Abstract

The performance of digital back-propagation (DBP) for distributed Raman amplified optical communication systems is evaluated through analytical models and numerical simulations, and is compared with conventional lumped amplifier solutions, such as EDFA. The complexity of the DBP algorithm including the characteristic signal power profile of distributed Raman amplifiers is assessed. The use of full-field DBP in distributed Raman amplified systems leads to 1.3 dB additional gain with respect to systems employing lumped amplification, at the cost of only a 25% increase in complexity.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Optical back propagation for fiber optic networks with hybrid EDFA Raman amplification

Xiaojun Liang and Shiva Kumar
Opt. Express 25(5) 5031-5043 (2017)

Modulation format dependence of digital nonlinearity compensation performance in optical fibre communication systems

Tianhua Xu, Nikita A. Shevchenko, Domaniç Lavery, Daniel Semrau, Gabriele Liga, Alex Alvarado, Robert I. Killey, and Polina Bayvel
Opt. Express 25(4) 3311-3326 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. S. Pelouch,“Raman amplification: an enabling technology for long-haul coherent transmission systems,” J. Lightwave Technol. 34(1), 6–19 (2016).
    [Crossref]
  2. A. Ellis, M. Tan, M. Iqbal, M. Al-Khateeb, V. Gordienko, G. SaavedraMondaca, S. Fabbri, M. Stephens, M. McCarthy, A. Perentos, I. Phillips, D. Lavery, G. Liga, R. Maher, P. Harper, N. Doran, S. Turitsyn, S. Sygletos, and P. Bayvel, “4 Tb/s transmission reach enhancement using 10 × 400 Gb/s super-channels and polarization insensitive dual band optical phase conjugation,” J. Lightwave Technol. 34(8), 1717–1723 (2016).
    [Crossref]
  3. R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5, 8214(2015).
    [Crossref] [PubMed]
  4. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).
    [Crossref]
  5. N. A. Shevchenko, T. Xu, D. Semrau, G. Saavedra, G. Liga, M. Paskov, L. Galdino, A. Alvarado, R. I. Killey, and P. Bayvel, “Achievable information rates estimation for 100-nm Raman-amplified optical transmission system,” in Proceedings of European Conference on Optical Communication (ECOC)2016, paper 878.
  6. E. Yamazaki, A. Sano, T. Kobayashi, E. Yoshida, and Y. Miyamoto, “Mitigation of nonlinearities in optical transmission systems,” in Optical Fiber Communication Conference 2011, OSA Technical Digest (Optical Society of America, 2011), paper OThF1.
  7. A. Sano, H. Takara, T. Kobayashi, and Y. Miyamoto, “Crosstalk-managed high capacity long haul multicore fiber transmission with propagation-direction interleaving,” J. Lightwave Technol. 32(16), 2771–2779 (2014).
    [Crossref]
  8. K. Toyoda, Y. Koizumi, T. Omiya, M. Yoshida, T. Hirooka, and M. Nakazawa, “Marked performance improvement of 256 QAM transmission using a digital back-propagation method,” Opt. Express 20(18), 19815–19821 (2012).
    [Crossref] [PubMed]
  9. L. Galdino, M. Tan, A. Alvarado, D. Lavery, P. Rosa, R. Maher, J. D. Ania-Castanon, P. Harper, S. Makovejs, B. C. Thomsen, and P. Bayvel, “Amplification schemes and multi-channel DBP for unrepeatered transmission,” J. Lightwave Technol. 34(9), 2221–2227 (2016).
    [Crossref]
  10. P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “The GN-model of fiber non-linear propagation and its applications,” J. Lightwave Technol. 32(4), 694–721 (2014).
    [Crossref]
  11. A. Carena, G. Bosco, V. Curri, Y. Jiang, P. Poggiolini, and F. Forghieri, “EGN model of non-linear fiber propagation,” Opt. Express 22(13), 16335–16362 (2014).
    [Crossref] [PubMed]
  12. R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Accumulation of nonlinear interference noise in fiber-optic systems,” Opt. Express 22(12), 14199–14211 (2014).
    [Crossref] [PubMed]
  13. A. D. Ellis, S. T. Le, M. A. Z. Al-Khateeb, S. K. Turitsyn, G. Liga, D. Lavery, T. Xu, and P. Bayvel, “The impact of phase conjugation on the nonlinear-Shannon limit: The difference between optical and electrical phase conjugation,” in Proceedings of IEEE Summer Topical meeting on Nonlinear Optical Signal Processing (IEEE2015), Vol. 2, pp. 209–210.
  14. J. Bromage, “Raman amplification for fiber communications systems,” J. Lightw. Technol. 22(1),79–93 (2004).
    [Crossref]
  15. R. Maher, A. Alvarado, D. Lavery, and Polina Bayvel, “Increasing the information rates of optical communications via coded modulation: a study of transceiver performance,” Sci. Rep. 6, 21278 (2016).
    [Crossref]
  16. G. Liga, T. Xu, A. Alvarado, R. I. Killey, and P. Bayvel, “On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission,” Opt. Express 22(24)22, 30053–30062 (2014).
    [Crossref]
  17. R.-J Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [Crossref]

2016 (4)

2015 (1)

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5, 8214(2015).
[Crossref] [PubMed]

2014 (5)

2012 (1)

2010 (1)

2008 (1)

2004 (1)

J. Bromage, “Raman amplification for fiber communications systems,” J. Lightw. Technol. 22(1),79–93 (2004).
[Crossref]

Al-Khateeb, M.

Al-Khateeb, M. A. Z.

A. D. Ellis, S. T. Le, M. A. Z. Al-Khateeb, S. K. Turitsyn, G. Liga, D. Lavery, T. Xu, and P. Bayvel, “The impact of phase conjugation on the nonlinear-Shannon limit: The difference between optical and electrical phase conjugation,” in Proceedings of IEEE Summer Topical meeting on Nonlinear Optical Signal Processing (IEEE2015), Vol. 2, pp. 209–210.

Alvarado, A.

R. Maher, A. Alvarado, D. Lavery, and Polina Bayvel, “Increasing the information rates of optical communications via coded modulation: a study of transceiver performance,” Sci. Rep. 6, 21278 (2016).
[Crossref]

L. Galdino, M. Tan, A. Alvarado, D. Lavery, P. Rosa, R. Maher, J. D. Ania-Castanon, P. Harper, S. Makovejs, B. C. Thomsen, and P. Bayvel, “Amplification schemes and multi-channel DBP for unrepeatered transmission,” J. Lightwave Technol. 34(9), 2221–2227 (2016).
[Crossref]

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5, 8214(2015).
[Crossref] [PubMed]

G. Liga, T. Xu, A. Alvarado, R. I. Killey, and P. Bayvel, “On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission,” Opt. Express 22(24)22, 30053–30062 (2014).
[Crossref]

N. A. Shevchenko, T. Xu, D. Semrau, G. Saavedra, G. Liga, M. Paskov, L. Galdino, A. Alvarado, R. I. Killey, and P. Bayvel, “Achievable information rates estimation for 100-nm Raman-amplified optical transmission system,” in Proceedings of European Conference on Optical Communication (ECOC)2016, paper 878.

Ania-Castanon, J. D.

Bayvel, P.

L. Galdino, M. Tan, A. Alvarado, D. Lavery, P. Rosa, R. Maher, J. D. Ania-Castanon, P. Harper, S. Makovejs, B. C. Thomsen, and P. Bayvel, “Amplification schemes and multi-channel DBP for unrepeatered transmission,” J. Lightwave Technol. 34(9), 2221–2227 (2016).
[Crossref]

A. Ellis, M. Tan, M. Iqbal, M. Al-Khateeb, V. Gordienko, G. SaavedraMondaca, S. Fabbri, M. Stephens, M. McCarthy, A. Perentos, I. Phillips, D. Lavery, G. Liga, R. Maher, P. Harper, N. Doran, S. Turitsyn, S. Sygletos, and P. Bayvel, “4 Tb/s transmission reach enhancement using 10 × 400 Gb/s super-channels and polarization insensitive dual band optical phase conjugation,” J. Lightwave Technol. 34(8), 1717–1723 (2016).
[Crossref]

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5, 8214(2015).
[Crossref] [PubMed]

G. Liga, T. Xu, A. Alvarado, R. I. Killey, and P. Bayvel, “On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission,” Opt. Express 22(24)22, 30053–30062 (2014).
[Crossref]

A. D. Ellis, S. T. Le, M. A. Z. Al-Khateeb, S. K. Turitsyn, G. Liga, D. Lavery, T. Xu, and P. Bayvel, “The impact of phase conjugation on the nonlinear-Shannon limit: The difference between optical and electrical phase conjugation,” in Proceedings of IEEE Summer Topical meeting on Nonlinear Optical Signal Processing (IEEE2015), Vol. 2, pp. 209–210.

N. A. Shevchenko, T. Xu, D. Semrau, G. Saavedra, G. Liga, M. Paskov, L. Galdino, A. Alvarado, R. I. Killey, and P. Bayvel, “Achievable information rates estimation for 100-nm Raman-amplified optical transmission system,” in Proceedings of European Conference on Optical Communication (ECOC)2016, paper 878.

Bayvel, Polina

R. Maher, A. Alvarado, D. Lavery, and Polina Bayvel, “Increasing the information rates of optical communications via coded modulation: a study of transceiver performance,” Sci. Rep. 6, 21278 (2016).
[Crossref]

Bosco, G.

Bromage, J.

J. Bromage, “Raman amplification for fiber communications systems,” J. Lightw. Technol. 22(1),79–93 (2004).
[Crossref]

Carena, A.

Curri, V.

Dar, R.

Doran, N.

Ellis, A.

Ellis, A. D.

A. D. Ellis, S. T. Le, M. A. Z. Al-Khateeb, S. K. Turitsyn, G. Liga, D. Lavery, T. Xu, and P. Bayvel, “The impact of phase conjugation on the nonlinear-Shannon limit: The difference between optical and electrical phase conjugation,” in Proceedings of IEEE Summer Topical meeting on Nonlinear Optical Signal Processing (IEEE2015), Vol. 2, pp. 209–210.

Essiambre, R.-J

Fabbri, S.

Feder, M.

Forghieri, F.

Foschini, G. J.

Galdino, L.

L. Galdino, M. Tan, A. Alvarado, D. Lavery, P. Rosa, R. Maher, J. D. Ania-Castanon, P. Harper, S. Makovejs, B. C. Thomsen, and P. Bayvel, “Amplification schemes and multi-channel DBP for unrepeatered transmission,” J. Lightwave Technol. 34(9), 2221–2227 (2016).
[Crossref]

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5, 8214(2015).
[Crossref] [PubMed]

N. A. Shevchenko, T. Xu, D. Semrau, G. Saavedra, G. Liga, M. Paskov, L. Galdino, A. Alvarado, R. I. Killey, and P. Bayvel, “Achievable information rates estimation for 100-nm Raman-amplified optical transmission system,” in Proceedings of European Conference on Optical Communication (ECOC)2016, paper 878.

Goebel, B.

Gordienko, V.

Harper, P.

Hirooka, T.

Ip, E.

Iqbal, M.

Jiang, Y.

Kahn, J. M.

Killey, R. I.

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5, 8214(2015).
[Crossref] [PubMed]

G. Liga, T. Xu, A. Alvarado, R. I. Killey, and P. Bayvel, “On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission,” Opt. Express 22(24)22, 30053–30062 (2014).
[Crossref]

N. A. Shevchenko, T. Xu, D. Semrau, G. Saavedra, G. Liga, M. Paskov, L. Galdino, A. Alvarado, R. I. Killey, and P. Bayvel, “Achievable information rates estimation for 100-nm Raman-amplified optical transmission system,” in Proceedings of European Conference on Optical Communication (ECOC)2016, paper 878.

Kobayashi, T.

A. Sano, H. Takara, T. Kobayashi, and Y. Miyamoto, “Crosstalk-managed high capacity long haul multicore fiber transmission with propagation-direction interleaving,” J. Lightwave Technol. 32(16), 2771–2779 (2014).
[Crossref]

E. Yamazaki, A. Sano, T. Kobayashi, E. Yoshida, and Y. Miyamoto, “Mitigation of nonlinearities in optical transmission systems,” in Optical Fiber Communication Conference 2011, OSA Technical Digest (Optical Society of America, 2011), paper OThF1.

Koizumi, Y.

Kramer, G.

Lavery, D.

R. Maher, A. Alvarado, D. Lavery, and Polina Bayvel, “Increasing the information rates of optical communications via coded modulation: a study of transceiver performance,” Sci. Rep. 6, 21278 (2016).
[Crossref]

A. Ellis, M. Tan, M. Iqbal, M. Al-Khateeb, V. Gordienko, G. SaavedraMondaca, S. Fabbri, M. Stephens, M. McCarthy, A. Perentos, I. Phillips, D. Lavery, G. Liga, R. Maher, P. Harper, N. Doran, S. Turitsyn, S. Sygletos, and P. Bayvel, “4 Tb/s transmission reach enhancement using 10 × 400 Gb/s super-channels and polarization insensitive dual band optical phase conjugation,” J. Lightwave Technol. 34(8), 1717–1723 (2016).
[Crossref]

L. Galdino, M. Tan, A. Alvarado, D. Lavery, P. Rosa, R. Maher, J. D. Ania-Castanon, P. Harper, S. Makovejs, B. C. Thomsen, and P. Bayvel, “Amplification schemes and multi-channel DBP for unrepeatered transmission,” J. Lightwave Technol. 34(9), 2221–2227 (2016).
[Crossref]

A. D. Ellis, S. T. Le, M. A. Z. Al-Khateeb, S. K. Turitsyn, G. Liga, D. Lavery, T. Xu, and P. Bayvel, “The impact of phase conjugation on the nonlinear-Shannon limit: The difference between optical and electrical phase conjugation,” in Proceedings of IEEE Summer Topical meeting on Nonlinear Optical Signal Processing (IEEE2015), Vol. 2, pp. 209–210.

Le, S. T.

A. D. Ellis, S. T. Le, M. A. Z. Al-Khateeb, S. K. Turitsyn, G. Liga, D. Lavery, T. Xu, and P. Bayvel, “The impact of phase conjugation on the nonlinear-Shannon limit: The difference between optical and electrical phase conjugation,” in Proceedings of IEEE Summer Topical meeting on Nonlinear Optical Signal Processing (IEEE2015), Vol. 2, pp. 209–210.

Liga, G.

A. Ellis, M. Tan, M. Iqbal, M. Al-Khateeb, V. Gordienko, G. SaavedraMondaca, S. Fabbri, M. Stephens, M. McCarthy, A. Perentos, I. Phillips, D. Lavery, G. Liga, R. Maher, P. Harper, N. Doran, S. Turitsyn, S. Sygletos, and P. Bayvel, “4 Tb/s transmission reach enhancement using 10 × 400 Gb/s super-channels and polarization insensitive dual band optical phase conjugation,” J. Lightwave Technol. 34(8), 1717–1723 (2016).
[Crossref]

G. Liga, T. Xu, A. Alvarado, R. I. Killey, and P. Bayvel, “On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission,” Opt. Express 22(24)22, 30053–30062 (2014).
[Crossref]

A. D. Ellis, S. T. Le, M. A. Z. Al-Khateeb, S. K. Turitsyn, G. Liga, D. Lavery, T. Xu, and P. Bayvel, “The impact of phase conjugation on the nonlinear-Shannon limit: The difference between optical and electrical phase conjugation,” in Proceedings of IEEE Summer Topical meeting on Nonlinear Optical Signal Processing (IEEE2015), Vol. 2, pp. 209–210.

N. A. Shevchenko, T. Xu, D. Semrau, G. Saavedra, G. Liga, M. Paskov, L. Galdino, A. Alvarado, R. I. Killey, and P. Bayvel, “Achievable information rates estimation for 100-nm Raman-amplified optical transmission system,” in Proceedings of European Conference on Optical Communication (ECOC)2016, paper 878.

Maher, R.

Makovejs, S.

McCarthy, M.

Mecozzi, A.

Miyamoto, Y.

A. Sano, H. Takara, T. Kobayashi, and Y. Miyamoto, “Crosstalk-managed high capacity long haul multicore fiber transmission with propagation-direction interleaving,” J. Lightwave Technol. 32(16), 2771–2779 (2014).
[Crossref]

E. Yamazaki, A. Sano, T. Kobayashi, E. Yoshida, and Y. Miyamoto, “Mitigation of nonlinearities in optical transmission systems,” in Optical Fiber Communication Conference 2011, OSA Technical Digest (Optical Society of America, 2011), paper OThF1.

Nakazawa, M.

Omiya, T.

Paskov, M.

N. A. Shevchenko, T. Xu, D. Semrau, G. Saavedra, G. Liga, M. Paskov, L. Galdino, A. Alvarado, R. I. Killey, and P. Bayvel, “Achievable information rates estimation for 100-nm Raman-amplified optical transmission system,” in Proceedings of European Conference on Optical Communication (ECOC)2016, paper 878.

Pelouch, W. S.

Perentos, A.

Phillips, I.

Poggiolini, P.

Rosa, P.

Saavedra, G.

N. A. Shevchenko, T. Xu, D. Semrau, G. Saavedra, G. Liga, M. Paskov, L. Galdino, A. Alvarado, R. I. Killey, and P. Bayvel, “Achievable information rates estimation for 100-nm Raman-amplified optical transmission system,” in Proceedings of European Conference on Optical Communication (ECOC)2016, paper 878.

SaavedraMondaca, G.

Sano, A.

A. Sano, H. Takara, T. Kobayashi, and Y. Miyamoto, “Crosstalk-managed high capacity long haul multicore fiber transmission with propagation-direction interleaving,” J. Lightwave Technol. 32(16), 2771–2779 (2014).
[Crossref]

E. Yamazaki, A. Sano, T. Kobayashi, E. Yoshida, and Y. Miyamoto, “Mitigation of nonlinearities in optical transmission systems,” in Optical Fiber Communication Conference 2011, OSA Technical Digest (Optical Society of America, 2011), paper OThF1.

Sato, M.

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5, 8214(2015).
[Crossref] [PubMed]

Savory, S. J.

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5, 8214(2015).
[Crossref] [PubMed]

Semrau, D.

N. A. Shevchenko, T. Xu, D. Semrau, G. Saavedra, G. Liga, M. Paskov, L. Galdino, A. Alvarado, R. I. Killey, and P. Bayvel, “Achievable information rates estimation for 100-nm Raman-amplified optical transmission system,” in Proceedings of European Conference on Optical Communication (ECOC)2016, paper 878.

Shevchenko, N. A.

N. A. Shevchenko, T. Xu, D. Semrau, G. Saavedra, G. Liga, M. Paskov, L. Galdino, A. Alvarado, R. I. Killey, and P. Bayvel, “Achievable information rates estimation for 100-nm Raman-amplified optical transmission system,” in Proceedings of European Conference on Optical Communication (ECOC)2016, paper 878.

Shi, K.

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5, 8214(2015).
[Crossref] [PubMed]

Shtaif, M.

Stephens, M.

Sygletos, S.

Takara, H.

Tan, M.

Thomsen, B. C.

L. Galdino, M. Tan, A. Alvarado, D. Lavery, P. Rosa, R. Maher, J. D. Ania-Castanon, P. Harper, S. Makovejs, B. C. Thomsen, and P. Bayvel, “Amplification schemes and multi-channel DBP for unrepeatered transmission,” J. Lightwave Technol. 34(9), 2221–2227 (2016).
[Crossref]

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5, 8214(2015).
[Crossref] [PubMed]

Toyoda, K.

Turitsyn, S.

Turitsyn, S. K.

A. D. Ellis, S. T. Le, M. A. Z. Al-Khateeb, S. K. Turitsyn, G. Liga, D. Lavery, T. Xu, and P. Bayvel, “The impact of phase conjugation on the nonlinear-Shannon limit: The difference between optical and electrical phase conjugation,” in Proceedings of IEEE Summer Topical meeting on Nonlinear Optical Signal Processing (IEEE2015), Vol. 2, pp. 209–210.

Winzer, P. J.

Xu, T.

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5, 8214(2015).
[Crossref] [PubMed]

G. Liga, T. Xu, A. Alvarado, R. I. Killey, and P. Bayvel, “On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission,” Opt. Express 22(24)22, 30053–30062 (2014).
[Crossref]

N. A. Shevchenko, T. Xu, D. Semrau, G. Saavedra, G. Liga, M. Paskov, L. Galdino, A. Alvarado, R. I. Killey, and P. Bayvel, “Achievable information rates estimation for 100-nm Raman-amplified optical transmission system,” in Proceedings of European Conference on Optical Communication (ECOC)2016, paper 878.

A. D. Ellis, S. T. Le, M. A. Z. Al-Khateeb, S. K. Turitsyn, G. Liga, D. Lavery, T. Xu, and P. Bayvel, “The impact of phase conjugation on the nonlinear-Shannon limit: The difference between optical and electrical phase conjugation,” in Proceedings of IEEE Summer Topical meeting on Nonlinear Optical Signal Processing (IEEE2015), Vol. 2, pp. 209–210.

Yamazaki, E.

E. Yamazaki, A. Sano, T. Kobayashi, E. Yoshida, and Y. Miyamoto, “Mitigation of nonlinearities in optical transmission systems,” in Optical Fiber Communication Conference 2011, OSA Technical Digest (Optical Society of America, 2011), paper OThF1.

Yoshida, E.

E. Yamazaki, A. Sano, T. Kobayashi, E. Yoshida, and Y. Miyamoto, “Mitigation of nonlinearities in optical transmission systems,” in Optical Fiber Communication Conference 2011, OSA Technical Digest (Optical Society of America, 2011), paper OThF1.

Yoshida, M.

J. Lightw. Technol. (1)

J. Bromage, “Raman amplification for fiber communications systems,” J. Lightw. Technol. 22(1),79–93 (2004).
[Crossref]

J. Lightwave Technol. (7)

A. Sano, H. Takara, T. Kobayashi, and Y. Miyamoto, “Crosstalk-managed high capacity long haul multicore fiber transmission with propagation-direction interleaving,” J. Lightwave Technol. 32(16), 2771–2779 (2014).
[Crossref]

R.-J Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
[Crossref]

W. S. Pelouch,“Raman amplification: an enabling technology for long-haul coherent transmission systems,” J. Lightwave Technol. 34(1), 6–19 (2016).
[Crossref]

A. Ellis, M. Tan, M. Iqbal, M. Al-Khateeb, V. Gordienko, G. SaavedraMondaca, S. Fabbri, M. Stephens, M. McCarthy, A. Perentos, I. Phillips, D. Lavery, G. Liga, R. Maher, P. Harper, N. Doran, S. Turitsyn, S. Sygletos, and P. Bayvel, “4 Tb/s transmission reach enhancement using 10 × 400 Gb/s super-channels and polarization insensitive dual band optical phase conjugation,” J. Lightwave Technol. 34(8), 1717–1723 (2016).
[Crossref]

E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).
[Crossref]

L. Galdino, M. Tan, A. Alvarado, D. Lavery, P. Rosa, R. Maher, J. D. Ania-Castanon, P. Harper, S. Makovejs, B. C. Thomsen, and P. Bayvel, “Amplification schemes and multi-channel DBP for unrepeatered transmission,” J. Lightwave Technol. 34(9), 2221–2227 (2016).
[Crossref]

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “The GN-model of fiber non-linear propagation and its applications,” J. Lightwave Technol. 32(4), 694–721 (2014).
[Crossref]

Opt. Express (4)

Sci. Rep. (2)

R. Maher, A. Alvarado, D. Lavery, and Polina Bayvel, “Increasing the information rates of optical communications via coded modulation: a study of transceiver performance,” Sci. Rep. 6, 21278 (2016).
[Crossref]

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5, 8214(2015).
[Crossref] [PubMed]

Other (3)

N. A. Shevchenko, T. Xu, D. Semrau, G. Saavedra, G. Liga, M. Paskov, L. Galdino, A. Alvarado, R. I. Killey, and P. Bayvel, “Achievable information rates estimation for 100-nm Raman-amplified optical transmission system,” in Proceedings of European Conference on Optical Communication (ECOC)2016, paper 878.

E. Yamazaki, A. Sano, T. Kobayashi, E. Yoshida, and Y. Miyamoto, “Mitigation of nonlinearities in optical transmission systems,” in Optical Fiber Communication Conference 2011, OSA Technical Digest (Optical Society of America, 2011), paper OThF1.

A. D. Ellis, S. T. Le, M. A. Z. Al-Khateeb, S. K. Turitsyn, G. Liga, D. Lavery, T. Xu, and P. Bayvel, “The impact of phase conjugation on the nonlinear-Shannon limit: The difference between optical and electrical phase conjugation,” in Proceedings of IEEE Summer Topical meeting on Nonlinear Optical Signal Processing (IEEE2015), Vol. 2, pp. 209–210.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematics of the simulation system. (b) Signal power profiles used for Raman (red) and EDFA systems (blue).
Fig. 2
Fig. 2 Benefits of DBP for Raman amplified systems for the super-channel system. (a) Received SNR as a function of signal launch power at 2000 km, (b) received SNR as a function of distance at optimum launch power. Circles and squares represent EDFA and Raman simulated systems respectively. Open markers correspond to EDC only and solid markers correspond to the use of DBP. Solid lines represent GN model predictions.
Fig. 3
Fig. 3 Gain obtained from performing FF-DBP using different steps per span.
Fig. 4
Fig. 4 (a) Calculated SNR, (b) SNR gain over the EDFA EDC performance and (c) mutual information (MI) as a function of back-propagated bandwidth for C-band loaded Raman and EDFA amplified systems. (a) Solid lines represent the SNR after DBP, dashed line represents the EDC performance of the Raman amplified system. (b) Solid lines represent the SNR gains over EDFA using EDC and dashed line represents the EDC performance of the Raman amplified system. (c) Solid lines and dash-dot lines represent the achievable rates after DBP for EDFA and Raman systems using 64- and 256QAM respectively.

Tables (1)

Tables Icon

Table 1 Fibre parameters

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

SNR = P P ASE + P s s + P s n ,
P s s = N s 1 + ϵ η P 3 ,
P s n 3 P ASE ξ η P 2 ,
ξ k = 1 N s k 1 + ϵ ,
η = 16 γ 2 27 R s 2 B 2 B 2 Π ( f 1 + f 2 B ) ρ ( f 1 , f 2 ) d f 1 d f 2 ,
d P s d z = α s P s + C R P p P s ,
d P p d z = α p P p + ( λ s λ p ) C R P p P s ,
ρ EDFA = | 1 e α s L s e j 4 π 2 f 1 f 2 β 2 L s α s j 4 π 2 f 1 f 2 β 2 L s | 2 ,
ρ Raman = | e C R P p 0 α p 0 L s e α s z e C R P p 0 α p e α p z e j 4 π 2 f 1 f 2 β 2 z d z | 2 ,
S N R FF DBP S N R EDC = 3 1 2 N 3 ϵ 3 + 1 2 2 5 3 ξ 1 2 η 1 6 P ASE 1 3
Δ S N R FF DBP S N R EDC [ dB ] 1 6 η [ dB ] 1 3 P A S E [ dB ]
P s s = ( N s 1 + ϵ c η c N s 1 + ϵ D B P η D B P ) P 3 ,

Metrics