Abstract

We demonstrate a compact and versatile laser system for stimulated Raman spectroscopy (SRS). The system is based on a tunable continuous wave (CW) probe laser combined with a home-built semi-monolithic nanosecond pulsed pump Nd:YVO4 laser at 1064 nm. The CW operation of the probe laser offers narrow linewidth, low noise and the advantage that temporal synchronization with the pump is not required. The laser system enables polarization-sensitive stimulated Raman spectroscopy (PS-SRS) with fast high resolution measurement of the depolarization ratio by simultaneous detection of Raman scattered light in orthogonal polarizations, thus providing information about the symmetry of the Raman-active vibrational modes. Measurements of the depolarization ratios of the carbon-hydrogen (CH) stretching modes in two different polymer samples in the spectral range of 2825–3025 cm−1 were performed. Raman spectra are obtained at a sweep rate of 20 nm/s (84 cm−1/s) with a resolution of 0.65 cm−1. A normalization method is introduced for the direct comparison of the simultaneously acquired orthogonal polarized Raman spectra.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-fiber-laser-based wavelength tunable excitation for coherent Raman spectroscopy

Jue Su, Ruxin Xie, Carey K. Johnson, and Rongqing Hui
J. Opt. Soc. Am. B 30(6) 1671-1682 (2013)

Broadband stimulated Raman scattering spectroscopy by a photonic time stretcher

Francesco Saltarelli, Vikas Kumar, Daniele Viola, Francesco Crisafi, Fabrizio Preda, Giulio Cerullo, and Dario Polli
Opt. Express 24(19) 21264-21275 (2016)

Broadband stimulated Raman scattering with Fourier-transform detection

Julien Réhault, Francesco Crisafi, Vikas Kumar, Gustavo Ciardi, Marco Marangoni, Giulio Cerullo, and Dario Polli
Opt. Express 23(19) 25235-25246 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. S. Das and Y. Agrawal, “Raman spectroscopy: Recent advancements, techniques and applications,” Vib. Spectrosc. 57, 163–176 (2011).
    [Crossref]
  2. I. R. Lewis and H. G. M. Edwards, Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line (Marcel Dekker, 2001).
  3. L. A. Nafie, “Recent advances in linear and non-linear Raman spectroscopy. Part IX,” J. Raman Spectrosc. 46, 1173–1190 (2015).
    [Crossref]
  4. E. O. Potma and S. Mukamel, “Theory of coherent Raman scattering,” in Coherent Raman Scattering Microscopy, J.-X. Cheng and X. S. Xie, eds. (CRC Press, 2012), pp. 3–42.
  5. C. Zhang, D. Zhang, and J.-X. Cheng, “Coherent Raman scattering microscopy in biology and medicine,” Annu. Rev. Biomed. Eng. 17, 415–445 (2015).
    [Crossref] [PubMed]
  6. K. Hiramatsu, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H.-o. Hamaguchi, “Observation of Raman optical activity by heterodyne-detected polarization-resolved coherent anti-Stokes Raman Scattering,” Phys. Rev. Lett. 109, 083901 (2012).
    [Crossref] [PubMed]
  7. T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectroimaging with laser frequency combs,” Nature 502, 355–358 (2013).
    [Crossref] [PubMed]
  8. C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627–634 (2014).
    [Crossref]
  9. S. Yampolsky, D. a. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. a. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8, 650–656 (2014).
    [Crossref]
  10. C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-Stokes Raman scattering,” Nat. Commun. 7, 11562 (2016).
    [Crossref] [PubMed]
  11. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
    [Crossref] [PubMed]
  12. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
    [Crossref] [PubMed]
  13. C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, X. Sunney Xie, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5, 103–109 (2011).
    [Crossref]
  14. Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6, 845–851 (2012).
    [Crossref]
  15. S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A time-encoded technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
    [Crossref] [PubMed]
  16. P. G. Westergaard, M. Lassen, and J. C. Petersen, “Differential high-resolution stimulated CW Raman spectroscopy of hydrogen in a hollow-core fiber,” Opt. Express 23, 16320–16328 (2015).
    [Crossref] [PubMed]
  17. E. Ploetz, S. Laimgruber, S. Berner, W. Zintch, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
    [Crossref]
  18. J. Duboisset, P. Berto, P. Gasecka, F.-Z. Bioud, P. Ferrand, H. Rigneault, and S. Brasselet, “Molecular orientational order probed by coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy: A spectral comparative study,” J. Phys. Chem. B 119, 3242–3249 (2015).
    [Crossref] [PubMed]
  19. Y. Saito, T.-a. Ishibashi, and H.-o. Hamaguchi, “Polarization-resolved coherent anti-Stokes Raman scattering (CARS) spectroscopy: a new probe of molecular symmetry through accurate determination of the Raman depolarization ratio,” J. Raman Spectrosc. 31, 725–730 (2000).
    [Crossref]
  20. L. Barron and A. Buckingham, “Rayleigh and Raman scattering from optically active molecules,” Mol. Phys. 20, 1111–1119 (1971).
    [Crossref]
  21. W. Hug and G. Hangartner, “A novel high-throughput Raman spectrometer for polarization difference measurements,” J. Raman Spectrosc. 30, 841–852 (1999).
    [Crossref]
  22. L. D. Barron and A. D. Buckingham, “Vibrational optical activity,” Chem. Phys. Lett. 492, 199–213 (2010).
    [Crossref]
  23. L. A. Nafie, Vibrational Optical Activity (Wiley, 2011).
    [Crossref]
  24. F. Munhoz, S. Brustein, R. Hostein, P. Berto, S. Brasselet, and H. Rigneault, “Polarization resolved stimulated Raman scattering: probing depolarization ratios of liquids,” J. Raman Spectrosc. 43, 419–424 (2012).
    [Crossref]
  25. M. Tanaka and R. J. Young, “Review polarised Raman spectroscopy for the study of molecular orientation distributions in polymers,” J. Mater. Sci. 41, 963–991 (2006).
    [Crossref]
  26. A. L. Smith and D. R. Anderson, “Vibrational spectra of Me2SiCl2, Me3SiCl, Me3SiOSiMe3, (Me2SiO)3, (Me2SiO)4, (Me2SiO)x, and their deuterated analogs,” Appl. Spectrosc. 38, 822–834 (1984).
    [Crossref]
  27. L. Jayes, A. P. Hard, C. Séné, S. F. Parker, and U. A. Jayasooriya, “Vibrational spectroscopic analysis of silicones: A Fourier transform-Raman and inelastic neutron scattering investigation,” Anal. Chem. 75, 742–746 (2003).
    [Crossref] [PubMed]
  28. M. Duarte, “Notes on scientific computing for biomechanics and motor control,” https://github.com/demotu/BMC (2015).
  29. H. A. Willis, V. J. I. Zichy, and P. J. Hendra, “The laser-Raman and infra-red spectra of poly(methyl methacrylate),” Polymer 10, 737–746 (1969).
    [Crossref]
  30. S. Dirlikov and J. L. Koenig, “Carbon-hydrogen stretching and bending vibrations in the Raman spectra of poly (methylmethacrylate),” J. Raman Spectrosc. 9, 150–154 (1980).
    [Crossref]

2016 (1)

C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-Stokes Raman scattering,” Nat. Commun. 7, 11562 (2016).
[Crossref] [PubMed]

2015 (5)

L. A. Nafie, “Recent advances in linear and non-linear Raman spectroscopy. Part IX,” J. Raman Spectrosc. 46, 1173–1190 (2015).
[Crossref]

C. Zhang, D. Zhang, and J.-X. Cheng, “Coherent Raman scattering microscopy in biology and medicine,” Annu. Rev. Biomed. Eng. 17, 415–445 (2015).
[Crossref] [PubMed]

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A time-encoded technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[Crossref] [PubMed]

P. G. Westergaard, M. Lassen, and J. C. Petersen, “Differential high-resolution stimulated CW Raman spectroscopy of hydrogen in a hollow-core fiber,” Opt. Express 23, 16320–16328 (2015).
[Crossref] [PubMed]

J. Duboisset, P. Berto, P. Gasecka, F.-Z. Bioud, P. Ferrand, H. Rigneault, and S. Brasselet, “Molecular orientational order probed by coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy: A spectral comparative study,” J. Phys. Chem. B 119, 3242–3249 (2015).
[Crossref] [PubMed]

2014 (2)

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627–634 (2014).
[Crossref]

S. Yampolsky, D. a. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. a. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8, 650–656 (2014).
[Crossref]

2013 (1)

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectroimaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref] [PubMed]

2012 (3)

K. Hiramatsu, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H.-o. Hamaguchi, “Observation of Raman optical activity by heterodyne-detected polarization-resolved coherent anti-Stokes Raman Scattering,” Phys. Rev. Lett. 109, 083901 (2012).
[Crossref] [PubMed]

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6, 845–851 (2012).
[Crossref]

F. Munhoz, S. Brustein, R. Hostein, P. Berto, S. Brasselet, and H. Rigneault, “Polarization resolved stimulated Raman scattering: probing depolarization ratios of liquids,” J. Raman Spectrosc. 43, 419–424 (2012).
[Crossref]

2011 (2)

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, X. Sunney Xie, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5, 103–109 (2011).
[Crossref]

R. S. Das and Y. Agrawal, “Raman spectroscopy: Recent advancements, techniques and applications,” Vib. Spectrosc. 57, 163–176 (2011).
[Crossref]

2010 (2)

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref] [PubMed]

L. D. Barron and A. D. Buckingham, “Vibrational optical activity,” Chem. Phys. Lett. 492, 199–213 (2010).
[Crossref]

2008 (1)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

2007 (1)

E. Ploetz, S. Laimgruber, S. Berner, W. Zintch, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
[Crossref]

2006 (1)

M. Tanaka and R. J. Young, “Review polarised Raman spectroscopy for the study of molecular orientation distributions in polymers,” J. Mater. Sci. 41, 963–991 (2006).
[Crossref]

2003 (1)

L. Jayes, A. P. Hard, C. Séné, S. F. Parker, and U. A. Jayasooriya, “Vibrational spectroscopic analysis of silicones: A Fourier transform-Raman and inelastic neutron scattering investigation,” Anal. Chem. 75, 742–746 (2003).
[Crossref] [PubMed]

2000 (1)

Y. Saito, T.-a. Ishibashi, and H.-o. Hamaguchi, “Polarization-resolved coherent anti-Stokes Raman scattering (CARS) spectroscopy: a new probe of molecular symmetry through accurate determination of the Raman depolarization ratio,” J. Raman Spectrosc. 31, 725–730 (2000).
[Crossref]

1999 (1)

W. Hug and G. Hangartner, “A novel high-throughput Raman spectrometer for polarization difference measurements,” J. Raman Spectrosc. 30, 841–852 (1999).
[Crossref]

1984 (1)

1980 (1)

S. Dirlikov and J. L. Koenig, “Carbon-hydrogen stretching and bending vibrations in the Raman spectra of poly (methylmethacrylate),” J. Raman Spectrosc. 9, 150–154 (1980).
[Crossref]

1971 (1)

L. Barron and A. Buckingham, “Rayleigh and Raman scattering from optically active molecules,” Mol. Phys. 20, 1111–1119 (1971).
[Crossref]

1969 (1)

H. A. Willis, V. J. I. Zichy, and P. J. Hendra, “The laser-Raman and infra-red spectra of poly(methyl methacrylate),” Polymer 10, 737–746 (1969).
[Crossref]

Agrawal, Y.

R. S. Das and Y. Agrawal, “Raman spectroscopy: Recent advancements, techniques and applications,” Vib. Spectrosc. 57, 163–176 (2011).
[Crossref]

Anderson, D. R.

Apkarian, V. a.

S. Yampolsky, D. a. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. a. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8, 650–656 (2014).
[Crossref]

Banik, M.

S. Yampolsky, D. a. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. a. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8, 650–656 (2014).
[Crossref]

Barron, L.

L. Barron and A. Buckingham, “Rayleigh and Raman scattering from optically active molecules,” Mol. Phys. 20, 1111–1119 (1971).
[Crossref]

Barron, L. D.

L. D. Barron and A. D. Buckingham, “Vibrational optical activity,” Chem. Phys. Lett. 492, 199–213 (2010).
[Crossref]

Berner, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zintch, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
[Crossref]

Bernhardt, B.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectroimaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref] [PubMed]

Berto, P.

J. Duboisset, P. Berto, P. Gasecka, F.-Z. Bioud, P. Ferrand, H. Rigneault, and S. Brasselet, “Molecular orientational order probed by coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy: A spectral comparative study,” J. Phys. Chem. B 119, 3242–3249 (2015).
[Crossref] [PubMed]

F. Munhoz, S. Brustein, R. Hostein, P. Berto, S. Brasselet, and H. Rigneault, “Polarization resolved stimulated Raman scattering: probing depolarization ratios of liquids,” J. Raman Spectrosc. 43, 419–424 (2012).
[Crossref]

Bioud, F.-Z.

J. Duboisset, P. Berto, P. Gasecka, F.-Z. Bioud, P. Ferrand, H. Rigneault, and S. Brasselet, “Molecular orientational order probed by coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy: A spectral comparative study,” J. Phys. Chem. B 119, 3242–3249 (2015).
[Crossref] [PubMed]

Brasselet, S.

C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-Stokes Raman scattering,” Nat. Commun. 7, 11562 (2016).
[Crossref] [PubMed]

J. Duboisset, P. Berto, P. Gasecka, F.-Z. Bioud, P. Ferrand, H. Rigneault, and S. Brasselet, “Molecular orientational order probed by coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy: A spectral comparative study,” J. Phys. Chem. B 119, 3242–3249 (2015).
[Crossref] [PubMed]

F. Munhoz, S. Brustein, R. Hostein, P. Berto, S. Brasselet, and H. Rigneault, “Polarization resolved stimulated Raman scattering: probing depolarization ratios of liquids,” J. Raman Spectrosc. 43, 419–424 (2012).
[Crossref]

Brustein, S.

F. Munhoz, S. Brustein, R. Hostein, P. Berto, S. Brasselet, and H. Rigneault, “Polarization resolved stimulated Raman scattering: probing depolarization ratios of liquids,” J. Raman Spectrosc. 43, 419–424 (2012).
[Crossref]

Buckingham, A.

L. Barron and A. Buckingham, “Rayleigh and Raman scattering from optically active molecules,” Mol. Phys. 20, 1111–1119 (1971).
[Crossref]

Buckingham, A. D.

L. D. Barron and A. D. Buckingham, “Vibrational optical activity,” Chem. Phys. Lett. 492, 199–213 (2010).
[Crossref]

Camp, C. H.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627–634 (2014).
[Crossref]

Cheng, J.-X.

C. Zhang, D. Zhang, and J.-X. Cheng, “Coherent Raman scattering microscopy in biology and medicine,” Annu. Rev. Biomed. Eng. 17, 415–445 (2015).
[Crossref] [PubMed]

Cicerone, M. T.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627–634 (2014).
[Crossref]

Cleff, C.

C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-Stokes Raman scattering,” Nat. Commun. 7, 11562 (2016).
[Crossref] [PubMed]

Couderc, V.

K. Hiramatsu, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H.-o. Hamaguchi, “Observation of Raman optical activity by heterodyne-detected polarization-resolved coherent anti-Stokes Raman Scattering,” Phys. Rev. Lett. 109, 083901 (2012).
[Crossref] [PubMed]

Dantus, M.

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, X. Sunney Xie, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5, 103–109 (2011).
[Crossref]

Das, R. S.

R. S. Das and Y. Agrawal, “Raman spectroscopy: Recent advancements, techniques and applications,” Vib. Spectrosc. 57, 163–176 (2011).
[Crossref]

Dey, S.

S. Yampolsky, D. a. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. a. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8, 650–656 (2014).
[Crossref]

Dirlikov, S.

S. Dirlikov and J. L. Koenig, “Carbon-hydrogen stretching and bending vibrations in the Raman spectra of poly (methylmethacrylate),” J. Raman Spectrosc. 9, 150–154 (1980).
[Crossref]

Duboisset, J.

C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-Stokes Raman scattering,” Nat. Commun. 7, 11562 (2016).
[Crossref] [PubMed]

J. Duboisset, P. Berto, P. Gasecka, F.-Z. Bioud, P. Ferrand, H. Rigneault, and S. Brasselet, “Molecular orientational order probed by coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy: A spectral comparative study,” J. Phys. Chem. B 119, 3242–3249 (2015).
[Crossref] [PubMed]

Edwards, H. G. M.

I. R. Lewis and H. G. M. Edwards, Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line (Marcel Dekker, 2001).

Eibl, M.

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A time-encoded technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[Crossref] [PubMed]

Ferrand, P.

C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-Stokes Raman scattering,” Nat. Commun. 7, 11562 (2016).
[Crossref] [PubMed]

J. Duboisset, P. Berto, P. Gasecka, F.-Z. Bioud, P. Ferrand, H. Rigneault, and S. Brasselet, “Molecular orientational order probed by coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy: A spectral comparative study,” J. Phys. Chem. B 119, 3242–3249 (2015).
[Crossref] [PubMed]

Fishman, D. a.

S. Yampolsky, D. a. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. a. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8, 650–656 (2014).
[Crossref]

Freudiger, C. W.

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, X. Sunney Xie, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5, 103–109 (2011).
[Crossref]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Fukui, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6, 845–851 (2012).
[Crossref]

Gasecka, A.

C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-Stokes Raman scattering,” Nat. Commun. 7, 11562 (2016).
[Crossref] [PubMed]

Gasecka, P.

J. Duboisset, P. Berto, P. Gasecka, F.-Z. Bioud, P. Ferrand, H. Rigneault, and S. Brasselet, “Molecular orientational order probed by coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy: A spectral comparative study,” J. Phys. Chem. B 119, 3242–3249 (2015).
[Crossref] [PubMed]

Gilch, P.

E. Ploetz, S. Laimgruber, S. Berner, W. Zintch, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
[Crossref]

Guelachvili, G.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectroimaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref] [PubMed]

Hamaguchi, H.-o.

K. Hiramatsu, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H.-o. Hamaguchi, “Observation of Raman optical activity by heterodyne-detected polarization-resolved coherent anti-Stokes Raman Scattering,” Phys. Rev. Lett. 109, 083901 (2012).
[Crossref] [PubMed]

Y. Saito, T.-a. Ishibashi, and H.-o. Hamaguchi, “Polarization-resolved coherent anti-Stokes Raman scattering (CARS) spectroscopy: a new probe of molecular symmetry through accurate determination of the Raman depolarization ratio,” J. Raman Spectrosc. 31, 725–730 (2000).
[Crossref]

Hangartner, G.

W. Hug and G. Hangartner, “A novel high-throughput Raman spectrometer for polarization difference measurements,” J. Raman Spectrosc. 30, 841–852 (1999).
[Crossref]

Hänsch, T. W.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectroimaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref] [PubMed]

Hard, A. P.

L. Jayes, A. P. Hard, C. Séné, S. F. Parker, and U. A. Jayasooriya, “Vibrational spectroscopic analysis of silicones: A Fourier transform-Raman and inelastic neutron scattering investigation,” Anal. Chem. 75, 742–746 (2003).
[Crossref] [PubMed]

Hartshorn, C. M.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627–634 (2014).
[Crossref]

Hashimoto, H.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6, 845–851 (2012).
[Crossref]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Heddleston, J. M.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627–634 (2014).
[Crossref]

Hendra, P. J.

H. A. Willis, V. J. I. Zichy, and P. J. Hendra, “The laser-Raman and infra-red spectra of poly(methyl methacrylate),” Polymer 10, 737–746 (1969).
[Crossref]

Hiramatsu, K.

K. Hiramatsu, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H.-o. Hamaguchi, “Observation of Raman optical activity by heterodyne-detected polarization-resolved coherent anti-Stokes Raman Scattering,” Phys. Rev. Lett. 109, 083901 (2012).
[Crossref] [PubMed]

Holtom, G. R.

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, X. Sunney Xie, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5, 103–109 (2011).
[Crossref]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Holzner, S.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectroimaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref] [PubMed]

Hostein, R.

F. Munhoz, S. Brustein, R. Hostein, P. Berto, S. Brasselet, and H. Rigneault, “Polarization resolved stimulated Raman scattering: probing depolarization ratios of liquids,” J. Raman Spectrosc. 43, 419–424 (2012).
[Crossref]

Huber, R.

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A time-encoded technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[Crossref] [PubMed]

Hug, W.

W. Hug and G. Hangartner, “A novel high-throughput Raman spectrometer for polarization difference measurements,” J. Raman Spectrosc. 30, 841–852 (1999).
[Crossref]

Hulkko, E.

S. Yampolsky, D. a. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. a. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8, 650–656 (2014).
[Crossref]

Ideguchi, T.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectroimaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref] [PubMed]

Ishibashi, T.-a.

Y. Saito, T.-a. Ishibashi, and H.-o. Hamaguchi, “Polarization-resolved coherent anti-Stokes Raman scattering (CARS) spectroscopy: a new probe of molecular symmetry through accurate determination of the Raman depolarization ratio,” J. Raman Spectrosc. 31, 725–730 (2000).
[Crossref]

Itoh, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6, 845–851 (2012).
[Crossref]

Jayasooriya, U. A.

L. Jayes, A. P. Hard, C. Séné, S. F. Parker, and U. A. Jayasooriya, “Vibrational spectroscopic analysis of silicones: A Fourier transform-Raman and inelastic neutron scattering investigation,” Anal. Chem. 75, 742–746 (2003).
[Crossref] [PubMed]

Jayes, L.

L. Jayes, A. P. Hard, C. Séné, S. F. Parker, and U. A. Jayasooriya, “Vibrational spectroscopic analysis of silicones: A Fourier transform-Raman and inelastic neutron scattering investigation,” Anal. Chem. 75, 742–746 (2003).
[Crossref] [PubMed]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Kano, H.

K. Hiramatsu, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H.-o. Hamaguchi, “Observation of Raman optical activity by heterodyne-detected polarization-resolved coherent anti-Stokes Raman Scattering,” Phys. Rev. Lett. 109, 083901 (2012).
[Crossref] [PubMed]

Karpf, S.

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A time-encoded technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[Crossref] [PubMed]

Klein, T.

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A time-encoded technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[Crossref] [PubMed]

Koenig, J. L.

S. Dirlikov and J. L. Koenig, “Carbon-hydrogen stretching and bending vibrations in the Raman spectra of poly (methylmethacrylate),” J. Raman Spectrosc. 9, 150–154 (1980).
[Crossref]

Laimgruber, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zintch, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
[Crossref]

Lassen, M.

Lathia, J. D.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627–634 (2014).
[Crossref]

Lee, Y. J.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627–634 (2014).
[Crossref]

Leproux, P.

K. Hiramatsu, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H.-o. Hamaguchi, “Observation of Raman optical activity by heterodyne-detected polarization-resolved coherent anti-Stokes Raman Scattering,” Phys. Rev. Lett. 109, 083901 (2012).
[Crossref] [PubMed]

Lewis, I. R.

I. R. Lewis and H. G. M. Edwards, Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line (Marcel Dekker, 2001).

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Min, W.

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, X. Sunney Xie, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5, 103–109 (2011).
[Crossref]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Mukamel, S.

E. O. Potma and S. Mukamel, “Theory of coherent Raman scattering,” in Coherent Raman Scattering Microscopy, J.-X. Cheng and X. S. Xie, eds. (CRC Press, 2012), pp. 3–42.

Munhoz, F.

F. Munhoz, S. Brustein, R. Hostein, P. Berto, S. Brasselet, and H. Rigneault, “Polarization resolved stimulated Raman scattering: probing depolarization ratios of liquids,” J. Raman Spectrosc. 43, 419–424 (2012).
[Crossref]

Nafie, L. A.

L. A. Nafie, “Recent advances in linear and non-linear Raman spectroscopy. Part IX,” J. Raman Spectrosc. 46, 1173–1190 (2015).
[Crossref]

L. A. Nafie, Vibrational Optical Activity (Wiley, 2011).
[Crossref]

Nishizawa, N.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6, 845–851 (2012).
[Crossref]

Okuno, M.

K. Hiramatsu, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H.-o. Hamaguchi, “Observation of Raman optical activity by heterodyne-detected polarization-resolved coherent anti-Stokes Raman Scattering,” Phys. Rev. Lett. 109, 083901 (2012).
[Crossref] [PubMed]

Otsuka, Y.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6, 845–851 (2012).
[Crossref]

Ozeki, Y.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6, 845–851 (2012).
[Crossref]

Parker, S. F.

L. Jayes, A. P. Hard, C. Séné, S. F. Parker, and U. A. Jayasooriya, “Vibrational spectroscopic analysis of silicones: A Fourier transform-Raman and inelastic neutron scattering investigation,” Anal. Chem. 75, 742–746 (2003).
[Crossref] [PubMed]

Petersen, J. C.

Picqué, N.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectroimaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref] [PubMed]

Ploetz, E.

E. Ploetz, S. Laimgruber, S. Berner, W. Zintch, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
[Crossref]

Potma, E. O.

S. Yampolsky, D. a. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. a. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8, 650–656 (2014).
[Crossref]

E. O. Potma and S. Mukamel, “Theory of coherent Raman scattering,” in Coherent Raman Scattering Microscopy, J.-X. Cheng and X. S. Xie, eds. (CRC Press, 2012), pp. 3–42.

Reichman, J.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref] [PubMed]

Rich, J. N.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627–634 (2014).
[Crossref]

Rigneault, H.

C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-Stokes Raman scattering,” Nat. Commun. 7, 11562 (2016).
[Crossref] [PubMed]

J. Duboisset, P. Berto, P. Gasecka, F.-Z. Bioud, P. Ferrand, H. Rigneault, and S. Brasselet, “Molecular orientational order probed by coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy: A spectral comparative study,” J. Phys. Chem. B 119, 3242–3249 (2015).
[Crossref] [PubMed]

F. Munhoz, S. Brustein, R. Hostein, P. Berto, S. Brasselet, and H. Rigneault, “Polarization resolved stimulated Raman scattering: probing depolarization ratios of liquids,” J. Raman Spectrosc. 43, 419–424 (2012).
[Crossref]

Saar, B. G.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Saito, Y.

Y. Saito, T.-a. Ishibashi, and H.-o. Hamaguchi, “Polarization-resolved coherent anti-Stokes Raman scattering (CARS) spectroscopy: a new probe of molecular symmetry through accurate determination of the Raman depolarization ratio,” J. Raman Spectrosc. 31, 725–730 (2000).
[Crossref]

Satoh, S.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6, 845–851 (2012).
[Crossref]

Séné, C.

L. Jayes, A. P. Hard, C. Séné, S. F. Parker, and U. A. Jayasooriya, “Vibrational spectroscopic analysis of silicones: A Fourier transform-Raman and inelastic neutron scattering investigation,” Anal. Chem. 75, 742–746 (2003).
[Crossref] [PubMed]

Smith, A. L.

Stanley, C. M.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref] [PubMed]

Sumimura, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6, 845–851 (2012).
[Crossref]

Sunney Xie, X.

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, X. Sunney Xie, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5, 103–109 (2011).
[Crossref]

Tanaka, M.

M. Tanaka and R. J. Young, “Review polarised Raman spectroscopy for the study of molecular orientation distributions in polymers,” J. Mater. Sci. 41, 963–991 (2006).
[Crossref]

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Umemura, W.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6, 845–851 (2012).
[Crossref]

Walker, A. R. H.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627–634 (2014).
[Crossref]

Westergaard, P. G.

Wieser, W.

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A time-encoded technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[Crossref] [PubMed]

Willis, H. A.

H. A. Willis, V. J. I. Zichy, and P. J. Hendra, “The laser-Raman and infra-red spectra of poly(methyl methacrylate),” Polymer 10, 737–746 (1969).
[Crossref]

Xie, X. S.

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, X. Sunney Xie, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5, 103–109 (2011).
[Crossref]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Xu, B.

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, X. Sunney Xie, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5, 103–109 (2011).
[Crossref]

Yampolsky, S.

S. Yampolsky, D. a. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. a. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8, 650–656 (2014).
[Crossref]

Young, R. J.

M. Tanaka and R. J. Young, “Review polarised Raman spectroscopy for the study of molecular orientation distributions in polymers,” J. Mater. Sci. 41, 963–991 (2006).
[Crossref]

Zhang, C.

C. Zhang, D. Zhang, and J.-X. Cheng, “Coherent Raman scattering microscopy in biology and medicine,” Annu. Rev. Biomed. Eng. 17, 415–445 (2015).
[Crossref] [PubMed]

Zhang, D.

C. Zhang, D. Zhang, and J.-X. Cheng, “Coherent Raman scattering microscopy in biology and medicine,” Annu. Rev. Biomed. Eng. 17, 415–445 (2015).
[Crossref] [PubMed]

Zichy, V. J. I.

H. A. Willis, V. J. I. Zichy, and P. J. Hendra, “The laser-Raman and infra-red spectra of poly(methyl methacrylate),” Polymer 10, 737–746 (1969).
[Crossref]

Zintch, W.

E. Ploetz, S. Laimgruber, S. Berner, W. Zintch, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
[Crossref]

Anal. Chem. (1)

L. Jayes, A. P. Hard, C. Séné, S. F. Parker, and U. A. Jayasooriya, “Vibrational spectroscopic analysis of silicones: A Fourier transform-Raman and inelastic neutron scattering investigation,” Anal. Chem. 75, 742–746 (2003).
[Crossref] [PubMed]

Annu. Rev. Biomed. Eng. (1)

C. Zhang, D. Zhang, and J.-X. Cheng, “Coherent Raman scattering microscopy in biology and medicine,” Annu. Rev. Biomed. Eng. 17, 415–445 (2015).
[Crossref] [PubMed]

Appl. Phys. B (1)

E. Ploetz, S. Laimgruber, S. Berner, W. Zintch, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
[Crossref]

Appl. Spectrosc. (1)

Chem. Phys. Lett. (1)

L. D. Barron and A. D. Buckingham, “Vibrational optical activity,” Chem. Phys. Lett. 492, 199–213 (2010).
[Crossref]

J. Mater. Sci. (1)

M. Tanaka and R. J. Young, “Review polarised Raman spectroscopy for the study of molecular orientation distributions in polymers,” J. Mater. Sci. 41, 963–991 (2006).
[Crossref]

J. Phys. Chem. B (1)

J. Duboisset, P. Berto, P. Gasecka, F.-Z. Bioud, P. Ferrand, H. Rigneault, and S. Brasselet, “Molecular orientational order probed by coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy: A spectral comparative study,” J. Phys. Chem. B 119, 3242–3249 (2015).
[Crossref] [PubMed]

J. Raman Spectrosc. (5)

Y. Saito, T.-a. Ishibashi, and H.-o. Hamaguchi, “Polarization-resolved coherent anti-Stokes Raman scattering (CARS) spectroscopy: a new probe of molecular symmetry through accurate determination of the Raman depolarization ratio,” J. Raman Spectrosc. 31, 725–730 (2000).
[Crossref]

L. A. Nafie, “Recent advances in linear and non-linear Raman spectroscopy. Part IX,” J. Raman Spectrosc. 46, 1173–1190 (2015).
[Crossref]

F. Munhoz, S. Brustein, R. Hostein, P. Berto, S. Brasselet, and H. Rigneault, “Polarization resolved stimulated Raman scattering: probing depolarization ratios of liquids,” J. Raman Spectrosc. 43, 419–424 (2012).
[Crossref]

W. Hug and G. Hangartner, “A novel high-throughput Raman spectrometer for polarization difference measurements,” J. Raman Spectrosc. 30, 841–852 (1999).
[Crossref]

S. Dirlikov and J. L. Koenig, “Carbon-hydrogen stretching and bending vibrations in the Raman spectra of poly (methylmethacrylate),” J. Raman Spectrosc. 9, 150–154 (1980).
[Crossref]

Mol. Phys. (1)

L. Barron and A. Buckingham, “Rayleigh and Raman scattering from optically active molecules,” Mol. Phys. 20, 1111–1119 (1971).
[Crossref]

Nat. Commun. (2)

C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-Stokes Raman scattering,” Nat. Commun. 7, 11562 (2016).
[Crossref] [PubMed]

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A time-encoded technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[Crossref] [PubMed]

Nat. Photonics (4)

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, X. Sunney Xie, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5, 103–109 (2011).
[Crossref]

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6, 845–851 (2012).
[Crossref]

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627–634 (2014).
[Crossref]

S. Yampolsky, D. a. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. a. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8, 650–656 (2014).
[Crossref]

Nature (1)

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectroimaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. Lett. (1)

K. Hiramatsu, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H.-o. Hamaguchi, “Observation of Raman optical activity by heterodyne-detected polarization-resolved coherent anti-Stokes Raman Scattering,” Phys. Rev. Lett. 109, 083901 (2012).
[Crossref] [PubMed]

Polymer (1)

H. A. Willis, V. J. I. Zichy, and P. J. Hendra, “The laser-Raman and infra-red spectra of poly(methyl methacrylate),” Polymer 10, 737–746 (1969).
[Crossref]

Science (2)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref] [PubMed]

Vib. Spectrosc. (1)

R. S. Das and Y. Agrawal, “Raman spectroscopy: Recent advancements, techniques and applications,” Vib. Spectrosc. 57, 163–176 (2011).
[Crossref]

Other (4)

I. R. Lewis and H. G. M. Edwards, Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line (Marcel Dekker, 2001).

E. O. Potma and S. Mukamel, “Theory of coherent Raman scattering,” in Coherent Raman Scattering Microscopy, J.-X. Cheng and X. S. Xie, eds. (CRC Press, 2012), pp. 3–42.

M. Duarte, “Notes on scientific computing for biomechanics and motor control,” https://github.com/demotu/BMC (2015).

L. A. Nafie, Vibrational Optical Activity (Wiley, 2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 SRS setup (see main text for details). BD: Beam dump. PBS: Polarizing beamsplitter. HWP: Half-wave plate. DM: Dichroic mirror. FO: Focusing objective. PD: InGaAS PIN photodetector. LPF: Longpass filter.
Fig. 2
Fig. 2 Time traces of the detected pump pulse intensity (black), Raman scattering intensity in the parallel (red) and orthogonal (blue) polarization components, and integrator gate (gray), for a PDMS sheet sample probed at 1541 nm. The integration window is highlighted by the light gray strip. Ripples on the time traces are due to limited bandwidth of the detectors and improper impedance matching in the detection. The relatively long time delay between the pump pulse signal and the Raman scattering signals is due to differences in their respective electronic path lengths before acquisition. Traces are offset vertically by steps of 0.6 units for clarity.
Fig. 3
Fig. 3 Fast-acquisition (2.5 s, one-shot) SRG spectra of the symmetric and antisymmetric CH stretches in a PDMS sample for parallel (red) and orthogonal (blue) polarizations of the pump and probe beams. Dark and light traces indicate one-shot and 10 times averaged spectra, respectively. The normalized spectra result from our normalization procedure (see main text). The inset shows the ramp voltage provided by the laser controller (solid line) which is used for probe wavelength calibration by fitting a trapezoidal waveform (dashed line).
Fig. 4
Fig. 4 SRG spectra at various probe power showing the symmetric and antisymmetric CH stretches in PDMS. The blue dots and green diamonds indicate the peak amplitudes of the SRG signal on resonance with the symmetric and antisymmetric CH stretches, respectively. The inset shows the peak amplitudes for the two Raman bands as a function of probe power. Two linear fits to the data (dashed lines) with correlation coefficients above 0.998 demonstrate the linearity of the SRG signal with probe power. The vertical and horizontal error bars on the data are given by the standard deviations of the spectra noise and of the probe power measurements, respectively.
Fig. 5
Fig. 5 Spectra of PDMS (a) and PMMA (b) in the parallel (red) and orthogonal (blue) polarization configurations resulting from averaging 10 fast-acquisition spectra. Fits to the data (dashed lines) use a combination of Lorentzian curves (gray dotted lines) corresponding to the molecule vibration modes.

Tables (1)

Tables Icon

Table 1 CH stretch in PMMA measured with PS-SRS

Metrics