c m = 1 l A eff- m ] / [ ( π / 4 ) D cl 2 ] ( Homogeneous ) [ ( N c / 2 ) m = 1 l A eff- p - m + ( N c / 2 ) m = 1 l A eff- q - m ] / [ ( π / 4 ) D cl 2 ] ( Heterogeneous )
RCMF = CMF / [ 80 / ( π / 4 ) 125 2 ]
D cl_s = { 10 Λ + 2 t ( N c = 12 ) 3 2 Λ + 2 t ( N c = 16 ) 2 5 Λ + 2 t ( N c = 21 ) 26 Λ + 2 t ( N c = 24 )
D cl_t = { 2 7 / 3 Λ + 2 t ( N c = 12 ) 2 3 Λ + 2 t ( N c = 13 ) 4 Λ + 2 t ( N c = 19 ) 2 19 / 3 Λ + 2 t ( N c = 27 )

Metrics