Abstract

Circular dichroism (CD) is useful in molecular chemistry, pharmaceuticals, and bio-sensing. In this paper, twisted Z-shaped nanostructure (TZN) is proposed to achieve giant CD. The TZN is composed of three vertical and twisted nanorods. Given that the resonance of vertical nanorod is only observable for left circularly polarized light excitation but is subdued for right circularly polarized light excitation, which leads to the giant CD effect approaching 88%. The subdued resonance of vertical nanorod can be excited by rotating the bottom nanorod. The CD properties can be tuned by the length of nanorods and the gap between them. These results would guide the design of plasmonic chiral nanostructures for achieving giant CD effect.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable circular dichroism created by surface plasmons in bilayer twisted tetramer nanostructure arrays

Mingdi Zhang, Qieni Lu, and Hairong Zheng
J. Opt. Soc. Am. B 35(4) 689-693 (2018)

Enhanced circular dichroism of crossed nanorods with nanowire

Mingyan Wang, Fei Wang, Yu Qu, Tiankun Wang, Yuyan Chen, Yu Bai, and Zhongyue Zhang
Appl. Opt. 57(23) 6721-6724 (2018)

Giant circular dichroism induced by silver nanocuboid heterodimers

Wan Zhang, Yongkai Wang, Xiaojing Wen, and Zhongyue Zhang
Appl. Opt. 54(31) 9359-9363 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. M. Kelly, T. J. Jess, and N. C. Price, “How to study proteins by circular dichroism,” Biochim. Biophys. Acta 1751(2), 119–139 (2005).
    [Crossref] [PubMed]
  2. M. Takezaki and Y. Kito, “Circular dichroism of rhodopsin and isorhodopsin,” Nature 215(5106), 1197–1199 (1967).
    [Crossref] [PubMed]
  3. A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
    [Crossref] [PubMed]
  4. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
    [Crossref] [PubMed]
  5. W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(2689), 2689 (2013).
    [PubMed]
  6. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref] [PubMed]
  7. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(870), 870 (2012).
    [Crossref] [PubMed]
  8. Y. Yu, Z. Yang, S. Li, and M. Zhao, “Higher extinction ratio circular polarizers with hetero-structured double-helical metamaterials,” Opt. Express 19(11), 10886–10894 (2011).
    [Crossref] [PubMed]
  9. J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
    [Crossref] [PubMed]
  10. T. J. Davis and E. Hendry, “Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures,” Phys. Rev. B 87(8), 085405 (2013).
    [Crossref]
  11. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
    [Crossref]
  12. M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6(11), 10355–10365 (2012).
    [Crossref] [PubMed]
  13. C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
    [Crossref] [PubMed]
  14. Y. He, G. K. Larsen, W. Ingram, and Y. Zhao, “Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers,” Nano Lett. 14(4), 1976–1981 (2014).
    [Crossref] [PubMed]
  15. Y. Wang, J. Deng, G. Wang, T. Fu, Y. Qu, and Z. Zhang, “Plasmonic chirality of L-shaped nanostructure composed of two slices with different thickness,” Opt. Express 24(3), 2307–2317 (2016).
    [Crossref] [PubMed]
  16. J. Deng, J. Fu, J. Ng, and Z. Huang, “Tailorable chiroptical activity of metallic nanospiral arrays,” Nanoscale 8(8), 4504–4510 (2016).
    [Crossref] [PubMed]
  17. J. Hu, X. Zhao, R. Li, A. Zhu, L. Chen, Y. Lin, B. Cao, X. Zhu, and C. Wang, “Broadband circularly polarizing dichroism with high efficient plasmonic helical surface,” Opt. Express 24(10), 11023–11032 (2016).
    [Crossref] [PubMed]
  18. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
    [Crossref] [PubMed]
  19. W. X. Huang, Y. Zhang, X. M. Tang, L. S. Cai, J. W. Zhao, L. Zhou, Q. J. Wang, C. P. Huang, and Y. Y. Zhu, “Optical properties of a planar metamaterial with chiral symmetry breaking,” Opt. Lett. 36(17), 3359–3361 (2011).
    [Crossref] [PubMed]
  20. F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B 86(7), 075428 (2012).
    [Crossref]
  21. X. Lu, J. Wu, Q. Zhu, J. Zhao, Q. Wang, L. Zhan, and W. Ni, “Circular dichroism from single plasmonic nanostructures with extrinsic chirality,” Nanoscale 6(23), 14244–14253 (2014).
    [Crossref] [PubMed]
  22. P. Zhang, M. Zhao, L. Wu, Z. Lu, Z. Xie, Y. Zheng, J. Duan, and Z. Yang, “Giant circular polarization conversion in layer-by-layer nonchiral metamaterial,” J. Opt. Soc. Am. A 30(9), 1714–1718 (2013).
    [Crossref] [PubMed]
  23. X. R. Tian, Y. R. Fang, and B. Zhang, “Multipolar Fano resonances and Fano-assisted optical activity in silver nanorice heterodimers,” ACS Photonics 1(11), 1156–1164 (2014).
    [Crossref]
  24. Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
    [Crossref] [PubMed]
  25. J. Dong, J. Zhou, T. Koschny, and C. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express 17(16), 14172–14179 (2009).
    [Crossref] [PubMed]
  26. M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
    [Crossref] [PubMed]
  27. N. Liu, H. Liu, S. N. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
    [Crossref]
  28. X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
    [Crossref] [PubMed]
  29. Y. Zhu, X. Y. Hu, Z. Chai, H. Yang, and Q. H. Gong, “Active control of chirality in nonlinear metamaterials,” Appl. Phys. Lett. 106(9), 091109 (2015).
    [Crossref]
  30. B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Circular dichroism induced by Fano resonances in planar chiral oligomers,” Laser Photonics Rev. 10(1), 137–146 (2016).
    [Crossref]
  31. S. Zu, Y. Bao, and Z. Fang, “Planar plasmonic chiral nanostructures,” Nanoscale 8(7), 3900–3905 (2016).
    [Crossref] [PubMed]
  32. M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
    [Crossref] [PubMed]
  33. A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
    [Crossref] [PubMed]
  34. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  35. B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88(5), 053819 (2013).
    [Crossref]
  36. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
    [Crossref] [PubMed]

2016 (7)

Y. Wang, J. Deng, G. Wang, T. Fu, Y. Qu, and Z. Zhang, “Plasmonic chirality of L-shaped nanostructure composed of two slices with different thickness,” Opt. Express 24(3), 2307–2317 (2016).
[Crossref] [PubMed]

J. Deng, J. Fu, J. Ng, and Z. Huang, “Tailorable chiroptical activity of metallic nanospiral arrays,” Nanoscale 8(8), 4504–4510 (2016).
[Crossref] [PubMed]

J. Hu, X. Zhao, R. Li, A. Zhu, L. Chen, Y. Lin, B. Cao, X. Zhu, and C. Wang, “Broadband circularly polarizing dichroism with high efficient plasmonic helical surface,” Opt. Express 24(10), 11023–11032 (2016).
[Crossref] [PubMed]

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Circular dichroism induced by Fano resonances in planar chiral oligomers,” Laser Photonics Rev. 10(1), 137–146 (2016).
[Crossref]

S. Zu, Y. Bao, and Z. Fang, “Planar plasmonic chiral nanostructures,” Nanoscale 8(7), 3900–3905 (2016).
[Crossref] [PubMed]

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

2015 (1)

Y. Zhu, X. Y. Hu, Z. Chai, H. Yang, and Q. H. Gong, “Active control of chirality in nonlinear metamaterials,” Appl. Phys. Lett. 106(9), 091109 (2015).
[Crossref]

2014 (4)

Y. He, G. K. Larsen, W. Ingram, and Y. Zhao, “Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers,” Nano Lett. 14(4), 1976–1981 (2014).
[Crossref] [PubMed]

X. Lu, J. Wu, Q. Zhu, J. Zhao, Q. Wang, L. Zhan, and W. Ni, “Circular dichroism from single plasmonic nanostructures with extrinsic chirality,” Nanoscale 6(23), 14244–14253 (2014).
[Crossref] [PubMed]

X. R. Tian, Y. R. Fang, and B. Zhang, “Multipolar Fano resonances and Fano-assisted optical activity in silver nanorice heterodimers,” ACS Photonics 1(11), 1156–1164 (2014).
[Crossref]

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

2013 (6)

P. Zhang, M. Zhao, L. Wu, Z. Lu, Z. Xie, Y. Zheng, J. Duan, and Z. Yang, “Giant circular polarization conversion in layer-by-layer nonchiral metamaterial,” J. Opt. Soc. Am. A 30(9), 1714–1718 (2013).
[Crossref] [PubMed]

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88(5), 053819 (2013).
[Crossref]

T. J. Davis and E. Hendry, “Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures,” Phys. Rev. B 87(8), 085405 (2013).
[Crossref]

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(2689), 2689 (2013).
[PubMed]

2012 (4)

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(870), 870 (2012).
[Crossref] [PubMed]

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6(11), 10355–10365 (2012).
[Crossref] [PubMed]

F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B 86(7), 075428 (2012).
[Crossref]

2011 (2)

2010 (2)

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[Crossref] [PubMed]

2009 (5)

N. Liu, H. Liu, S. N. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[Crossref]

J. Dong, J. Zhou, T. Koschny, and C. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express 17(16), 14172–14179 (2009).
[Crossref] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

2005 (2)

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

S. M. Kelly, T. J. Jess, and N. C. Price, “How to study proteins by circular dichroism,” Biochim. Biophys. Acta 1751(2), 119–139 (2005).
[Crossref] [PubMed]

2004 (1)

J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
[Crossref] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1967 (1)

M. Takezaki and Y. Kito, “Circular dichroism of rhodopsin and isorhodopsin,” Nature 215(5106), 1197–1199 (1967).
[Crossref] [PubMed]

Aizpurua, J.

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

Alù, A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(870), 870 (2012).
[Crossref] [PubMed]

Arju, N.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Bai, P.

M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6(11), 10355–10365 (2012).
[Crossref] [PubMed]

Bao, Y.

S. Zu, Y. Bao, and Z. Fang, “Planar plasmonic chiral nanostructures,” Nanoscale 8(7), 3900–3905 (2016).
[Crossref] [PubMed]

Barron, L. D.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Belkin, M. A.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(870), 870 (2012).
[Crossref] [PubMed]

Blaber, M. G.

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

Cai, L. S.

Cai, W.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

Cao, B.

Carpy, T.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Chai, Z.

Y. Zhu, X. Y. Hu, Z. Chai, H. Yang, and Q. H. Gong, “Active control of chirality in nonlinear metamaterials,” Appl. Phys. Lett. 106(9), 091109 (2015).
[Crossref]

Chen, L.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cui, Y.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

Davis, T. J.

T. J. Davis and E. Hendry, “Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures,” Phys. Rev. B 87(8), 085405 (2013).
[Crossref]

F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B 86(7), 075428 (2012).
[Crossref]

Decker, M.

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Deng, J.

Ding, L.

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(2689), 2689 (2013).
[PubMed]

Dong, J.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

J. Dong, J. Zhou, T. Koschny, and C. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express 17(16), 14172–14179 (2009).
[Crossref] [PubMed]

Duan, J.

Eftekhari, F.

F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B 86(7), 075428 (2012).
[Crossref]

Fan, Z.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Fang, Y. R.

X. R. Tian, Y. R. Fang, and B. Zhang, “Multipolar Fano resonances and Fano-assisted optical activity in silver nanorice heterodimers,” ACS Photonics 1(11), 1156–1164 (2014).
[Crossref]

Fang, Z.

S. Zu, Y. Bao, and Z. Fang, “Planar plasmonic chiral nanostructures,” Nanoscale 8(7), 3900–3905 (2016).
[Crossref] [PubMed]

Fedotov, V. A.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Fry, H. C.

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

Fu, J.

J. Deng, J. Fu, J. Ng, and Z. Huang, “Tailorable chiroptical activity of metallic nanospiral arrays,” Nanoscale 8(8), 4504–4510 (2016).
[Crossref] [PubMed]

Fu, T.

Gadegaard, N.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Giessen, H.

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6(11), 10355–10365 (2012).
[Crossref] [PubMed]

N. Liu, H. Liu, S. N. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[Crossref]

Gong, Q. H.

Y. Zhu, X. Y. Hu, Z. Chai, H. Yang, and Q. H. Gong, “Active control of chirality in nonlinear metamaterials,” Appl. Phys. Lett. 106(9), 091109 (2015).
[Crossref]

Govorov, A. O.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Hao, F.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

He, Y.

Y. He, G. K. Larsen, W. Ingram, and Y. Zhao, “Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers,” Nano Lett. 14(4), 1976–1981 (2014).
[Crossref] [PubMed]

Hendry, E.

T. J. Davis and E. Hendry, “Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures,” Phys. Rev. B 87(8), 085405 (2013).
[Crossref]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Hentschel, M.

M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6(11), 10355–10365 (2012).
[Crossref] [PubMed]

Hillenbrand, R.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

Högele, A.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Hopkins, B.

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Circular dichroism induced by Fano resonances in planar chiral oligomers,” Laser Photonics Rev. 10(1), 137–146 (2016).
[Crossref]

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88(5), 053819 (2013).
[Crossref]

Hu, J.

Hu, X. Y.

Y. Zhu, X. Y. Hu, Z. Chai, H. Yang, and Q. H. Gong, “Active control of chirality in nonlinear metamaterials,” Appl. Phys. Lett. 106(9), 091109 (2015).
[Crossref]

Huang, C. P.

Huang, W. X.

Huang, Z.

J. Deng, J. Fu, J. Ng, and Z. Huang, “Tailorable chiroptical activity of metallic nanospiral arrays,” Nanoscale 8(8), 4504–4510 (2016).
[Crossref] [PubMed]

Ingram, W.

Y. He, G. K. Larsen, W. Ingram, and Y. Zhao, “Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers,” Nano Lett. 14(4), 1976–1981 (2014).
[Crossref] [PubMed]

Ino, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Jefimovs, K.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Jess, T. J.

S. M. Kelly, T. J. Jess, and N. C. Price, “How to study proteins by circular dichroism,” Biochim. Biophys. Acta 1751(2), 119–139 (2005).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Johnston, J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Kadodwala, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Kang, L.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

Kauranen, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Kelly, S. M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

S. M. Kelly, T. J. Jess, and N. C. Price, “How to study proteins by circular dichroism,” Biochim. Biophys. Acta 1751(2), 119–139 (2005).
[Crossref] [PubMed]

Khanikaev, A. B.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

Kito, Y.

M. Takezaki and Y. Kito, “Circular dichroism of rhodopsin and isorhodopsin,” Nature 215(5106), 1197–1199 (1967).
[Crossref] [PubMed]

Kivshar, Y. S.

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Circular dichroism induced by Fano resonances in planar chiral oligomers,” Laser Photonics Rev. 10(1), 137–146 (2016).
[Crossref]

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88(5), 053819 (2013).
[Crossref]

Koschny, T.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

J. Dong, J. Zhou, T. Koschny, and C. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express 17(16), 14172–14179 (2009).
[Crossref] [PubMed]

Kotov, N. A.

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(2689), 2689 (2013).
[PubMed]

Kuang, H.

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(2689), 2689 (2013).
[PubMed]

Kuwata-Gonokami, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Kuzyk, A.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Lan, S.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

Lapthorn, A. J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Larsen, G. K.

Y. He, G. K. Larsen, W. Ingram, and Y. Zhao, “Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers,” Nano Lett. 14(4), 1976–1981 (2014).
[Crossref] [PubMed]

Lee, J.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Li, E. P.

M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6(11), 10355–10365 (2012).
[Crossref] [PubMed]

Li, R.

Li, S.

Liedl, T.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Lin, Y.

Linden, S.

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Liu, H.

N. Liu, H. Liu, S. N. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[Crossref]

Liu, N.

N. Liu, H. Liu, S. N. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[Crossref]

Lu, F.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Lu, X.

X. Lu, J. Wu, Q. Zhu, J. Zhao, Q. Wang, L. Zhan, and W. Ni, “Circular dichroism from single plasmonic nanostructures with extrinsic chirality,” Nanoscale 6(23), 14244–14253 (2014).
[Crossref] [PubMed]

Lu, Z.

Ma, W.

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(2689), 2689 (2013).
[PubMed]

Maier, S. A.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Metzger, B.

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

Mikhaylovskiy, R. V.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Miroshnichenko, A. E.

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Circular dichroism induced by Fano resonances in planar chiral oligomers,” Laser Photonics Rev. 10(1), 137–146 (2016).
[Crossref]

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88(5), 053819 (2013).
[Crossref]

Moshchalkov, V. V.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Neuman, T.

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

Ng, J.

J. Deng, J. Fu, J. Ng, and Z. Huang, “Tailorable chiroptical activity of metallic nanospiral arrays,” Nanoscale 8(8), 4504–4510 (2016).
[Crossref] [PubMed]

Ni, W.

X. Lu, J. Wu, Q. Zhu, J. Zhao, Q. Wang, L. Zhan, and W. Ni, “Circular dichroism from single plasmonic nanostructures with extrinsic chirality,” Nanoscale 6(23), 14244–14253 (2014).
[Crossref] [PubMed]

Nordlander, P.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Pardatscher, G.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
[Crossref] [PubMed]

Plum, E.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Poddubny, A. N.

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Circular dichroism induced by Fano resonances in planar chiral oligomers,” Laser Photonics Rev. 10(1), 137–146 (2016).
[Crossref]

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88(5), 053819 (2013).
[Crossref]

Popland, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Price, N. C.

S. M. Kelly, T. J. Jess, and N. C. Price, “How to study proteins by circular dichroism,” Biochim. Biophys. Acta 1751(2), 119–139 (2005).
[Crossref] [PubMed]

Purtseladze, D.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Qu, Y.

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Rodrigues, S.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

Roller, E.-M.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Rosi, N. L.

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Saito, N.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Sarriugarte, P.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

Schäferling, M.

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6(11), 10355–10365 (2012).
[Crossref] [PubMed]

Schatz, G. C.

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

Schnell, M.

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Schreiber, R.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Shvets, G.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

Simmel, F. C.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Sobhani, H.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Song, C.

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

Sonnefraud, Y.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Soukoulis, C.

Soukoulis, C. M.

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[Crossref] [PubMed]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Svirko, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Takezaki, M.

M. Takezaki and Y. Kito, “Circular dichroism of rhodopsin and isorhodopsin,” Nature 215(5106), 1197–1199 (1967).
[Crossref] [PubMed]

Tang, X. M.

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Tian, X. R.

X. R. Tian, Y. R. Fang, and B. Zhang, “Multipolar Fano resonances and Fano-assisted optical activity in silver nanorice heterodimers,” ACS Photonics 1(11), 1156–1164 (2014).
[Crossref]

Turunen, J.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Vallius, T.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Van Dorpe, P.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Verellen, N.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Wang, C.

Wang, G.

Wang, L.

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(2689), 2689 (2013).
[PubMed]

Wang, Q.

X. Lu, J. Wu, Q. Zhu, J. Zhao, Q. Wang, L. Zhan, and W. Ni, “Circular dichroism from single plasmonic nanostructures with extrinsic chirality,” Nanoscale 6(23), 14244–14253 (2014).
[Crossref] [PubMed]

Wang, Q. J.

Wang, Y.

Wegener, M.

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Wu, J.

X. Lu, J. Wu, Q. Zhu, J. Zhao, Q. Wang, L. Zhan, and W. Ni, “Circular dichroism from single plasmonic nanostructures with extrinsic chirality,” Nanoscale 6(23), 14244–14253 (2014).
[Crossref] [PubMed]

Wu, L.

P. Zhang, M. Zhao, L. Wu, Z. Lu, Z. Xie, Y. Zheng, J. Duan, and Z. Yang, “Giant circular polarization conversion in layer-by-layer nonchiral metamaterial,” J. Opt. Soc. Am. A 30(9), 1714–1718 (2013).
[Crossref] [PubMed]

M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6(11), 10355–10365 (2012).
[Crossref] [PubMed]

Xie, Z.

Xu, C.

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(2689), 2689 (2013).
[PubMed]

Xu, L.

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(2689), 2689 (2013).
[PubMed]

Yang, H.

Y. Zhu, X. Y. Hu, Z. Chai, H. Yang, and Q. H. Gong, “Active control of chirality in nonlinear metamaterials,” Appl. Phys. Lett. 106(9), 091109 (2015).
[Crossref]

Yang, Z.

Yin, X.

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

Yu, Y.

Zhan, L.

X. Lu, J. Wu, Q. Zhu, J. Zhao, Q. Wang, L. Zhan, and W. Ni, “Circular dichroism from single plasmonic nanostructures with extrinsic chirality,” Nanoscale 6(23), 14244–14253 (2014).
[Crossref] [PubMed]

Zhang, B.

X. R. Tian, Y. R. Fang, and B. Zhang, “Multipolar Fano resonances and Fano-assisted optical activity in silver nanorice heterodimers,” ACS Photonics 1(11), 1156–1164 (2014).
[Crossref]

Zhang, P.

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

P. Zhang, M. Zhao, L. Wu, Z. Lu, Z. Xie, Y. Zheng, J. Duan, and Z. Yang, “Giant circular polarization conversion in layer-by-layer nonchiral metamaterial,” J. Opt. Soc. Am. A 30(9), 1714–1718 (2013).
[Crossref] [PubMed]

Zhang, Y.

Zhang, Z.

Zhao, G.

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

Zhao, J.

X. Lu, J. Wu, Q. Zhu, J. Zhao, Q. Wang, L. Zhan, and W. Ni, “Circular dichroism from single plasmonic nanostructures with extrinsic chirality,” Nanoscale 6(23), 14244–14253 (2014).
[Crossref] [PubMed]

Zhao, J. W.

Zhao, M.

Zhao, R.

Zhao, X.

Zhao, Y.

Y. He, G. K. Larsen, W. Ingram, and Y. Zhao, “Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers,” Nano Lett. 14(4), 1976–1981 (2014).
[Crossref] [PubMed]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(870), 870 (2012).
[Crossref] [PubMed]

Zheludev, N. I.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Zheng, Y.

Zhou, J.

J. Dong, J. Zhou, T. Koschny, and C. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express 17(16), 14172–14179 (2009).
[Crossref] [PubMed]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Zhou, L.

Zhu, A.

Zhu, Q.

X. Lu, J. Wu, Q. Zhu, J. Zhao, Q. Wang, L. Zhan, and W. Ni, “Circular dichroism from single plasmonic nanostructures with extrinsic chirality,” Nanoscale 6(23), 14244–14253 (2014).
[Crossref] [PubMed]

Zhu, S. N.

N. Liu, H. Liu, S. N. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[Crossref]

Zhu, X.

Zhu, Y.

Y. Zhu, X. Y. Hu, Z. Chai, H. Yang, and Q. H. Gong, “Active control of chirality in nonlinear metamaterials,” Appl. Phys. Lett. 106(9), 091109 (2015).
[Crossref]

Zhu, Y. Y.

Zu, S.

S. Zu, Y. Bao, and Z. Fang, “Planar plasmonic chiral nanostructures,” Nanoscale 8(7), 3900–3905 (2016).
[Crossref] [PubMed]

ACS Nano (1)

M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6(11), 10355–10365 (2012).
[Crossref] [PubMed]

ACS Photonics (1)

X. R. Tian, Y. R. Fang, and B. Zhang, “Multipolar Fano resonances and Fano-assisted optical activity in silver nanorice heterodimers,” ACS Photonics 1(11), 1156–1164 (2014).
[Crossref]

Appl. Phys. Lett. (1)

Y. Zhu, X. Y. Hu, Z. Chai, H. Yang, and Q. H. Gong, “Active control of chirality in nonlinear metamaterials,” Appl. Phys. Lett. 106(9), 091109 (2015).
[Crossref]

Biochim. Biophys. Acta (1)

S. M. Kelly, T. J. Jess, and N. C. Price, “How to study proteins by circular dichroism,” Biochim. Biophys. Acta 1751(2), 119–139 (2005).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Laser Photonics Rev. (1)

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Circular dichroism induced by Fano resonances in planar chiral oligomers,” Laser Photonics Rev. 10(1), 137–146 (2016).
[Crossref]

Nano Lett. (6)

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

Y. He, G. K. Larsen, W. Ingram, and Y. Zhao, “Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers,” Nano Lett. 14(4), 1976–1981 (2014).
[Crossref] [PubMed]

Nanoscale (3)

J. Deng, J. Fu, J. Ng, and Z. Huang, “Tailorable chiroptical activity of metallic nanospiral arrays,” Nanoscale 8(8), 4504–4510 (2016).
[Crossref] [PubMed]

X. Lu, J. Wu, Q. Zhu, J. Zhao, Q. Wang, L. Zhan, and W. Ni, “Circular dichroism from single plasmonic nanostructures with extrinsic chirality,” Nanoscale 6(23), 14244–14253 (2014).
[Crossref] [PubMed]

S. Zu, Y. Bao, and Z. Fang, “Planar plasmonic chiral nanostructures,” Nanoscale 8(7), 3900–3905 (2016).
[Crossref] [PubMed]

Nat. Commun. (3)

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(2689), 2689 (2013).
[PubMed]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(870), 870 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

N. Liu, H. Liu, S. N. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[Crossref]

Nature (2)

M. Takezaki and Y. Kito, “Circular dichroism of rhodopsin and isorhodopsin,” Nature 215(5106), 1197–1199 (1967).
[Crossref] [PubMed]

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. A (1)

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88(5), 053819 (2013).
[Crossref]

Phys. Rev. B (4)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B 86(7), 075428 (2012).
[Crossref]

T. J. Davis and E. Hendry, “Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures,” Phys. Rev. B 87(8), 085405 (2013).
[Crossref]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Phys. Rev. Lett. (1)

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Science (2)

J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Configuration of TZN arrays and parameters definition (a), where the unit cell with the associated geometric features are designated in (b) x-z plane and (c) x-y plane.
Fig. 2
Fig. 2 The absorption and CD spectra of TZN arrays (a) under LCP and RCP illuminations; (b) under x and y polarization excitations.
Fig. 3
Fig. 3 The proportional current densities and the equivalent electric dipole moments at the absorption peaks for TZN under x polarizations excitation (a) and (b); under LCP excitation (c) and (d), and RCP excitation (e) and (f). The red arrows denote the direction of current densities; the black arrows reveal the direction of small current densities distributions; the purple arrows represent the equivalent electric dipole moments of nanorods.
Fig. 4
Fig. 4 The absorption and CD spectra of TZN arrays with varied θ values.
Fig. 5
Fig. 5 The CD spectra of TZN arrays with (a) varied G values, (b) varied H and L values, (c) varied H values, and (d) varied L values.
Fig. 6
Fig. 6 The CD spectra of TNZ arrays with different displacements: (a) displacement of vertical nanorod Δx (the vertical nanorod and the top nanorod are well-aligned); (b) displacement of top nanorod Δy (the bottom nanorod and the vertical nanorod are well-aligned).

Metrics