Abstract

Three different size gold square loop structures were fabricated as arrays on ZnS over a ground plane and designed to have absorptive fundamental, second order, and third order resonances at a wavelength of 10.6 µm and 60° off-normal. The angular dependent far-field spectral absorptivity was investigated over the mid-infrared for each size loop array. It was found that the second order modes were dark at normal incidence, but became excited at off-normal incidence, which is consistent with previous work for similar geometry structures. Furthermore, near-field measurements and simulations at a wavelength of 10.6 µm and 60° off-normal showed that the second order mode (quadrupolar) of the medium size loop yielded a near-field response similar in magnitude to the fundamental mode (dipolar) of the small size loop, which can be important for sensing related applications where both strong near-field enhancement and more uniform or less localized field is beneficial.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Near-field investigation of the effect of the array edge on the resonance of loop frequency selective surface elements at mid-infrared wavelengths

Eric Tucker, Jeffrey D’ Archangel, Markus B. Raschke, and Glenn Boreman
Opt. Express 23(9) 10974-10985 (2015)

Near- and far-field spectroscopic imaging investigation of resonant square-loop infrared metasurfaces

Jeffrey D’ Archangel, Eric Tucker, Ed Kinzel, Eric A. Muller, Hans A. Bechtel, Michael C. Martin, Markus B. Raschke, and Glenn Boreman
Opt. Express 21(14) 17150-17160 (2013)

Array truncation effects in infrared frequency selective surfaces

Jeffrey D’ Archangel, Eric Tucker, Markus B. Raschke, and Glenn Boreman
Opt. Express 22(13) 16645-16659 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Metallic subwavelength structures for a broadband infrared absorption control,” Opt. Lett. 32(8), 994–996 (2007).
    [Crossref] [PubMed]
  2. D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, and E. D. Wolf, “Infrared mesh filters fabricated by electron‐beam lithography,” J. Vac. Sci. Technol. B 3(1), 268–271 (1985).
    [Crossref]
  3. T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  4. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  5. J. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
    [Crossref]
  6. C. M. Rhoads, E. K. Damon, and B. A. Munk, “Mid-infrared filters using conducting elements,” Appl. Opt. 21(15), 2814–2816 (1982).
    [Crossref] [PubMed]
  7. J. E. Sanchez, R. Díaz de León, F. Mendoza-Santoyo, G. González, M. José-Yacaman, A. Ponce, and F. J. González, “Resonance properties of Ag-ZnO nanostructures at terahertz frequencies,” Opt. Express 23(19), 25111–25117 (2015).
    [Crossref] [PubMed]
  8. S. J. Spector, D. K. Astolfi, S. P. Doran, T. M. Lyszczarz, and J. E. Raynolds, “Infrared frequency selective surfaces fabricated using optical lithography and phase-shift masks,” J. Vac. Sci. Technol. B 19(6), 2757–2760 (2001).
    [Crossref]
  9. M.-H. Wu, K. E. Paul, J. Yang, and G. M. Whitesides, “Fabrication of frequency-selective surfaces using microlens projection photolithography,” Appl. Phys. Lett. 80(19), 3500–3502 (2002).
    [Crossref]
  10. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
    [Crossref] [PubMed]
  11. C. Oubre and P. Nordlander, “Finite-difference time-domain studies of the optical properties of nanoshell dimers,” J. Phys. Chem. B 109(20), 10042–10051 (2005).
    [Crossref] [PubMed]
  12. A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90(14), 143105 (2007).
    [Crossref]
  13. F. Hao, P. Nordlander, M. T. Burnett, and S. A. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B Condens. Matter 76(24), 245417 (2007).
    [Crossref]
  14. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
    [Crossref] [PubMed]
  15. A. Rakovich, P. Albella, and S. A. Maier, “Plasmonic control of radiative properties of semiconductor quantum dots coupled to plasmonic ring cavities,” ACS Nano 9(3), 2648–2658 (2015).
    [Crossref] [PubMed]
  16. P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
    [Crossref] [PubMed]
  17. P. Alonso-González, P. Albella, F. Golmar, L. Arzubiaga, F. Casanova, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, “Visualizing the near-field coupling and interference of bonding and anti-bonding modes in infrared dimer nanoantennas,” Opt. Express 21(1), 1270–1280 (2013).
    [Crossref] [PubMed]
  18. J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
    [Crossref] [PubMed]
  19. E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110(5), 2150–2154 (2006).
    [Crossref] [PubMed]
  20. M. Abb, Y. Wang, P. Albella, C. H. de Groot, J. Aizpurua, and O. L. Muskens, “Interference, coupling, and nonlinear control of high-order modes in single asymmetric nanoantennas,” ACS Nano 6(7), 6462–6470 (2012).
    [Crossref] [PubMed]
  21. J. Aizpurua, G. W. Bryant, L. J. Richter, F. G. De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B Condens. Matter 71(23), 235420 (2005).
    [Crossref]
  22. H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, “Accessing the optical magnetic near-field through Babinet’s principle,” ACS Photonics 1(9), 894–899 (2014).
    [Crossref]
  23. R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
    [Crossref] [PubMed]
  24. F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4-6), 262–266 (2008).
    [Crossref]
  25. N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express 19(12), 11034–11051 (2011).
    [Crossref] [PubMed]
  26. J. D’ Archangel, E. Tucker, E. Kinzel, E. A. Muller, H. A. Bechtel, M. C. Martin, M. B. Raschke, and G. Boreman, “Near- and far-field spectroscopic imaging investigation of resonant square-loop infrared metasurfaces,” Opt. Express 21(14), 17150–17160 (2013).
    [Crossref] [PubMed]
  27. G. A. Vandenbosch, Computational Electromagnetics in Plasmonics (INTECH Open Access Publisher, 2012).
  28. J. D’ Archangel, E. Tucker, M. B. Raschke, and G. Boreman, “Array truncation effects in infrared frequency selective surfaces,” Opt. Express 22(13), 16645–16659 (2014).
    [Crossref] [PubMed]
  29. E. Tucker, J. D’ Archangel, M. B. Raschke, and G. Boreman, “Near-field investigation of the effect of the array edge on the resonance of loop frequency selective surface elements at mid-infrared wavelengths,” Opt. Express 23(9), 10974–10985 (2015).
    [Crossref] [PubMed]
  30. E. Tucker, J. D’Archangel, M. B. Raschke, and G. Boreman, “Near-and far-field measurements of phase-ramped frequency selective surfaces at infrared wavelengths,” J. Appl. Phys. 116(4), 044903 (2014).
    [Crossref]
  31. L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S. Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” JOSA B 23(5), 823–833 (2006).
    [Crossref]
  32. M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum.  83, 033704 (2012).
  33. T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33(8), 848–850 (2008).
    [Crossref] [PubMed]
  34. J. D. Lacasse and J. Laurin, “A method for reflectarray antenna design assisted by near field measurements,” IEEE Trans. Antenn. Propag. 54(6), 1891–1897 (2006).
    [Crossref]
  35. D. M. Pozar, S. D. Targonski, and R. Pokuls, “A shaped-beam microstrip patch reflectarray,” IEEE Trans. Antenn. Propag. 47(7), 1167–1173 (1999).
    [Crossref]
  36. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  37. J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
    [Crossref] [PubMed]
  38. Z.-J. Yang, T. J. Antosiewicz, R. Verre, F. J. García de Abajo, S. P. Apell, and M. Käll, “Ultimate limit of light extinction by nanophotonic structures,” Nano Lett. 15(11), 7633–7638 (2015).
    [Crossref] [PubMed]
  39. C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84(1-2), 219–227 (2006).
    [Crossref]
  40. A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
    [Crossref] [PubMed]
  41. D. Denkova, N. Verellen, A. V. Silhanek, V. K. Valev, P. Van Dorpe, and V. V. Moshchalkov, “Mapping magnetic near-field distributions of plasmonic nanoantennas,” ACS Nano 7(4), 3168–3176 (2013).
    [Crossref] [PubMed]
  42. R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16(25), 20295–20305 (2008).
    [Crossref] [PubMed]

2015 (4)

J. E. Sanchez, R. Díaz de León, F. Mendoza-Santoyo, G. González, M. José-Yacaman, A. Ponce, and F. J. González, “Resonance properties of Ag-ZnO nanostructures at terahertz frequencies,” Opt. Express 23(19), 25111–25117 (2015).
[Crossref] [PubMed]

A. Rakovich, P. Albella, and S. A. Maier, “Plasmonic control of radiative properties of semiconductor quantum dots coupled to plasmonic ring cavities,” ACS Nano 9(3), 2648–2658 (2015).
[Crossref] [PubMed]

E. Tucker, J. D’ Archangel, M. B. Raschke, and G. Boreman, “Near-field investigation of the effect of the array edge on the resonance of loop frequency selective surface elements at mid-infrared wavelengths,” Opt. Express 23(9), 10974–10985 (2015).
[Crossref] [PubMed]

Z.-J. Yang, T. J. Antosiewicz, R. Verre, F. J. García de Abajo, S. P. Apell, and M. Käll, “Ultimate limit of light extinction by nanophotonic structures,” Nano Lett. 15(11), 7633–7638 (2015).
[Crossref] [PubMed]

2014 (3)

E. Tucker, J. D’Archangel, M. B. Raschke, and G. Boreman, “Near-and far-field measurements of phase-ramped frequency selective surfaces at infrared wavelengths,” J. Appl. Phys. 116(4), 044903 (2014).
[Crossref]

H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, “Accessing the optical magnetic near-field through Babinet’s principle,” ACS Photonics 1(9), 894–899 (2014).
[Crossref]

J. D’ Archangel, E. Tucker, M. B. Raschke, and G. Boreman, “Array truncation effects in infrared frequency selective surfaces,” Opt. Express 22(13), 16645–16659 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (5)

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
[Crossref] [PubMed]

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

M. Abb, Y. Wang, P. Albella, C. H. de Groot, J. Aizpurua, and O. L. Muskens, “Interference, coupling, and nonlinear control of high-order modes in single asymmetric nanoantennas,” ACS Nano 6(7), 6462–6470 (2012).
[Crossref] [PubMed]

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[Crossref] [PubMed]

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum.  83, 033704 (2012).

2011 (3)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express 19(12), 11034–11051 (2011).
[Crossref] [PubMed]

J. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

2010 (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

2009 (1)

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[Crossref] [PubMed]

2008 (5)

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4-6), 262–266 (2008).
[Crossref]

T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33(8), 848–850 (2008).
[Crossref] [PubMed]

R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16(25), 20295–20305 (2008).
[Crossref] [PubMed]

2007 (3)

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90(14), 143105 (2007).
[Crossref]

F. Hao, P. Nordlander, M. T. Burnett, and S. A. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B Condens. Matter 76(24), 245417 (2007).
[Crossref]

G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Metallic subwavelength structures for a broadband infrared absorption control,” Opt. Lett. 32(8), 994–996 (2007).
[Crossref] [PubMed]

2006 (4)

E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110(5), 2150–2154 (2006).
[Crossref] [PubMed]

J. D. Lacasse and J. Laurin, “A method for reflectarray antenna design assisted by near field measurements,” IEEE Trans. Antenn. Propag. 54(6), 1891–1897 (2006).
[Crossref]

L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S. Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” JOSA B 23(5), 823–833 (2006).
[Crossref]

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84(1-2), 219–227 (2006).
[Crossref]

2005 (2)

J. Aizpurua, G. W. Bryant, L. J. Richter, F. G. De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B Condens. Matter 71(23), 235420 (2005).
[Crossref]

C. Oubre and P. Nordlander, “Finite-difference time-domain studies of the optical properties of nanoshell dimers,” J. Phys. Chem. B 109(20), 10042–10051 (2005).
[Crossref] [PubMed]

2003 (1)

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

2002 (1)

M.-H. Wu, K. E. Paul, J. Yang, and G. M. Whitesides, “Fabrication of frequency-selective surfaces using microlens projection photolithography,” Appl. Phys. Lett. 80(19), 3500–3502 (2002).
[Crossref]

2001 (1)

S. J. Spector, D. K. Astolfi, S. P. Doran, T. M. Lyszczarz, and J. E. Raynolds, “Infrared frequency selective surfaces fabricated using optical lithography and phase-shift masks,” J. Vac. Sci. Technol. B 19(6), 2757–2760 (2001).
[Crossref]

1999 (1)

D. M. Pozar, S. D. Targonski, and R. Pokuls, “A shaped-beam microstrip patch reflectarray,” IEEE Trans. Antenn. Propag. 47(7), 1167–1173 (1999).
[Crossref]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

1985 (1)

D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, and E. D. Wolf, “Infrared mesh filters fabricated by electron‐beam lithography,” J. Vac. Sci. Technol. B 3(1), 268–271 (1985).
[Crossref]

1982 (1)

Abb, M.

M. Abb, Y. Wang, P. Albella, C. H. de Groot, J. Aizpurua, and O. L. Muskens, “Interference, coupling, and nonlinear control of high-order modes in single asymmetric nanoantennas,” ACS Nano 6(7), 6462–6470 (2012).
[Crossref] [PubMed]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Aizpurua, J.

P. Alonso-González, P. Albella, F. Golmar, L. Arzubiaga, F. Casanova, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, “Visualizing the near-field coupling and interference of bonding and anti-bonding modes in infrared dimer nanoantennas,” Opt. Express 21(1), 1270–1280 (2013).
[Crossref] [PubMed]

M. Abb, Y. Wang, P. Albella, C. H. de Groot, J. Aizpurua, and O. L. Muskens, “Interference, coupling, and nonlinear control of high-order modes in single asymmetric nanoantennas,” ACS Nano 6(7), 6462–6470 (2012).
[Crossref] [PubMed]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. G. De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B Condens. Matter 71(23), 235420 (2005).
[Crossref]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Albella, P.

A. Rakovich, P. Albella, and S. A. Maier, “Plasmonic control of radiative properties of semiconductor quantum dots coupled to plasmonic ring cavities,” ACS Nano 9(3), 2648–2658 (2015).
[Crossref] [PubMed]

P. Alonso-González, P. Albella, F. Golmar, L. Arzubiaga, F. Casanova, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, “Visualizing the near-field coupling and interference of bonding and anti-bonding modes in infrared dimer nanoantennas,” Opt. Express 21(1), 1270–1280 (2013).
[Crossref] [PubMed]

M. Abb, Y. Wang, P. Albella, C. H. de Groot, J. Aizpurua, and O. L. Muskens, “Interference, coupling, and nonlinear control of high-order modes in single asymmetric nanoantennas,” ACS Nano 6(7), 6462–6470 (2012).
[Crossref] [PubMed]

Ali, T. A.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4-6), 262–266 (2008).
[Crossref]

Alonso-González, P.

Altug, H.

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
[Crossref] [PubMed]

Antosiewicz, T. J.

Z.-J. Yang, T. J. Antosiewicz, R. Verre, F. J. García de Abajo, S. P. Apell, and M. Käll, “Ultimate limit of light extinction by nanophotonic structures,” Nano Lett. 15(11), 7633–7638 (2015).
[Crossref] [PubMed]

Apell, S. P.

Z.-J. Yang, T. J. Antosiewicz, R. Verre, F. J. García de Abajo, S. P. Apell, and M. Käll, “Ultimate limit of light extinction by nanophotonic structures,” Nano Lett. 15(11), 7633–7638 (2015).
[Crossref] [PubMed]

Arzubiaga, L.

Astolfi, D. K.

S. J. Spector, D. K. Astolfi, S. P. Doran, T. M. Lyszczarz, and J. E. Raynolds, “Infrared frequency selective surfaces fabricated using optical lithography and phase-shift masks,” J. Vac. Sci. Technol. B 19(6), 2757–2760 (2001).
[Crossref]

Bachelot, R.

L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S. Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” JOSA B 23(5), 823–833 (2006).
[Crossref]

Bechtel, H. A.

H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, “Accessing the optical magnetic near-field through Babinet’s principle,” ACS Photonics 1(9), 894–899 (2014).
[Crossref]

J. D’ Archangel, E. Tucker, E. Kinzel, E. A. Muller, H. A. Bechtel, M. C. Martin, M. B. Raschke, and G. Boreman, “Near- and far-field spectroscopic imaging investigation of resonant square-loop infrared metasurfaces,” Opt. Express 21(14), 17150–17160 (2013).
[Crossref] [PubMed]

Biagioni, P.

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Biener, G.

Blaize, S.

L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S. Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” JOSA B 23(5), 823–833 (2006).
[Crossref]

Boreman, G.

Boreman, G. D.

Bouhelier, A.

L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S. Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” JOSA B 23(5), 823–833 (2006).
[Crossref]

Brouns, A. J.

D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, and E. D. Wolf, “Infrared mesh filters fabricated by electron‐beam lithography,” J. Vac. Sci. Technol. B 3(1), 268–271 (1985).
[Crossref]

Bryant, G. W.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. G. De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B Condens. Matter 71(23), 235420 (2005).
[Crossref]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Burnett, M. T.

F. Hao, P. Nordlander, M. T. Burnett, and S. A. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B Condens. Matter 76(24), 245417 (2007).
[Crossref]

Byrne, D. M.

D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, and E. D. Wolf, “Infrared mesh filters fabricated by electron‐beam lithography,” J. Vac. Sci. Technol. B 3(1), 268–271 (1985).
[Crossref]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Casanova, F.

Case, F. C.

D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, and E. D. Wolf, “Infrared mesh filters fabricated by electron‐beam lithography,” J. Vac. Sci. Technol. B 3(1), 268–271 (1985).
[Crossref]

Castro, M. E.

L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S. Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” JOSA B 23(5), 823–833 (2006).
[Crossref]

Cetin, A. E.

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
[Crossref] [PubMed]

Chang, S.

L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S. Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” JOSA B 23(5), 823–833 (2006).
[Crossref]

Clark, A. W.

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90(14), 143105 (2007).
[Crossref]

Cooper, J. M.

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90(14), 143105 (2007).
[Crossref]

Cumming, D. R. S.

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90(14), 143105 (2007).
[Crossref]

D’ Archangel, J.

D’Archangel, J.

E. Tucker, J. D’Archangel, M. B. Raschke, and G. Boreman, “Near-and far-field measurements of phase-ramped frequency selective surfaces at infrared wavelengths,” J. Appl. Phys. 116(4), 044903 (2014).
[Crossref]

Damon, E. K.

De Abajo, F. G.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. G. De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B Condens. Matter 71(23), 235420 (2005).
[Crossref]

de Groot, C. H.

M. Abb, Y. Wang, P. Albella, C. H. de Groot, J. Aizpurua, and O. L. Muskens, “Interference, coupling, and nonlinear control of high-order modes in single asymmetric nanoantennas,” ACS Nano 6(7), 6462–6470 (2012).
[Crossref] [PubMed]

Denkova, D.

D. Denkova, N. Verellen, A. V. Silhanek, V. K. Valev, P. Van Dorpe, and V. V. Moshchalkov, “Mapping magnetic near-field distributions of plasmonic nanoantennas,” ACS Nano 7(4), 3168–3176 (2013).
[Crossref] [PubMed]

Deryckx, K. S.

H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, “Accessing the optical magnetic near-field through Babinet’s principle,” ACS Photonics 1(9), 894–899 (2014).
[Crossref]

Díaz de León, R.

Dionne, J. A.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[Crossref] [PubMed]

Dmitriev, A.

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Doran, S. P.

S. J. Spector, D. K. Astolfi, S. P. Doran, T. M. Lyszczarz, and J. E. Raynolds, “Infrared frequency selective surfaces fabricated using optical lithography and phase-shift masks,” J. Vac. Sci. Technol. B 19(6), 2757–2760 (2001).
[Crossref]

Dorfmüller, J.

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum.  83, 033704 (2012).

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[Crossref] [PubMed]

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33(8), 848–850 (2008).
[Crossref] [PubMed]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Esslinger, M.

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum.  83, 033704 (2012).

Esteban, R.

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Etrich, C.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[Crossref] [PubMed]

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33(8), 848–850 (2008).
[Crossref] [PubMed]

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84(1-2), 219–227 (2006).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

García de Abajo, F. J.

Z.-J. Yang, T. J. Antosiewicz, R. Verre, F. J. García de Abajo, S. P. Apell, and M. Käll, “Ultimate limit of light extinction by nanophotonic structures,” Nano Lett. 15(11), 7633–7638 (2015).
[Crossref] [PubMed]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Ghaemi, H.

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33(8), 848–850 (2008).
[Crossref] [PubMed]

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84(1-2), 219–227 (2006).
[Crossref]

Glidle, A.

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90(14), 143105 (2007).
[Crossref]

Golmar, F.

Gomez, L.

L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S. Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” JOSA B 23(5), 823–833 (2006).
[Crossref]

González, F. J.

González, G.

Gray, S. K.

L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S. Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” JOSA B 23(5), 823–833 (2006).
[Crossref]

Guo, H.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84(1-2), 219–227 (2006).
[Crossref]

Halas, N. J.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Hanarp, P.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Hao, F.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4-6), 262–266 (2008).
[Crossref]

F. Hao, P. Nordlander, M. T. Burnett, and S. A. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B Condens. Matter 76(24), 245417 (2007).
[Crossref]

Hasman, E.

Hecht, B.

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hillenbrand, R.

Hua, F.

L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S. Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” JOSA B 23(5), 823–833 (2006).
[Crossref]

Huang, J. S.

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Hueso, L. E.

Jeon, S.

L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S. Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” JOSA B 23(5), 823–833 (2006).
[Crossref]

Jones, A. C.

José-Yacaman, M.

Käll, M.

Z.-J. Yang, T. J. Antosiewicz, R. Verre, F. J. García de Abajo, S. P. Apell, and M. Käll, “Ultimate limit of light extinction by nanophotonic structures,” Nano Lett. 15(11), 7633–7638 (2015).
[Crossref] [PubMed]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kelley, B. K.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. G. De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B Condens. Matter 71(23), 235420 (2005).
[Crossref]

Kern, K.

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum.  83, 033704 (2012).

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[Crossref] [PubMed]

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33(8), 848–850 (2008).
[Crossref] [PubMed]

Khunsin, W.

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum.  83, 033704 (2012).

Kinzel, E.

Kleiner, V.

Koh, A. L.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[Crossref] [PubMed]

Krenz, P. M.

Kuhl, J.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84(1-2), 219–227 (2006).
[Crossref]

Lacasse, J. D.

J. D. Lacasse and J. Laurin, “A method for reflectarray antenna design assisted by near field measurements,” IEEE Trans. Antenn. Propag. 54(6), 1891–1897 (2006).
[Crossref]

Lail, B. A.

H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, “Accessing the optical magnetic near-field through Babinet’s principle,” ACS Photonics 1(9), 894–899 (2014).
[Crossref]

Larsson, E. M.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4-6), 262–266 (2008).
[Crossref]

Laurin, J.

J. D. Lacasse and J. Laurin, “A method for reflectarray antenna design assisted by near field measurements,” IEEE Trans. Antenn. Propag. 54(6), 1891–1897 (2006).
[Crossref]

Lederer, F.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[Crossref] [PubMed]

T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33(8), 848–850 (2008).
[Crossref] [PubMed]

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84(1-2), 219–227 (2006).
[Crossref]

Lerondel, G.

L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S. Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” JOSA B 23(5), 823–833 (2006).
[Crossref]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84(1-2), 219–227 (2006).
[Crossref]

Loa, I.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84(1-2), 219–227 (2006).
[Crossref]

Lyszczarz, T. M.

S. J. Spector, D. K. Astolfi, S. P. Doran, T. M. Lyszczarz, and J. E. Raynolds, “Infrared frequency selective surfaces fabricated using optical lithography and phase-shift masks,” J. Vac. Sci. Technol. B 19(6), 2757–2760 (2001).
[Crossref]

Maier, S. A.

A. Rakovich, P. Albella, and S. A. Maier, “Plasmonic control of radiative properties of semiconductor quantum dots coupled to plasmonic ring cavities,” ACS Nano 9(3), 2648–2658 (2015).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

F. Hao, P. Nordlander, M. T. Burnett, and S. A. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B Condens. Matter 76(24), 245417 (2007).
[Crossref]

Mallouk, T.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. G. De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B Condens. Matter 71(23), 235420 (2005).
[Crossref]

Martin, M. C.

Mason, J.

J. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

Mendoza-Santoyo, F.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Mirkin, C. A.

E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110(5), 2150–2154 (2006).
[Crossref] [PubMed]

Moshchalkov, V. V.

D. Denkova, N. Verellen, A. V. Silhanek, V. K. Valev, P. Van Dorpe, and V. V. Moshchalkov, “Mapping magnetic near-field distributions of plasmonic nanoantennas,” ACS Nano 7(4), 3168–3176 (2013).
[Crossref] [PubMed]

N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express 19(12), 11034–11051 (2011).
[Crossref] [PubMed]

Muller, E. A.

Munk, B. A.

Muskens, O. L.

M. Abb, Y. Wang, P. Albella, C. H. de Groot, J. Aizpurua, and O. L. Muskens, “Interference, coupling, and nonlinear control of high-order modes in single asymmetric nanoantennas,” ACS Nano 6(7), 6462–6470 (2012).
[Crossref] [PubMed]

Niv, A.

Nordlander, P.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4-6), 262–266 (2008).
[Crossref]

F. Hao, P. Nordlander, M. T. Burnett, and S. A. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B Condens. Matter 76(24), 245417 (2007).
[Crossref]

C. Oubre and P. Nordlander, “Finite-difference time-domain studies of the optical properties of nanoshell dimers,” J. Phys. Chem. B 109(20), 10042–10051 (2005).
[Crossref] [PubMed]

Olmon, R. L.

H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, “Accessing the optical magnetic near-field through Babinet’s principle,” ACS Photonics 1(9), 894–899 (2014).
[Crossref]

R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16(25), 20295–20305 (2008).
[Crossref] [PubMed]

Oubre, C.

C. Oubre and P. Nordlander, “Finite-difference time-domain studies of the optical properties of nanoshell dimers,” J. Phys. Chem. B 109(20), 10042–10051 (2005).
[Crossref] [PubMed]

Park, S.

E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110(5), 2150–2154 (2006).
[Crossref] [PubMed]

Paul, K. E.

M.-H. Wu, K. E. Paul, J. Yang, and G. M. Whitesides, “Fabrication of frequency-selective surfaces using microlens projection photolithography,” Appl. Phys. Lett. 80(19), 3500–3502 (2002).
[Crossref]

Payne, E. K.

E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110(5), 2150–2154 (2006).
[Crossref] [PubMed]

Pertsch, T.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[Crossref] [PubMed]

T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33(8), 848–850 (2008).
[Crossref] [PubMed]

Pokuls, R.

D. M. Pozar, S. D. Targonski, and R. Pokuls, “A shaped-beam microstrip patch reflectarray,” IEEE Trans. Antenn. Propag. 47(7), 1167–1173 (1999).
[Crossref]

Ponce, A.

Pozar, D. M.

D. M. Pozar, S. D. Targonski, and R. Pokuls, “A shaped-beam microstrip patch reflectarray,” IEEE Trans. Antenn. Propag. 47(7), 1167–1173 (1999).
[Crossref]

Rakovich, A.

A. Rakovich, P. Albella, and S. A. Maier, “Plasmonic control of radiative properties of semiconductor quantum dots coupled to plasmonic ring cavities,” ACS Nano 9(3), 2648–2658 (2015).
[Crossref] [PubMed]

Raschke, M. B.

Raynolds, J. E.

S. J. Spector, D. K. Astolfi, S. P. Doran, T. M. Lyszczarz, and J. E. Raynolds, “Infrared frequency selective surfaces fabricated using optical lithography and phase-shift masks,” J. Vac. Sci. Technol. B 19(6), 2757–2760 (2001).
[Crossref]

Rhoads, C. M.

Richter, L. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. G. De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B Condens. Matter 71(23), 235420 (2005).
[Crossref]

Rockstuhl, C.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[Crossref] [PubMed]

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33(8), 848–850 (2008).
[Crossref] [PubMed]

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84(1-2), 219–227 (2006).
[Crossref]

Rogers, J. A.

L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S. Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” JOSA B 23(5), 823–833 (2006).
[Crossref]

Royer, P.

L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S. Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” JOSA B 23(5), 823–833 (2006).
[Crossref]

Sanchez, J. E.

Schatz, G. C.

E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110(5), 2150–2154 (2006).
[Crossref] [PubMed]

Scholl, J. A.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[Crossref] [PubMed]

Sheridan, A. K.

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90(14), 143105 (2007).
[Crossref]

Shuford, K. L.

E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110(5), 2150–2154 (2006).
[Crossref] [PubMed]

Silhanek, A. V.

D. Denkova, N. Verellen, A. V. Silhanek, V. K. Valev, P. Van Dorpe, and V. V. Moshchalkov, “Mapping magnetic near-field distributions of plasmonic nanoantennas,” ACS Nano 7(4), 3168–3176 (2013).
[Crossref] [PubMed]

Smith, S.

J. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

Sonnefraud, Y.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Spector, S. J.

S. J. Spector, D. K. Astolfi, S. P. Doran, T. M. Lyszczarz, and J. E. Raynolds, “Infrared frequency selective surfaces fabricated using optical lithography and phase-shift masks,” J. Vac. Sci. Technol. B 19(6), 2757–2760 (2001).
[Crossref]

Stefanon, I.

L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S. Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” JOSA B 23(5), 823–833 (2006).
[Crossref]

Sutherland, D. S.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4-6), 262–266 (2008).
[Crossref]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Syassen, K.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84(1-2), 219–227 (2006).
[Crossref]

Targonski, S. D.

D. M. Pozar, S. D. Targonski, and R. Pokuls, “A shaped-beam microstrip patch reflectarray,” IEEE Trans. Antenn. Propag. 47(7), 1167–1173 (1999).
[Crossref]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Tiberio, R. C.

D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, and E. D. Wolf, “Infrared mesh filters fabricated by electron‐beam lithography,” J. Vac. Sci. Technol. B 3(1), 268–271 (1985).
[Crossref]

Tucker, E.

Valev, V. K.

D. Denkova, N. Verellen, A. V. Silhanek, V. K. Valev, P. Van Dorpe, and V. V. Moshchalkov, “Mapping magnetic near-field distributions of plasmonic nanoantennas,” ACS Nano 7(4), 3168–3176 (2013).
[Crossref] [PubMed]

Van Dorpe, P.

D. Denkova, N. Verellen, A. V. Silhanek, V. K. Valev, P. Van Dorpe, and V. V. Moshchalkov, “Mapping magnetic near-field distributions of plasmonic nanoantennas,” ACS Nano 7(4), 3168–3176 (2013).
[Crossref] [PubMed]

N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express 19(12), 11034–11051 (2011).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Vandenbosch, G. A. E.

Vercruysse, D.

Verellen, N.

D. Denkova, N. Verellen, A. V. Silhanek, V. K. Valev, P. Van Dorpe, and V. V. Moshchalkov, “Mapping magnetic near-field distributions of plasmonic nanoantennas,” ACS Nano 7(4), 3168–3176 (2013).
[Crossref] [PubMed]

N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express 19(12), 11034–11051 (2011).
[Crossref] [PubMed]

Verre, R.

Z.-J. Yang, T. J. Antosiewicz, R. Verre, F. J. García de Abajo, S. P. Apell, and M. Käll, “Ultimate limit of light extinction by nanophotonic structures,” Nano Lett. 15(11), 7633–7638 (2015).
[Crossref] [PubMed]

Vogelgesang, R.

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum.  83, 033704 (2012).

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[Crossref] [PubMed]

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33(8), 848–850 (2008).
[Crossref] [PubMed]

Wang, Y.

M. Abb, Y. Wang, P. Albella, C. H. de Groot, J. Aizpurua, and O. L. Muskens, “Interference, coupling, and nonlinear control of high-order modes in single asymmetric nanoantennas,” ACS Nano 6(7), 6462–6470 (2012).
[Crossref] [PubMed]

Wasserman, D.

J. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Weitz, R. T.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[Crossref] [PubMed]

Whitehead, B. L.

D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, and E. D. Wolf, “Infrared mesh filters fabricated by electron‐beam lithography,” J. Vac. Sci. Technol. B 3(1), 268–271 (1985).
[Crossref]

Whitesides, G. M.

M.-H. Wu, K. E. Paul, J. Yang, and G. M. Whitesides, “Fabrication of frequency-selective surfaces using microlens projection photolithography,” Appl. Phys. Lett. 80(19), 3500–3502 (2002).
[Crossref]

Wiederrecht, G. P.

L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S. Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” JOSA B 23(5), 823–833 (2006).
[Crossref]

Wolf, E. D.

D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, and E. D. Wolf, “Infrared mesh filters fabricated by electron‐beam lithography,” J. Vac. Sci. Technol. B 3(1), 268–271 (1985).
[Crossref]

Wolff, P.

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Wu, M.-H.

M.-H. Wu, K. E. Paul, J. Yang, and G. M. Whitesides, “Fabrication of frequency-selective surfaces using microlens projection photolithography,” Appl. Phys. Lett. 80(19), 3500–3502 (2002).
[Crossref]

Xu, X. G.

H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, “Accessing the optical magnetic near-field through Babinet’s principle,” ACS Photonics 1(9), 894–899 (2014).
[Crossref]

Xu, Y.

H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, “Accessing the optical magnetic near-field through Babinet’s principle,” ACS Photonics 1(9), 894–899 (2014).
[Crossref]

Yang, H. U.

H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, “Accessing the optical magnetic near-field through Babinet’s principle,” ACS Photonics 1(9), 894–899 (2014).
[Crossref]

Yang, J.

M.-H. Wu, K. E. Paul, J. Yang, and G. M. Whitesides, “Fabrication of frequency-selective surfaces using microlens projection photolithography,” Appl. Phys. Lett. 80(19), 3500–3502 (2002).
[Crossref]

Yang, Z.-J.

Z.-J. Yang, T. J. Antosiewicz, R. Verre, F. J. García de Abajo, S. P. Apell, and M. Käll, “Ultimate limit of light extinction by nanophotonic structures,” Nano Lett. 15(11), 7633–7638 (2015).
[Crossref] [PubMed]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Zentgraf, T.

T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33(8), 848–850 (2008).
[Crossref] [PubMed]

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84(1-2), 219–227 (2006).
[Crossref]

ACS Nano (4)

A. Rakovich, P. Albella, and S. A. Maier, “Plasmonic control of radiative properties of semiconductor quantum dots coupled to plasmonic ring cavities,” ACS Nano 9(3), 2648–2658 (2015).
[Crossref] [PubMed]

M. Abb, Y. Wang, P. Albella, C. H. de Groot, J. Aizpurua, and O. L. Muskens, “Interference, coupling, and nonlinear control of high-order modes in single asymmetric nanoantennas,” ACS Nano 6(7), 6462–6470 (2012).
[Crossref] [PubMed]

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
[Crossref] [PubMed]

D. Denkova, N. Verellen, A. V. Silhanek, V. K. Valev, P. Van Dorpe, and V. V. Moshchalkov, “Mapping magnetic near-field distributions of plasmonic nanoantennas,” ACS Nano 7(4), 3168–3176 (2013).
[Crossref] [PubMed]

ACS Photonics (1)

H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, “Accessing the optical magnetic near-field through Babinet’s principle,” ACS Photonics 1(9), 894–899 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84(1-2), 219–227 (2006).
[Crossref]

Appl. Phys. Lett. (3)

J. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90(14), 143105 (2007).
[Crossref]

M.-H. Wu, K. E. Paul, J. Yang, and G. M. Whitesides, “Fabrication of frequency-selective surfaces using microlens projection photolithography,” Appl. Phys. Lett. 80(19), 3500–3502 (2002).
[Crossref]

Chem. Phys. Lett. (1)

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4-6), 262–266 (2008).
[Crossref]

IEEE Trans. Antenn. Propag. (2)

J. D. Lacasse and J. Laurin, “A method for reflectarray antenna design assisted by near field measurements,” IEEE Trans. Antenn. Propag. 54(6), 1891–1897 (2006).
[Crossref]

D. M. Pozar, S. D. Targonski, and R. Pokuls, “A shaped-beam microstrip patch reflectarray,” IEEE Trans. Antenn. Propag. 47(7), 1167–1173 (1999).
[Crossref]

J. Appl. Phys. (1)

E. Tucker, J. D’Archangel, M. B. Raschke, and G. Boreman, “Near-and far-field measurements of phase-ramped frequency selective surfaces at infrared wavelengths,” J. Appl. Phys. 116(4), 044903 (2014).
[Crossref]

J. Phys. Chem. B (2)

E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110(5), 2150–2154 (2006).
[Crossref] [PubMed]

C. Oubre and P. Nordlander, “Finite-difference time-domain studies of the optical properties of nanoshell dimers,” J. Phys. Chem. B 109(20), 10042–10051 (2005).
[Crossref] [PubMed]

J. Vac. Sci. Technol. B (2)

S. J. Spector, D. K. Astolfi, S. P. Doran, T. M. Lyszczarz, and J. E. Raynolds, “Infrared frequency selective surfaces fabricated using optical lithography and phase-shift masks,” J. Vac. Sci. Technol. B 19(6), 2757–2760 (2001).
[Crossref]

D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, and E. D. Wolf, “Infrared mesh filters fabricated by electron‐beam lithography,” J. Vac. Sci. Technol. B 3(1), 268–271 (1985).
[Crossref]

JOSA B (1)

L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S. Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” JOSA B 23(5), 823–833 (2006).
[Crossref]

Nano Lett. (5)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Z.-J. Yang, T. J. Antosiewicz, R. Verre, F. J. García de Abajo, S. P. Apell, and M. Käll, “Ultimate limit of light extinction by nanophotonic structures,” Nano Lett. 15(11), 7633–7638 (2015).
[Crossref] [PubMed]

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[Crossref] [PubMed]

Opt. Express (7)

R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16(25), 20295–20305 (2008).
[Crossref] [PubMed]

N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express 19(12), 11034–11051 (2011).
[Crossref] [PubMed]

P. Alonso-González, P. Albella, F. Golmar, L. Arzubiaga, F. Casanova, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, “Visualizing the near-field coupling and interference of bonding and anti-bonding modes in infrared dimer nanoantennas,” Opt. Express 21(1), 1270–1280 (2013).
[Crossref] [PubMed]

J. D’ Archangel, E. Tucker, E. Kinzel, E. A. Muller, H. A. Bechtel, M. C. Martin, M. B. Raschke, and G. Boreman, “Near- and far-field spectroscopic imaging investigation of resonant square-loop infrared metasurfaces,” Opt. Express 21(14), 17150–17160 (2013).
[Crossref] [PubMed]

J. D’ Archangel, E. Tucker, M. B. Raschke, and G. Boreman, “Array truncation effects in infrared frequency selective surfaces,” Opt. Express 22(13), 16645–16659 (2014).
[Crossref] [PubMed]

E. Tucker, J. D’ Archangel, M. B. Raschke, and G. Boreman, “Near-field investigation of the effect of the array edge on the resonance of loop frequency selective surface elements at mid-infrared wavelengths,” Opt. Express 23(9), 10974–10985 (2015).
[Crossref] [PubMed]

J. E. Sanchez, R. Díaz de León, F. Mendoza-Santoyo, G. González, M. José-Yacaman, A. Ponce, and F. J. González, “Resonance properties of Ag-ZnO nanostructures at terahertz frequencies,” Opt. Express 23(19), 25111–25117 (2015).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. B Condens. Matter (2)

J. Aizpurua, G. W. Bryant, L. J. Richter, F. G. De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B Condens. Matter 71(23), 235420 (2005).
[Crossref]

F. Hao, P. Nordlander, M. T. Burnett, and S. A. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B Condens. Matter 76(24), 245417 (2007).
[Crossref]

Phys. Rev. Lett. (1)

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Rev. Sci. Instrum (1)

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum.  83, 033704 (2012).

Science (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Other (1)

G. A. Vandenbosch, Computational Electromagnetics in Plasmonics (INTECH Open Access Publisher, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 SEM micrographs of the (a) small (b) medium and (c) large square loop structures on ZnS, each having a periodicity of 5 µm.
Fig. 2
Fig. 2 Schematic of the s-SNOM apparatus which utilizes a modified AFM operating in tapping mode. An s-polarized beam having a wavelength of 10.6 µm from a CO2 laser is reflected off a beam splitter (BS) towards an off-axis parabolic (OAP) reflector, which focuses the beam onto the sample at an angle of 60° off-normal (θ). The AFM tip, operating at a frequency of Ω and positioned within close proximity of the beam spot, scatters the near-field signal into the far-field. The scattered radiation is collected by the same OAP used for excitation and directed back towards the BS. Meanwhile, part of the incident beam is transmitted through the BS into a reference path. In this path a quarter wave plate (QWP) rotates the polarization and a moveable reference mirror (MRM) reflects the beam back to the BS. At the BS the reference beam is combined with the scattered radiation from the sample which is then focused to a MCT detector using another OAP. This configuration allows for determination of both amplitude and phase of the near-field polarized normal to the surface plane.
Fig. 3
Fig. 3 Graph showing simulated absorptance (blue dashed line) and reflected phase (red solid line) versus edge length for loops of 5 µm periodicity when the structures were illuminated with a 10.6 μm wavelength incident wave 60° off-normal to the surface plane.
Fig. 4
Fig. 4 Graphs of experimental absorptivity as a function of angle of incidence and wavelength for the (a) small, (c) medium, and (e) large square loop elements on ZnS. In addition, graphs of corresponding simulated spectral and polar angular absorptivity are shown for the (b) small, (d) medium, and (f) large square loops. Values for the z-axis, represented by the color bar, indicate absorptivity. The experimental results were obtained by FT-IR measurements under normal incidence and HDR under all other angle of incidence shown in the plot. The simulated results were obtained by calculating the reflection coefficient versus wavelength (µm) at all angles of incidence. Dashed lines indicate approximate locations of fundamental, second order, and third order modes for the small, medium and large loops, respectively. Dotted lines in (c) and (d) indicate the location of a fundamental resonance for the medium loop while the dash-dotted lines in (e) and (f) indicate the location of a second order resonance for the large loop.
Fig. 5
Fig. 5 Measured (a, c, e) and simulated (b, d, f) amplitude near-field images for the small, medium, and large square loop array on ZnS with a periodicity of 5 µm when excited with a 10.6 µm wavelength radiation at 60° off-normal angle of incidence. In the measured amplitude images the values for the z-axis, represented by the color bar, are proportional to amplitude of Ez.
Fig. 6
Fig. 6 Measured (a, c, e) and simulated (b,d,f) near-field phase images for the small, medium and large square loop array on ZnS with a periodicity of 5 µm when excited with a 10.6 µm wavelength radiation at 60° off-normal angle of incidence.
Fig. 7
Fig. 7 (a) Simulated near-field amplitude image for the medium size loop on ZnS with a periodicity of 5 µm when excited with a 10.5 µm wavelength radiation at normal incidence. In the simulated amplitude image the values for the z-axis are |Ez|, which are represented by the color bar and have been normalized to the experimental amplitude data for the small square loop structure. This was done with all the simulated near-field data to provide for a better comparison with the experimental amplitude data. In the simulated amplitude image the values for the z-axis, represented by the color bar, shows amplitude of Ez (b) Graph showing simulated results of integrated |Ez| at the peak wavelength (λp) versus angle of incidence for the medium loop. The |Ez| was integrated across the whole unit cell 0.1 µm above the surface.
Fig. 8
Fig. 8 Graph of resonance frequency versus resonance mode number derived for the medium size loop derived from the simulated data plotted in Fig. 4(d). Here, the angle of incidence is 60° off normal. The red line is present to act as a guide to the eye and illustrate the roughly linear relationship.
Fig. 9
Fig. 9 Simulated near-field amplitude images for the (a) small and (b) large size loops on ZnS with a periodicity of 5 µm when excited with a 10.5 µm wavelength radiation at normal incidence. In the simulated amplitude images the values for the z-axis are |Ez|, which are represented by the color bars and have been normalized to the experimental amplitude data for the small square loop structure. This was done with all the simulated near-field data to provide for a better comparison with the experimental amplitude data.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S d I= | E scat + E ref | 2 + I b = | E scat | 2 + | E ref | 2 +2| E scat × E ref |cosϕ+ I b

Metrics