Abstract

Reduced graphene oxide (rGO) sheet wrapped on the tapered region of microfiber is demonstrated to enhance the interaction between rGO and strong evanescent field of optical fiber. The 405 nm and 980 nm lasers are employed to illuminate the rGO to investigate the response characteristics of the optical transmitted power (λ = 1550 nm) in the MF. The transmitted optical power of the MF with rGO changes with ~1.7 dB relative variation when the violet light is ranging from 0 mW to 12 mW (~0.21dB/mW) in the outside-pumped experiment. And in the inside-pumped experiment, the change of the 980 nm laser power from 0 mW to 156.5 mW makes ~6 dB relative variation power of the transmitted optical powers of the MF with rGO. These results indicate the optical transmitted power of the MF with wrapped rGO can be manipulated by the 405 and 980 nm light (order of mW), which signifies the device can potentially be applied as all optically and versatilely controllable devices.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

10 March 2017: A correction was made to the author listing.


OSA Recommended Articles
Side polished fiber with coated graphene sheet and its control characteristic of violet light

Yiting Wang, Huaan Liu, Yuan Wang, Weiqia Qiu, Jun Zhang, Zhengwen Tian, Jianhui Yu, Jieyuan Tang, Yunhan Luo, Heyuan Guan, Zhe Chen, and Huihui Lu
Opt. Mater. Express 6(6) 2088-2094 (2016)

Micro fiber with cladding of titanium dioxide (TiO2) nanoparticles and its violet light sensing

Donghui He, Yang Hu, Jun Tao, Xiaojie Zheng, Huaan Liu, Guangyin Jing, Huihui Lu, Heyuan Guan, Jianhui Yu, Jun Zhang, Jieyuan Tang, Yunhan Luo, and Zhe Chen
Opt. Mater. Express 7(1) 264-272 (2017)

All light-control-light properties of molybdenum diselenide (MoSe2)-coated-microfiber

Dao Zhang, Heyuan Guan, Wenguo Zhu, Jianhui Yu, Huihui Lu, Wentao Qiu, Jiangli Dong, Jun Zhang, Yunhan Luo, and Zhe Chen
Opt. Express 25(23) 28536-28546 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  2. Y. Xiao, J. Yu, L. Shun, S. Tan, X. Cai, Y. Luo, J. Zhang, H. Dong, H. Lu, H. Guan, Y. Zhong, J. Tang, and Z. Chen, “Reduced graphene oxide for fiber-optic toluene gas sensing,” Opt. Express 24(25), 28290–28302 (2016).
    [Crossref] [PubMed]
  3. S. F. Pei and H. M. Cheng, “The reduction of graphene oxide,” Carbon 50(9), 3210–3228 (2012).
    [Crossref]
  4. X. Liu, J. Yang, W. Zhao, Y. Wang, Z. Li, and Z. Lin, “A simple route to reduced graphene oxide-draped nanocomposites with markedly enhanced visible-light photocatalytic performance,” Small 12(30), 4077–4085 (2016).
    [Crossref] [PubMed]
  5. Y. Sang, Z. Zhao, J. Tian, P. Hao, H. Jiang, H. Liu, and J. P. Claverie, “Enhanced photocatalytic property of reduced graphene oxide/TiO2 nanobelt surface heterostructures constructed by an in situ photochemical reduction method,” Small 10(18), 3775–3782 (2014).
    [Crossref] [PubMed]
  6. G. H. Lu, L. E. Ocola, and J. H. Chen, “Gas detection using low-temperature reduced graphene oxide sheets,” Appl. Phys. Lett. 94, 083111 (2009).
  7. S. P. Wu, R. Xu, M. J. Lu, R. Y. Ge, J. Iocozzia, C. P. Han, B. B. Jiang, and Z. Q. Lin, “Graphene-Containing Nanomaterials for Lithium-Ion Batteries,” Adv. Energy Mater. 5(21), 1500400 (2015).
    [Crossref]
  8. L. Sun, Y. Bai, N. Zhang, and K. Sun, “The facile preparation of a cobalt disulfide-reduced graphene oxide composite film as an efficient counter electrode for dye-sensitized solar cells,” Chem. Commun. (Camb.) 51(10), 1846–1849 (2015).
    [Crossref] [PubMed]
  9. W. Tang, L. Peng, C. Q. Yuan, J. Wang, S. B. Mo, C. Y. Zhao, Y. H. Yu, Y. G. Min, and A. J. Epstein, “Facile synthesis of 3D reduced graphene oxide and its polyaniline composite for super capacitor application,” Synth. Met. 202, 140–146 (2015).
    [Crossref]
  10. B. Liang, P. Zhang, J. Q. Wang, J. Qu, L. F. Wang, X. X. Wang, C. F. Guan, and K. Pan, “Membranes with selective laminar nanochannels of modified reduced graphene oxide for water purification,” Carbon 103, 94–100 (2016).
    [Crossref]
  11. L. Gao, T. Zhu, Y. J. Li, W. Huang, and M. Liu, “Watt-level ultrafast fiber laser based on weak evanescent interaction with reduced graphene oxide,” IEEE Photonics Technol. Lett. 28(11), 1245–1248 (2016).
    [Crossref]
  12. J. Koo, J. Park, Y. W. Song, S. Lee, K. Lee, and J. H. Lee, “Fiber optic polarization beam splitter using a reduced graphene oxide-based interlayer,” Opt. Mater. 46, 324–328 (2015).
    [Crossref]
  13. L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
    [Crossref]
  14. J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
    [Crossref] [PubMed]
  15. Y. Li and L. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33(4), 303–305 (2008).
    [Crossref] [PubMed]
  16. X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
    [Crossref]
  17. X. Xing, H. Zhu, Y. Wang, and B. Li, “Ultracompact photonic coupling splitters twisted by PTT nanowires,” Nano Lett. 8(9), 2839–2843 (2008).
    [Crossref] [PubMed]
  18. Z. W. Tian, H. H. Lu, B. Yang, Y. T. Wang, W. Q. Qiu, J. H. Yu, J. Y. Tang, Y. H. Luo, X. Cai, S. Z. Tan, Z. Chen, and J. Zhang, “Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing,” IEEE Photonics Technol. Lett. 27(7), 798–801 (2015).
    [Crossref]
  19. S. Yu, C. Meng, B. Chen, H. Wang, X. Wu, W. Liu, S. Zhang, Y. Liu, Y. Su, and L. Tong, “Graphene decorated microfiber for ultrafast optical modulation,” Opt. Express 23(8), 10764–10770 (2015).
    [Crossref] [PubMed]
  20. W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
    [Crossref] [PubMed]
  21. Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
    [Crossref]
  22. J. H. Chen, B. C. Zheng, G. H. Shao, S. J. Ge, F. Xu, and Y. Q. Lu, “An all-optical modulator based on a stereo graphene-microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
    [Crossref]
  23. X. Q. Wu, S. L. Yu, H. R. Yang, W. L. Li, X. M. Liu, and L. M. Tong, “Effective transfer of micron-size graphene to microfibers for photonic applications,” Carbon 96, 1114–1119 (2016).
    [Crossref]
  24. N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater. 11(3), 771–778 (1999).
    [Crossref]
  25. S. Thakur and N. Karak, “Green reduction of graphene oxide by aqueous phytoextracts,” Carbon 50(14), 5331–5339 (2012).
    [Crossref]
  26. M. A. A. Rosli, P. T. Arasu, A. S. M. Noor, H. N. Lim, and N. M. Huang, “Reduced graphene oxide nano-composites layer on fiber optic tip sensor reflectance response for sensing of aqueous ethanol,” J. Eur. Opt. Soc-Rapid 12(22), 0224 (2016).
  27. B. C. Yao, Y. Wu, C. B. Yu, J. R. He, Y. J. Rao, Y. Gong, F. Fu, Y. F. Chen, and Y. R. Li, “Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection,” Sci. Rep.-UK 6, 23706 (2016).
  28. H. Ahmad, M. T. Rahman, S. N. A. Sakeh, M. Z. A. Razak, and M. Z. Zulkifli, “Humidity sensor based on microfiber resonator with reduced graphene oxide,” Optik (Stuttg.) 127(5), 3158–3161 (2016).
    [Crossref]
  29. S. Sadhukhan, T. K. Ghosh, D. Rana, I. Roy, A. Bhattacharyya, G. Sarkar, M. Chakraborty, and D. Chattopadhyay, “Studies on synthesis of reduced graphene oxide (RGO) via green route and its electrical property,” Mater. Res. Bull. 79, 41–51 (2016).
    [Crossref]
  30. J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
    [Crossref]
  31. L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
    [Crossref]
  32. A. R. Wright and C. Zhang, “Dynamic conductivity of graphene with electron-LO-phonon interaction,” Phys. Rev. B 81(16), 165413 (2010).
    [Crossref]

2016 (9)

Y. Xiao, J. Yu, L. Shun, S. Tan, X. Cai, Y. Luo, J. Zhang, H. Dong, H. Lu, H. Guan, Y. Zhong, J. Tang, and Z. Chen, “Reduced graphene oxide for fiber-optic toluene gas sensing,” Opt. Express 24(25), 28290–28302 (2016).
[Crossref] [PubMed]

X. Liu, J. Yang, W. Zhao, Y. Wang, Z. Li, and Z. Lin, “A simple route to reduced graphene oxide-draped nanocomposites with markedly enhanced visible-light photocatalytic performance,” Small 12(30), 4077–4085 (2016).
[Crossref] [PubMed]

B. Liang, P. Zhang, J. Q. Wang, J. Qu, L. F. Wang, X. X. Wang, C. F. Guan, and K. Pan, “Membranes with selective laminar nanochannels of modified reduced graphene oxide for water purification,” Carbon 103, 94–100 (2016).
[Crossref]

L. Gao, T. Zhu, Y. J. Li, W. Huang, and M. Liu, “Watt-level ultrafast fiber laser based on weak evanescent interaction with reduced graphene oxide,” IEEE Photonics Technol. Lett. 28(11), 1245–1248 (2016).
[Crossref]

X. Q. Wu, S. L. Yu, H. R. Yang, W. L. Li, X. M. Liu, and L. M. Tong, “Effective transfer of micron-size graphene to microfibers for photonic applications,” Carbon 96, 1114–1119 (2016).
[Crossref]

M. A. A. Rosli, P. T. Arasu, A. S. M. Noor, H. N. Lim, and N. M. Huang, “Reduced graphene oxide nano-composites layer on fiber optic tip sensor reflectance response for sensing of aqueous ethanol,” J. Eur. Opt. Soc-Rapid 12(22), 0224 (2016).

B. C. Yao, Y. Wu, C. B. Yu, J. R. He, Y. J. Rao, Y. Gong, F. Fu, Y. F. Chen, and Y. R. Li, “Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection,” Sci. Rep.-UK 6, 23706 (2016).

H. Ahmad, M. T. Rahman, S. N. A. Sakeh, M. Z. A. Razak, and M. Z. Zulkifli, “Humidity sensor based on microfiber resonator with reduced graphene oxide,” Optik (Stuttg.) 127(5), 3158–3161 (2016).
[Crossref]

S. Sadhukhan, T. K. Ghosh, D. Rana, I. Roy, A. Bhattacharyya, G. Sarkar, M. Chakraborty, and D. Chattopadhyay, “Studies on synthesis of reduced graphene oxide (RGO) via green route and its electrical property,” Mater. Res. Bull. 79, 41–51 (2016).
[Crossref]

2015 (7)

J. H. Chen, B. C. Zheng, G. H. Shao, S. J. Ge, F. Xu, and Y. Q. Lu, “An all-optical modulator based on a stereo graphene-microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
[Crossref]

J. Koo, J. Park, Y. W. Song, S. Lee, K. Lee, and J. H. Lee, “Fiber optic polarization beam splitter using a reduced graphene oxide-based interlayer,” Opt. Mater. 46, 324–328 (2015).
[Crossref]

S. P. Wu, R. Xu, M. J. Lu, R. Y. Ge, J. Iocozzia, C. P. Han, B. B. Jiang, and Z. Q. Lin, “Graphene-Containing Nanomaterials for Lithium-Ion Batteries,” Adv. Energy Mater. 5(21), 1500400 (2015).
[Crossref]

L. Sun, Y. Bai, N. Zhang, and K. Sun, “The facile preparation of a cobalt disulfide-reduced graphene oxide composite film as an efficient counter electrode for dye-sensitized solar cells,” Chem. Commun. (Camb.) 51(10), 1846–1849 (2015).
[Crossref] [PubMed]

W. Tang, L. Peng, C. Q. Yuan, J. Wang, S. B. Mo, C. Y. Zhao, Y. H. Yu, Y. G. Min, and A. J. Epstein, “Facile synthesis of 3D reduced graphene oxide and its polyaniline composite for super capacitor application,” Synth. Met. 202, 140–146 (2015).
[Crossref]

Z. W. Tian, H. H. Lu, B. Yang, Y. T. Wang, W. Q. Qiu, J. H. Yu, J. Y. Tang, Y. H. Luo, X. Cai, S. Z. Tan, Z. Chen, and J. Zhang, “Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing,” IEEE Photonics Technol. Lett. 27(7), 798–801 (2015).
[Crossref]

S. Yu, C. Meng, B. Chen, H. Wang, X. Wu, W. Liu, S. Zhang, Y. Liu, Y. Su, and L. Tong, “Graphene decorated microfiber for ultrafast optical modulation,” Opt. Express 23(8), 10764–10770 (2015).
[Crossref] [PubMed]

2014 (4)

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

Y. Sang, Z. Zhao, J. Tian, P. Hao, H. Jiang, H. Liu, and J. P. Claverie, “Enhanced photocatalytic property of reduced graphene oxide/TiO2 nanobelt surface heterostructures constructed by an in situ photochemical reduction method,” Small 10(18), 3775–3782 (2014).
[Crossref] [PubMed]

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

2013 (1)

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

2012 (3)

S. F. Pei and H. M. Cheng, “The reduction of graphene oxide,” Carbon 50(9), 3210–3228 (2012).
[Crossref]

L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[Crossref]

S. Thakur and N. Karak, “Green reduction of graphene oxide by aqueous phytoextracts,” Carbon 50(14), 5331–5339 (2012).
[Crossref]

2011 (1)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

2010 (1)

A. R. Wright and C. Zhang, “Dynamic conductivity of graphene with electron-LO-phonon interaction,” Phys. Rev. B 81(16), 165413 (2010).
[Crossref]

2009 (1)

G. H. Lu, L. E. Ocola, and J. H. Chen, “Gas detection using low-temperature reduced graphene oxide sheets,” Appl. Phys. Lett. 94, 083111 (2009).

2008 (3)

Y. Li and L. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33(4), 303–305 (2008).
[Crossref] [PubMed]

X. Xing, H. Zhu, Y. Wang, and B. Li, “Ultracompact photonic coupling splitters twisted by PTT nanowires,” Nano Lett. 8(9), 2839–2843 (2008).
[Crossref] [PubMed]

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
[Crossref]

2006 (1)

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

1999 (1)

N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater. 11(3), 771–778 (1999).
[Crossref]

Ahmad, H.

H. Ahmad, M. T. Rahman, S. N. A. Sakeh, M. Z. A. Razak, and M. Z. Zulkifli, “Humidity sensor based on microfiber resonator with reduced graphene oxide,” Optik (Stuttg.) 127(5), 3158–3161 (2016).
[Crossref]

Arasu, P. T.

M. A. A. Rosli, P. T. Arasu, A. S. M. Noor, H. N. Lim, and N. M. Huang, “Reduced graphene oxide nano-composites layer on fiber optic tip sensor reflectance response for sensing of aqueous ethanol,” J. Eur. Opt. Soc-Rapid 12(22), 0224 (2016).

Bai, Y.

L. Sun, Y. Bai, N. Zhang, and K. Sun, “The facile preparation of a cobalt disulfide-reduced graphene oxide composite film as an efficient counter electrode for dye-sensitized solar cells,” Chem. Commun. (Camb.) 51(10), 1846–1849 (2015).
[Crossref] [PubMed]

Bao, J.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Bhattacharyya, A.

S. Sadhukhan, T. K. Ghosh, D. Rana, I. Roy, A. Bhattacharyya, G. Sarkar, M. Chakraborty, and D. Chattopadhyay, “Studies on synthesis of reduced graphene oxide (RGO) via green route and its electrical property,” Mater. Res. Bull. 79, 41–51 (2016).
[Crossref]

Buzaneva, E. V.

N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater. 11(3), 771–778 (1999).
[Crossref]

Cai, X.

Y. Xiao, J. Yu, L. Shun, S. Tan, X. Cai, Y. Luo, J. Zhang, H. Dong, H. Lu, H. Guan, Y. Zhong, J. Tang, and Z. Chen, “Reduced graphene oxide for fiber-optic toluene gas sensing,” Opt. Express 24(25), 28290–28302 (2016).
[Crossref] [PubMed]

Z. W. Tian, H. H. Lu, B. Yang, Y. T. Wang, W. Q. Qiu, J. H. Yu, J. Y. Tang, Y. H. Luo, X. Cai, S. Z. Tan, Z. Chen, and J. Zhang, “Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing,” IEEE Photonics Technol. Lett. 27(7), 798–801 (2015).
[Crossref]

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Cao, D.

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Chakraborty, M.

S. Sadhukhan, T. K. Ghosh, D. Rana, I. Roy, A. Bhattacharyya, G. Sarkar, M. Chakraborty, and D. Chattopadhyay, “Studies on synthesis of reduced graphene oxide (RGO) via green route and its electrical property,” Mater. Res. Bull. 79, 41–51 (2016).
[Crossref]

Chattopadhyay, D.

S. Sadhukhan, T. K. Ghosh, D. Rana, I. Roy, A. Bhattacharyya, G. Sarkar, M. Chakraborty, and D. Chattopadhyay, “Studies on synthesis of reduced graphene oxide (RGO) via green route and its electrical property,” Mater. Res. Bull. 79, 41–51 (2016).
[Crossref]

Chen, B.

S. Yu, C. Meng, B. Chen, H. Wang, X. Wu, W. Liu, S. Zhang, Y. Liu, Y. Su, and L. Tong, “Graphene decorated microfiber for ultrafast optical modulation,” Opt. Express 23(8), 10764–10770 (2015).
[Crossref] [PubMed]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Chen, J. H.

J. H. Chen, B. C. Zheng, G. H. Shao, S. J. Ge, F. Xu, and Y. Q. Lu, “An all-optical modulator based on a stereo graphene-microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
[Crossref]

G. H. Lu, L. E. Ocola, and J. H. Chen, “Gas detection using low-temperature reduced graphene oxide sheets,” Appl. Phys. Lett. 94, 083111 (2009).

Chen, Y. F.

B. C. Yao, Y. Wu, C. B. Yu, J. R. He, Y. J. Rao, Y. Gong, F. Fu, Y. F. Chen, and Y. R. Li, “Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection,” Sci. Rep.-UK 6, 23706 (2016).

Chen, Z.

Y. Xiao, J. Yu, L. Shun, S. Tan, X. Cai, Y. Luo, J. Zhang, H. Dong, H. Lu, H. Guan, Y. Zhong, J. Tang, and Z. Chen, “Reduced graphene oxide for fiber-optic toluene gas sensing,” Opt. Express 24(25), 28290–28302 (2016).
[Crossref] [PubMed]

Z. W. Tian, H. H. Lu, B. Yang, Y. T. Wang, W. Q. Qiu, J. H. Yu, J. Y. Tang, Y. H. Luo, X. Cai, S. Z. Tan, Z. Chen, and J. Zhang, “Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing,” IEEE Photonics Technol. Lett. 27(7), 798–801 (2015).
[Crossref]

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Cheng, H. M.

S. F. Pei and H. M. Cheng, “The reduction of graphene oxide,” Carbon 50(9), 3210–3228 (2012).
[Crossref]

Chizhik, S. A.

N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater. 11(3), 771–778 (1999).
[Crossref]

Claverie, J. P.

Y. Sang, Z. Zhao, J. Tian, P. Hao, H. Jiang, H. Liu, and J. P. Claverie, “Enhanced photocatalytic property of reduced graphene oxide/TiO2 nanobelt surface heterostructures constructed by an in situ photochemical reduction method,” Small 10(18), 3775–3782 (2014).
[Crossref] [PubMed]

Dong, H.

Epstein, A. J.

W. Tang, L. Peng, C. Q. Yuan, J. Wang, S. B. Mo, C. Y. Zhao, Y. H. Yu, Y. G. Min, and A. J. Epstein, “Facile synthesis of 3D reduced graphene oxide and its polyaniline composite for super capacitor application,” Synth. Met. 202, 140–146 (2015).
[Crossref]

Falkovsky, L. A.

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
[Crossref]

Fang, W.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Feng, M.

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

Fu, F.

B. C. Yao, Y. Wu, C. B. Yu, J. R. He, Y. J. Rao, Y. Gong, F. Fu, Y. F. Chen, and Y. R. Li, “Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection,” Sci. Rep.-UK 6, 23706 (2016).

Gao, L.

L. Gao, T. Zhu, Y. J. Li, W. Huang, and M. Liu, “Watt-level ultrafast fiber laser based on weak evanescent interaction with reduced graphene oxide,” IEEE Photonics Technol. Lett. 28(11), 1245–1248 (2016).
[Crossref]

Ge, R. Y.

S. P. Wu, R. Xu, M. J. Lu, R. Y. Ge, J. Iocozzia, C. P. Han, B. B. Jiang, and Z. Q. Lin, “Graphene-Containing Nanomaterials for Lithium-Ion Batteries,” Adv. Energy Mater. 5(21), 1500400 (2015).
[Crossref]

Ge, S. J.

J. H. Chen, B. C. Zheng, G. H. Shao, S. J. Ge, F. Xu, and Y. Q. Lu, “An all-optical modulator based on a stereo graphene-microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
[Crossref]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Ghosh, T. K.

S. Sadhukhan, T. K. Ghosh, D. Rana, I. Roy, A. Bhattacharyya, G. Sarkar, M. Chakraborty, and D. Chattopadhyay, “Studies on synthesis of reduced graphene oxide (RGO) via green route and its electrical property,” Mater. Res. Bull. 79, 41–51 (2016).
[Crossref]

Gong, Y.

B. C. Yao, Y. Wu, C. B. Yu, J. R. He, Y. J. Rao, Y. Gong, F. Fu, Y. F. Chen, and Y. R. Li, “Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection,” Sci. Rep.-UK 6, 23706 (2016).

Gorchinskiy, A. D.

N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater. 11(3), 771–778 (1999).
[Crossref]

Guan, C. F.

B. Liang, P. Zhang, J. Q. Wang, J. Qu, L. F. Wang, X. X. Wang, C. F. Guan, and K. Pan, “Membranes with selective laminar nanochannels of modified reduced graphene oxide for water purification,” Carbon 103, 94–100 (2016).
[Crossref]

Guan, H.

Guo, X.

L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[Crossref]

Han, C. P.

S. P. Wu, R. Xu, M. J. Lu, R. Y. Ge, J. Iocozzia, C. P. Han, B. B. Jiang, and Z. Q. Lin, “Graphene-Containing Nanomaterials for Lithium-Ion Batteries,” Adv. Energy Mater. 5(21), 1500400 (2015).
[Crossref]

Hao, P.

Y. Sang, Z. Zhao, J. Tian, P. Hao, H. Jiang, H. Liu, and J. P. Claverie, “Enhanced photocatalytic property of reduced graphene oxide/TiO2 nanobelt surface heterostructures constructed by an in situ photochemical reduction method,” Small 10(18), 3775–3782 (2014).
[Crossref] [PubMed]

He, J. R.

B. C. Yao, Y. Wu, C. B. Yu, J. R. He, Y. J. Rao, Y. Gong, F. Fu, Y. F. Chen, and Y. R. Li, “Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection,” Sci. Rep.-UK 6, 23706 (2016).

Hu, L. L.

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

Hu, Z.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Huang, N. M.

M. A. A. Rosli, P. T. Arasu, A. S. M. Noor, H. N. Lim, and N. M. Huang, “Reduced graphene oxide nano-composites layer on fiber optic tip sensor reflectance response for sensing of aqueous ethanol,” J. Eur. Opt. Soc-Rapid 12(22), 0224 (2016).

Huang, W.

L. Gao, T. Zhu, Y. J. Li, W. Huang, and M. Liu, “Watt-level ultrafast fiber laser based on weak evanescent interaction with reduced graphene oxide,” IEEE Photonics Technol. Lett. 28(11), 1245–1248 (2016).
[Crossref]

Iocozzia, J.

S. P. Wu, R. Xu, M. J. Lu, R. Y. Ge, J. Iocozzia, C. P. Han, B. B. Jiang, and Z. Q. Lin, “Graphene-Containing Nanomaterials for Lithium-Ion Batteries,” Adv. Energy Mater. 5(21), 1500400 (2015).
[Crossref]

Jiang, B. B.

S. P. Wu, R. Xu, M. J. Lu, R. Y. Ge, J. Iocozzia, C. P. Han, B. B. Jiang, and Z. Q. Lin, “Graphene-Containing Nanomaterials for Lithium-Ion Batteries,” Adv. Energy Mater. 5(21), 1500400 (2015).
[Crossref]

Jiang, H.

Y. Sang, Z. Zhao, J. Tian, P. Hao, H. Jiang, H. Liu, and J. P. Claverie, “Enhanced photocatalytic property of reduced graphene oxide/TiO2 nanobelt surface heterostructures constructed by an in situ photochemical reduction method,” Small 10(18), 3775–3782 (2014).
[Crossref] [PubMed]

Jiang, W. S.

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

Jiang, X. S.

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

Jin, S. S.

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Karak, N.

S. Thakur and N. Karak, “Green reduction of graphene oxide by aqueous phytoextracts,” Carbon 50(14), 5331–5339 (2012).
[Crossref]

Koo, J.

J. Koo, J. Park, Y. W. Song, S. Lee, K. Lee, and J. H. Lee, “Fiber optic polarization beam splitter using a reduced graphene oxide-based interlayer,” Opt. Mater. 46, 324–328 (2015).
[Crossref]

Kovtyukhova, N. I.

N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater. 11(3), 771–778 (1999).
[Crossref]

Lee, J. H.

J. Koo, J. Park, Y. W. Song, S. Lee, K. Lee, and J. H. Lee, “Fiber optic polarization beam splitter using a reduced graphene oxide-based interlayer,” Opt. Mater. 46, 324–328 (2015).
[Crossref]

Lee, K.

J. Koo, J. Park, Y. W. Song, S. Lee, K. Lee, and J. H. Lee, “Fiber optic polarization beam splitter using a reduced graphene oxide-based interlayer,” Opt. Mater. 46, 324–328 (2015).
[Crossref]

Lee, S.

J. Koo, J. Park, Y. W. Song, S. Lee, K. Lee, and J. H. Lee, “Fiber optic polarization beam splitter using a reduced graphene oxide-based interlayer,” Opt. Mater. 46, 324–328 (2015).
[Crossref]

Li, B.

X. Xing, H. Zhu, Y. Wang, and B. Li, “Ultracompact photonic coupling splitters twisted by PTT nanowires,” Nano Lett. 8(9), 2839–2843 (2008).
[Crossref] [PubMed]

Li, W.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Li, W. L.

X. Q. Wu, S. L. Yu, H. R. Yang, W. L. Li, X. M. Liu, and L. M. Tong, “Effective transfer of micron-size graphene to microfibers for photonic applications,” Carbon 96, 1114–1119 (2016).
[Crossref]

Li, X.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Li, Y.

Li, Y. H.

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

Li, Y. J.

L. Gao, T. Zhu, Y. J. Li, W. Huang, and M. Liu, “Watt-level ultrafast fiber laser based on weak evanescent interaction with reduced graphene oxide,” IEEE Photonics Technol. Lett. 28(11), 1245–1248 (2016).
[Crossref]

Li, Y. R.

B. C. Yao, Y. Wu, C. B. Yu, J. R. He, Y. J. Rao, Y. Gong, F. Fu, Y. F. Chen, and Y. R. Li, “Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection,” Sci. Rep.-UK 6, 23706 (2016).

Li, Z.

X. Liu, J. Yang, W. Zhao, Y. Wang, Z. Li, and Z. Lin, “A simple route to reduced graphene oxide-draped nanocomposites with markedly enhanced visible-light photocatalytic performance,” Small 12(30), 4077–4085 (2016).
[Crossref] [PubMed]

Liang, B.

B. Liang, P. Zhang, J. Q. Wang, J. Qu, L. F. Wang, X. X. Wang, C. F. Guan, and K. Pan, “Membranes with selective laminar nanochannels of modified reduced graphene oxide for water purification,” Carbon 103, 94–100 (2016).
[Crossref]

Liao, G. Z.

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Lim, H. N.

M. A. A. Rosli, P. T. Arasu, A. S. M. Noor, H. N. Lim, and N. M. Huang, “Reduced graphene oxide nano-composites layer on fiber optic tip sensor reflectance response for sensing of aqueous ethanol,” J. Eur. Opt. Soc-Rapid 12(22), 0224 (2016).

Lin, Z.

X. Liu, J. Yang, W. Zhao, Y. Wang, Z. Li, and Z. Lin, “A simple route to reduced graphene oxide-draped nanocomposites with markedly enhanced visible-light photocatalytic performance,” Small 12(30), 4077–4085 (2016).
[Crossref] [PubMed]

Lin, Z. Q.

S. P. Wu, R. Xu, M. J. Lu, R. Y. Ge, J. Iocozzia, C. P. Han, B. B. Jiang, and Z. Q. Lin, “Graphene-Containing Nanomaterials for Lithium-Ion Batteries,” Adv. Energy Mater. 5(21), 1500400 (2015).
[Crossref]

Liu, H.

Y. Sang, Z. Zhao, J. Tian, P. Hao, H. Jiang, H. Liu, and J. P. Claverie, “Enhanced photocatalytic property of reduced graphene oxide/TiO2 nanobelt surface heterostructures constructed by an in situ photochemical reduction method,” Small 10(18), 3775–3782 (2014).
[Crossref] [PubMed]

Liu, M.

L. Gao, T. Zhu, Y. J. Li, W. Huang, and M. Liu, “Watt-level ultrafast fiber laser based on weak evanescent interaction with reduced graphene oxide,” IEEE Photonics Technol. Lett. 28(11), 1245–1248 (2016).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Liu, W.

S. Yu, C. Meng, B. Chen, H. Wang, X. Wu, W. Liu, S. Zhang, Y. Liu, Y. Su, and L. Tong, “Graphene decorated microfiber for ultrafast optical modulation,” Opt. Express 23(8), 10764–10770 (2015).
[Crossref] [PubMed]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Liu, X.

X. Liu, J. Yang, W. Zhao, Y. Wang, Z. Li, and Z. Lin, “A simple route to reduced graphene oxide-draped nanocomposites with markedly enhanced visible-light photocatalytic performance,” Small 12(30), 4077–4085 (2016).
[Crossref] [PubMed]

Liu, X. M.

X. Q. Wu, S. L. Yu, H. R. Yang, W. L. Li, X. M. Liu, and L. M. Tong, “Effective transfer of micron-size graphene to microfibers for photonic applications,” Carbon 96, 1114–1119 (2016).
[Crossref]

Liu, Y.

Liu, Y. G.

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

Liu, Z. B.

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

Lou, J.

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

Lou, J. Y.

L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[Crossref]

Lu, G. H.

G. H. Lu, L. E. Ocola, and J. H. Chen, “Gas detection using low-temperature reduced graphene oxide sheets,” Appl. Phys. Lett. 94, 083111 (2009).

Lu, H.

Lu, H. H.

Z. W. Tian, H. H. Lu, B. Yang, Y. T. Wang, W. Q. Qiu, J. H. Yu, J. Y. Tang, Y. H. Luo, X. Cai, S. Z. Tan, Z. Chen, and J. Zhang, “Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing,” IEEE Photonics Technol. Lett. 27(7), 798–801 (2015).
[Crossref]

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Lu, M. J.

S. P. Wu, R. Xu, M. J. Lu, R. Y. Ge, J. Iocozzia, C. P. Han, B. B. Jiang, and Z. Q. Lin, “Graphene-Containing Nanomaterials for Lithium-Ion Batteries,” Adv. Energy Mater. 5(21), 1500400 (2015).
[Crossref]

Lu, Y. Q.

J. H. Chen, B. C. Zheng, G. H. Shao, S. J. Ge, F. Xu, and Y. Q. Lu, “An all-optical modulator based on a stereo graphene-microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
[Crossref]

Luo, Y.

Luo, Y. H.

Z. W. Tian, H. H. Lu, B. Yang, Y. T. Wang, W. Q. Qiu, J. H. Yu, J. Y. Tang, Y. H. Luo, X. Cai, S. Z. Tan, Z. Chen, and J. Zhang, “Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing,” IEEE Photonics Technol. Lett. 27(7), 798–801 (2015).
[Crossref]

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Mallouk, T. E.

N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater. 11(3), 771–778 (1999).
[Crossref]

Martin, B. R.

N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater. 11(3), 771–778 (1999).
[Crossref]

Meng, C.

S. Yu, C. Meng, B. Chen, H. Wang, X. Wu, W. Liu, S. Zhang, Y. Liu, Y. Su, and L. Tong, “Graphene decorated microfiber for ultrafast optical modulation,” Opt. Express 23(8), 10764–10770 (2015).
[Crossref] [PubMed]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Min, Y. G.

W. Tang, L. Peng, C. Q. Yuan, J. Wang, S. B. Mo, C. Y. Zhao, Y. H. Yu, Y. G. Min, and A. J. Epstein, “Facile synthesis of 3D reduced graphene oxide and its polyaniline composite for super capacitor application,” Synth. Met. 202, 140–146 (2015).
[Crossref]

Mo, S. B.

W. Tang, L. Peng, C. Q. Yuan, J. Wang, S. B. Mo, C. Y. Zhao, Y. H. Yu, Y. G. Min, and A. J. Epstein, “Facile synthesis of 3D reduced graphene oxide and its polyaniline composite for super capacitor application,” Synth. Met. 202, 140–146 (2015).
[Crossref]

Noor, A. S. M.

M. A. A. Rosli, P. T. Arasu, A. S. M. Noor, H. N. Lim, and N. M. Huang, “Reduced graphene oxide nano-composites layer on fiber optic tip sensor reflectance response for sensing of aqueous ethanol,” J. Eur. Opt. Soc-Rapid 12(22), 0224 (2016).

Ocola, L. E.

G. H. Lu, L. E. Ocola, and J. H. Chen, “Gas detection using low-temperature reduced graphene oxide sheets,” Appl. Phys. Lett. 94, 083111 (2009).

Ollivier, P. J.

N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater. 11(3), 771–778 (1999).
[Crossref]

Pan, K.

B. Liang, P. Zhang, J. Q. Wang, J. Qu, L. F. Wang, X. X. Wang, C. F. Guan, and K. Pan, “Membranes with selective laminar nanochannels of modified reduced graphene oxide for water purification,” Carbon 103, 94–100 (2016).
[Crossref]

Park, J.

J. Koo, J. Park, Y. W. Song, S. Lee, K. Lee, and J. H. Lee, “Fiber optic polarization beam splitter using a reduced graphene oxide-based interlayer,” Opt. Mater. 46, 324–328 (2015).
[Crossref]

Pei, S. F.

S. F. Pei and H. M. Cheng, “The reduction of graphene oxide,” Carbon 50(9), 3210–3228 (2012).
[Crossref]

Peng, L.

W. Tang, L. Peng, C. Q. Yuan, J. Wang, S. B. Mo, C. Y. Zhao, Y. H. Yu, Y. G. Min, and A. J. Epstein, “Facile synthesis of 3D reduced graphene oxide and its polyaniline composite for super capacitor application,” Synth. Met. 202, 140–146 (2015).
[Crossref]

Qiu, W. Q.

Z. W. Tian, H. H. Lu, B. Yang, Y. T. Wang, W. Q. Qiu, J. H. Yu, J. Y. Tang, Y. H. Luo, X. Cai, S. Z. Tan, Z. Chen, and J. Zhang, “Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing,” IEEE Photonics Technol. Lett. 27(7), 798–801 (2015).
[Crossref]

Qu, J.

B. Liang, P. Zhang, J. Q. Wang, J. Qu, L. F. Wang, X. X. Wang, C. F. Guan, and K. Pan, “Membranes with selective laminar nanochannels of modified reduced graphene oxide for water purification,” Carbon 103, 94–100 (2016).
[Crossref]

Rahman, M. T.

H. Ahmad, M. T. Rahman, S. N. A. Sakeh, M. Z. A. Razak, and M. Z. Zulkifli, “Humidity sensor based on microfiber resonator with reduced graphene oxide,” Optik (Stuttg.) 127(5), 3158–3161 (2016).
[Crossref]

Rana, D.

S. Sadhukhan, T. K. Ghosh, D. Rana, I. Roy, A. Bhattacharyya, G. Sarkar, M. Chakraborty, and D. Chattopadhyay, “Studies on synthesis of reduced graphene oxide (RGO) via green route and its electrical property,” Mater. Res. Bull. 79, 41–51 (2016).
[Crossref]

Rao, Y. J.

B. C. Yao, Y. Wu, C. B. Yu, J. R. He, Y. J. Rao, Y. Gong, F. Fu, Y. F. Chen, and Y. R. Li, “Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection,” Sci. Rep.-UK 6, 23706 (2016).

Razak, M. Z. A.

H. Ahmad, M. T. Rahman, S. N. A. Sakeh, M. Z. A. Razak, and M. Z. Zulkifli, “Humidity sensor based on microfiber resonator with reduced graphene oxide,” Optik (Stuttg.) 127(5), 3158–3161 (2016).
[Crossref]

Rosli, M. A. A.

M. A. A. Rosli, P. T. Arasu, A. S. M. Noor, H. N. Lim, and N. M. Huang, “Reduced graphene oxide nano-composites layer on fiber optic tip sensor reflectance response for sensing of aqueous ethanol,” J. Eur. Opt. Soc-Rapid 12(22), 0224 (2016).

Roy, I.

S. Sadhukhan, T. K. Ghosh, D. Rana, I. Roy, A. Bhattacharyya, G. Sarkar, M. Chakraborty, and D. Chattopadhyay, “Studies on synthesis of reduced graphene oxide (RGO) via green route and its electrical property,” Mater. Res. Bull. 79, 41–51 (2016).
[Crossref]

Sadhukhan, S.

S. Sadhukhan, T. K. Ghosh, D. Rana, I. Roy, A. Bhattacharyya, G. Sarkar, M. Chakraborty, and D. Chattopadhyay, “Studies on synthesis of reduced graphene oxide (RGO) via green route and its electrical property,” Mater. Res. Bull. 79, 41–51 (2016).
[Crossref]

Sakeh, S. N. A.

H. Ahmad, M. T. Rahman, S. N. A. Sakeh, M. Z. A. Razak, and M. Z. Zulkifli, “Humidity sensor based on microfiber resonator with reduced graphene oxide,” Optik (Stuttg.) 127(5), 3158–3161 (2016).
[Crossref]

Sang, Y.

Y. Sang, Z. Zhao, J. Tian, P. Hao, H. Jiang, H. Liu, and J. P. Claverie, “Enhanced photocatalytic property of reduced graphene oxide/TiO2 nanobelt surface heterostructures constructed by an in situ photochemical reduction method,” Small 10(18), 3775–3782 (2014).
[Crossref] [PubMed]

Sarkar, G.

S. Sadhukhan, T. K. Ghosh, D. Rana, I. Roy, A. Bhattacharyya, G. Sarkar, M. Chakraborty, and D. Chattopadhyay, “Studies on synthesis of reduced graphene oxide (RGO) via green route and its electrical property,” Mater. Res. Bull. 79, 41–51 (2016).
[Crossref]

Shao, G. H.

J. H. Chen, B. C. Zheng, G. H. Shao, S. J. Ge, F. Xu, and Y. Q. Lu, “An all-optical modulator based on a stereo graphene-microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
[Crossref]

Shen, Y. R.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Sheng, Q. W.

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

Shun, L.

Song, Y. W.

J. Koo, J. Park, Y. W. Song, S. Lee, K. Lee, and J. H. Lee, “Fiber optic polarization beam splitter using a reduced graphene oxide-based interlayer,” Opt. Mater. 46, 324–328 (2015).
[Crossref]

Su, Y.

Sun, K.

L. Sun, Y. Bai, N. Zhang, and K. Sun, “The facile preparation of a cobalt disulfide-reduced graphene oxide composite film as an efficient counter electrode for dye-sensitized solar cells,” Chem. Commun. (Camb.) 51(10), 1846–1849 (2015).
[Crossref] [PubMed]

Sun, L.

L. Sun, Y. Bai, N. Zhang, and K. Sun, “The facile preparation of a cobalt disulfide-reduced graphene oxide composite film as an efficient counter electrode for dye-sensitized solar cells,” Chem. Commun. (Camb.) 51(10), 1846–1849 (2015).
[Crossref] [PubMed]

Tan, S.

Tan, S. Z.

Z. W. Tian, H. H. Lu, B. Yang, Y. T. Wang, W. Q. Qiu, J. H. Yu, J. Y. Tang, Y. H. Luo, X. Cai, S. Z. Tan, Z. Chen, and J. Zhang, “Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing,” IEEE Photonics Technol. Lett. 27(7), 798–801 (2015).
[Crossref]

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Tang, J.

Tang, J. Y.

Z. W. Tian, H. H. Lu, B. Yang, Y. T. Wang, W. Q. Qiu, J. H. Yu, J. Y. Tang, Y. H. Luo, X. Cai, S. Z. Tan, Z. Chen, and J. Zhang, “Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing,” IEEE Photonics Technol. Lett. 27(7), 798–801 (2015).
[Crossref]

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Tang, W.

W. Tang, L. Peng, C. Q. Yuan, J. Wang, S. B. Mo, C. Y. Zhao, Y. H. Yu, Y. G. Min, and A. J. Epstein, “Facile synthesis of 3D reduced graphene oxide and its polyaniline composite for super capacitor application,” Synth. Met. 202, 140–146 (2015).
[Crossref]

Thakur, S.

S. Thakur and N. Karak, “Green reduction of graphene oxide by aqueous phytoextracts,” Carbon 50(14), 5331–5339 (2012).
[Crossref]

Tian, J.

Y. Sang, Z. Zhao, J. Tian, P. Hao, H. Jiang, H. Liu, and J. P. Claverie, “Enhanced photocatalytic property of reduced graphene oxide/TiO2 nanobelt surface heterostructures constructed by an in situ photochemical reduction method,” Small 10(18), 3775–3782 (2014).
[Crossref] [PubMed]

Tian, J. G.

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

Tian, Z. W.

Z. W. Tian, H. H. Lu, B. Yang, Y. T. Wang, W. Q. Qiu, J. H. Yu, J. Y. Tang, Y. H. Luo, X. Cai, S. Z. Tan, Z. Chen, and J. Zhang, “Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing,” IEEE Photonics Technol. Lett. 27(7), 798–801 (2015).
[Crossref]

Tong, L.

S. Yu, C. Meng, B. Chen, H. Wang, X. Wu, W. Liu, S. Zhang, Y. Liu, Y. Su, and L. Tong, “Graphene decorated microfiber for ultrafast optical modulation,” Opt. Express 23(8), 10764–10770 (2015).
[Crossref] [PubMed]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

Y. Li and L. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33(4), 303–305 (2008).
[Crossref] [PubMed]

Tong, L. M.

X. Q. Wu, S. L. Yu, H. R. Yang, W. L. Li, X. M. Liu, and L. M. Tong, “Effective transfer of micron-size graphene to microfibers for photonic applications,” Carbon 96, 1114–1119 (2016).
[Crossref]

L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[Crossref]

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Vienne, G.

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

Wang, D. N.

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Wang, H.

S. Yu, C. Meng, B. Chen, H. Wang, X. Wu, W. Liu, S. Zhang, Y. Liu, Y. Su, and L. Tong, “Graphene decorated microfiber for ultrafast optical modulation,” Opt. Express 23(8), 10764–10770 (2015).
[Crossref] [PubMed]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Wang, J.

W. Tang, L. Peng, C. Q. Yuan, J. Wang, S. B. Mo, C. Y. Zhao, Y. H. Yu, Y. G. Min, and A. J. Epstein, “Facile synthesis of 3D reduced graphene oxide and its polyaniline composite for super capacitor application,” Synth. Met. 202, 140–146 (2015).
[Crossref]

Wang, J. Q.

B. Liang, P. Zhang, J. Q. Wang, J. Qu, L. F. Wang, X. X. Wang, C. F. Guan, and K. Pan, “Membranes with selective laminar nanochannels of modified reduced graphene oxide for water purification,” Carbon 103, 94–100 (2016).
[Crossref]

Wang, L. F.

B. Liang, P. Zhang, J. Q. Wang, J. Qu, L. F. Wang, X. X. Wang, C. F. Guan, and K. Pan, “Membranes with selective laminar nanochannels of modified reduced graphene oxide for water purification,” Carbon 103, 94–100 (2016).
[Crossref]

Wang, P.

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

Wang, X. X.

B. Liang, P. Zhang, J. Q. Wang, J. Qu, L. F. Wang, X. X. Wang, C. F. Guan, and K. Pan, “Membranes with selective laminar nanochannels of modified reduced graphene oxide for water purification,” Carbon 103, 94–100 (2016).
[Crossref]

Wang, Y.

X. Liu, J. Yang, W. Zhao, Y. Wang, Z. Li, and Z. Lin, “A simple route to reduced graphene oxide-draped nanocomposites with markedly enhanced visible-light photocatalytic performance,” Small 12(30), 4077–4085 (2016).
[Crossref] [PubMed]

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

X. Xing, H. Zhu, Y. Wang, and B. Li, “Ultracompact photonic coupling splitters twisted by PTT nanowires,” Nano Lett. 8(9), 2839–2843 (2008).
[Crossref] [PubMed]

Wang, Y. T.

Z. W. Tian, H. H. Lu, B. Yang, Y. T. Wang, W. Q. Qiu, J. H. Yu, J. Y. Tang, Y. H. Luo, X. Cai, S. Z. Tan, Z. Chen, and J. Zhang, “Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing,” IEEE Photonics Technol. Lett. 27(7), 798–801 (2015).
[Crossref]

Wei, Q. S.

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Wright, A. R.

A. R. Wright and C. Zhang, “Dynamic conductivity of graphene with electron-LO-phonon interaction,” Phys. Rev. B 81(16), 165413 (2010).
[Crossref]

Wu, S. P.

S. P. Wu, R. Xu, M. J. Lu, R. Y. Ge, J. Iocozzia, C. P. Han, B. B. Jiang, and Z. Q. Lin, “Graphene-Containing Nanomaterials for Lithium-Ion Batteries,” Adv. Energy Mater. 5(21), 1500400 (2015).
[Crossref]

Wu, X.

Wu, X. Q.

X. Q. Wu, S. L. Yu, H. R. Yang, W. L. Li, X. M. Liu, and L. M. Tong, “Effective transfer of micron-size graphene to microfibers for photonic applications,” Carbon 96, 1114–1119 (2016).
[Crossref]

Wu, Y.

B. C. Yao, Y. Wu, C. B. Yu, J. R. He, Y. J. Rao, Y. Gong, F. Fu, Y. F. Chen, and Y. R. Li, “Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection,” Sci. Rep.-UK 6, 23706 (2016).

Xiao, Y.

Y. Xiao, J. Yu, L. Shun, S. Tan, X. Cai, Y. Luo, J. Zhang, H. Dong, H. Lu, H. Guan, Y. Zhong, J. Tang, and Z. Chen, “Reduced graphene oxide for fiber-optic toluene gas sensing,” Opt. Express 24(25), 28290–28302 (2016).
[Crossref] [PubMed]

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Xin, W.

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

Xing, X.

X. Xing, H. Zhu, Y. Wang, and B. Li, “Ultracompact photonic coupling splitters twisted by PTT nanowires,” Nano Lett. 8(9), 2839–2843 (2008).
[Crossref] [PubMed]

Xu, F.

J. H. Chen, B. C. Zheng, G. H. Shao, S. J. Ge, F. Xu, and Y. Q. Lu, “An all-optical modulator based on a stereo graphene-microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
[Crossref]

Xu, R.

S. P. Wu, R. Xu, M. J. Lu, R. Y. Ge, J. Iocozzia, C. P. Han, B. B. Jiang, and Z. Q. Lin, “Graphene-Containing Nanomaterials for Lithium-Ion Batteries,” Adv. Energy Mater. 5(21), 1500400 (2015).
[Crossref]

Xu, Y.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Yang, B.

Z. W. Tian, H. H. Lu, B. Yang, Y. T. Wang, W. Q. Qiu, J. H. Yu, J. Y. Tang, Y. H. Luo, X. Cai, S. Z. Tan, Z. Chen, and J. Zhang, “Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing,” IEEE Photonics Technol. Lett. 27(7), 798–801 (2015).
[Crossref]

Yang, H. R.

X. Q. Wu, S. L. Yu, H. R. Yang, W. L. Li, X. M. Liu, and L. M. Tong, “Effective transfer of micron-size graphene to microfibers for photonic applications,” Carbon 96, 1114–1119 (2016).
[Crossref]

Yang, J.

X. Liu, J. Yang, W. Zhao, Y. Wang, Z. Li, and Z. Lin, “A simple route to reduced graphene oxide-draped nanocomposites with markedly enhanced visible-light photocatalytic performance,” Small 12(30), 4077–4085 (2016).
[Crossref] [PubMed]

Yang, Q.

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

Yao, B. C.

B. C. Yao, Y. Wu, C. B. Yu, J. R. He, Y. J. Rao, Y. Gong, F. Fu, Y. F. Chen, and Y. R. Li, “Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection,” Sci. Rep.-UK 6, 23706 (2016).

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Yu, C. B.

B. C. Yao, Y. Wu, C. B. Yu, J. R. He, Y. J. Rao, Y. Gong, F. Fu, Y. F. Chen, and Y. R. Li, “Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection,” Sci. Rep.-UK 6, 23706 (2016).

Yu, J.

Yu, J. H.

Z. W. Tian, H. H. Lu, B. Yang, Y. T. Wang, W. Q. Qiu, J. H. Yu, J. Y. Tang, Y. H. Luo, X. Cai, S. Z. Tan, Z. Chen, and J. Zhang, “Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing,” IEEE Photonics Technol. Lett. 27(7), 798–801 (2015).
[Crossref]

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Yu, S.

Yu, S. L.

X. Q. Wu, S. L. Yu, H. R. Yang, W. L. Li, X. M. Liu, and L. M. Tong, “Effective transfer of micron-size graphene to microfibers for photonic applications,” Carbon 96, 1114–1119 (2016).
[Crossref]

Yu, Y. H.

W. Tang, L. Peng, C. Q. Yuan, J. Wang, S. B. Mo, C. Y. Zhao, Y. H. Yu, Y. G. Min, and A. J. Epstein, “Facile synthesis of 3D reduced graphene oxide and its polyaniline composite for super capacitor application,” Synth. Met. 202, 140–146 (2015).
[Crossref]

Yuan, C. Q.

W. Tang, L. Peng, C. Q. Yuan, J. Wang, S. B. Mo, C. Y. Zhao, Y. H. Yu, Y. G. Min, and A. J. Epstein, “Facile synthesis of 3D reduced graphene oxide and its polyaniline composite for super capacitor application,” Synth. Met. 202, 140–146 (2015).
[Crossref]

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, C.

A. R. Wright and C. Zhang, “Dynamic conductivity of graphene with electron-LO-phonon interaction,” Phys. Rev. B 81(16), 165413 (2010).
[Crossref]

Zhang, J.

Y. Xiao, J. Yu, L. Shun, S. Tan, X. Cai, Y. Luo, J. Zhang, H. Dong, H. Lu, H. Guan, Y. Zhong, J. Tang, and Z. Chen, “Reduced graphene oxide for fiber-optic toluene gas sensing,” Opt. Express 24(25), 28290–28302 (2016).
[Crossref] [PubMed]

Z. W. Tian, H. H. Lu, B. Yang, Y. T. Wang, W. Q. Qiu, J. H. Yu, J. Y. Tang, Y. H. Luo, X. Cai, S. Z. Tan, Z. Chen, and J. Zhang, “Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing,” IEEE Photonics Technol. Lett. 27(7), 798–801 (2015).
[Crossref]

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Zhang, J. J.

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

Zhang, N.

L. Sun, Y. Bai, N. Zhang, and K. Sun, “The facile preparation of a cobalt disulfide-reduced graphene oxide composite film as an efficient counter electrode for dye-sensitized solar cells,” Chem. Commun. (Camb.) 51(10), 1846–1849 (2015).
[Crossref] [PubMed]

Zhang, P.

B. Liang, P. Zhang, J. Q. Wang, J. Qu, L. F. Wang, X. X. Wang, C. F. Guan, and K. Pan, “Membranes with selective laminar nanochannels of modified reduced graphene oxide for water purification,” Carbon 103, 94–100 (2016).
[Crossref]

Zhang, S.

Zhang, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhao, C. Y.

W. Tang, L. Peng, C. Q. Yuan, J. Wang, S. B. Mo, C. Y. Zhao, Y. H. Yu, Y. G. Min, and A. J. Epstein, “Facile synthesis of 3D reduced graphene oxide and its polyaniline composite for super capacitor application,” Synth. Met. 202, 140–146 (2015).
[Crossref]

Zhao, W.

X. Liu, J. Yang, W. Zhao, Y. Wang, Z. Li, and Z. Lin, “A simple route to reduced graphene oxide-draped nanocomposites with markedly enhanced visible-light photocatalytic performance,” Small 12(30), 4077–4085 (2016).
[Crossref] [PubMed]

Zhao, Z.

Y. Sang, Z. Zhao, J. Tian, P. Hao, H. Jiang, H. Liu, and J. P. Claverie, “Enhanced photocatalytic property of reduced graphene oxide/TiO2 nanobelt surface heterostructures constructed by an in situ photochemical reduction method,” Small 10(18), 3775–3782 (2014).
[Crossref] [PubMed]

Zheng, B. C.

J. H. Chen, B. C. Zheng, G. H. Shao, S. J. Ge, F. Xu, and Y. Q. Lu, “An all-optical modulator based on a stereo graphene-microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
[Crossref]

Zhong, Y.

Zhou, W. Y.

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

Zhu, H.

X. Xing, H. Zhu, Y. Wang, and B. Li, “Ultracompact photonic coupling splitters twisted by PTT nanowires,” Nano Lett. 8(9), 2839–2843 (2008).
[Crossref] [PubMed]

Zhu, T.

L. Gao, T. Zhu, Y. J. Li, W. Huang, and M. Liu, “Watt-level ultrafast fiber laser based on weak evanescent interaction with reduced graphene oxide,” IEEE Photonics Technol. Lett. 28(11), 1245–1248 (2016).
[Crossref]

Zi, F.

L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[Crossref]

Zulkifli, M. Z.

H. Ahmad, M. T. Rahman, S. N. A. Sakeh, M. Z. A. Razak, and M. Z. Zulkifli, “Humidity sensor based on microfiber resonator with reduced graphene oxide,” Optik (Stuttg.) 127(5), 3158–3161 (2016).
[Crossref]

Adv. Energy Mater. (1)

S. P. Wu, R. Xu, M. J. Lu, R. Y. Ge, J. Iocozzia, C. P. Han, B. B. Jiang, and Z. Q. Lin, “Graphene-Containing Nanomaterials for Lithium-Ion Batteries,” Adv. Energy Mater. 5(21), 1500400 (2015).
[Crossref]

Appl. Phys. Lett. (2)

G. H. Lu, L. E. Ocola, and J. H. Chen, “Gas detection using low-temperature reduced graphene oxide sheets,” Appl. Phys. Lett. 94, 083111 (2009).

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

Carbon (4)

B. Liang, P. Zhang, J. Q. Wang, J. Qu, L. F. Wang, X. X. Wang, C. F. Guan, and K. Pan, “Membranes with selective laminar nanochannels of modified reduced graphene oxide for water purification,” Carbon 103, 94–100 (2016).
[Crossref]

S. F. Pei and H. M. Cheng, “The reduction of graphene oxide,” Carbon 50(9), 3210–3228 (2012).
[Crossref]

X. Q. Wu, S. L. Yu, H. R. Yang, W. L. Li, X. M. Liu, and L. M. Tong, “Effective transfer of micron-size graphene to microfibers for photonic applications,” Carbon 96, 1114–1119 (2016).
[Crossref]

S. Thakur and N. Karak, “Green reduction of graphene oxide by aqueous phytoextracts,” Carbon 50(14), 5331–5339 (2012).
[Crossref]

Chem. Commun. (Camb.) (1)

L. Sun, Y. Bai, N. Zhang, and K. Sun, “The facile preparation of a cobalt disulfide-reduced graphene oxide composite film as an efficient counter electrode for dye-sensitized solar cells,” Chem. Commun. (Camb.) 51(10), 1846–1849 (2015).
[Crossref] [PubMed]

Chem. Mater. (1)

N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater. 11(3), 771–778 (1999).
[Crossref]

IEEE Photonics Technol. Lett. (2)

L. Gao, T. Zhu, Y. J. Li, W. Huang, and M. Liu, “Watt-level ultrafast fiber laser based on weak evanescent interaction with reduced graphene oxide,” IEEE Photonics Technol. Lett. 28(11), 1245–1248 (2016).
[Crossref]

Z. W. Tian, H. H. Lu, B. Yang, Y. T. Wang, W. Q. Qiu, J. H. Yu, J. Y. Tang, Y. H. Luo, X. Cai, S. Z. Tan, Z. Chen, and J. Zhang, “Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing,” IEEE Photonics Technol. Lett. 27(7), 798–801 (2015).
[Crossref]

J. Eur. Opt. Soc-Rapid (1)

M. A. A. Rosli, P. T. Arasu, A. S. M. Noor, H. N. Lim, and N. M. Huang, “Reduced graphene oxide nano-composites layer on fiber optic tip sensor reflectance response for sensing of aqueous ethanol,” J. Eur. Opt. Soc-Rapid 12(22), 0224 (2016).

J. Phys. Conf. Ser. (1)

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
[Crossref]

Laser Phys. Lett. (2)

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

Light Sci. Appl. (1)

J. H. Chen, B. C. Zheng, G. H. Shao, S. J. Ge, F. Xu, and Y. Q. Lu, “An all-optical modulator based on a stereo graphene-microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
[Crossref]

Mater. Res. Bull. (1)

S. Sadhukhan, T. K. Ghosh, D. Rana, I. Roy, A. Bhattacharyya, G. Sarkar, M. Chakraborty, and D. Chattopadhyay, “Studies on synthesis of reduced graphene oxide (RGO) via green route and its electrical property,” Mater. Res. Bull. 79, 41–51 (2016).
[Crossref]

Nano Lett. (2)

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

X. Xing, H. Zhu, Y. Wang, and B. Li, “Ultracompact photonic coupling splitters twisted by PTT nanowires,” Nano Lett. 8(9), 2839–2843 (2008).
[Crossref] [PubMed]

Nature (1)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Opt. Commun. (1)

L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. (1)

J. Koo, J. Park, Y. W. Song, S. Lee, K. Lee, and J. H. Lee, “Fiber optic polarization beam splitter using a reduced graphene oxide-based interlayer,” Opt. Mater. 46, 324–328 (2015).
[Crossref]

Optik (Stuttg.) (1)

H. Ahmad, M. T. Rahman, S. N. A. Sakeh, M. Z. A. Razak, and M. Z. Zulkifli, “Humidity sensor based on microfiber resonator with reduced graphene oxide,” Optik (Stuttg.) 127(5), 3158–3161 (2016).
[Crossref]

Phys. Rev. B (1)

A. R. Wright and C. Zhang, “Dynamic conductivity of graphene with electron-LO-phonon interaction,” Phys. Rev. B 81(16), 165413 (2010).
[Crossref]

Sci. Rep.-UK (1)

B. C. Yao, Y. Wu, C. B. Yu, J. R. He, Y. J. Rao, Y. Gong, F. Fu, Y. F. Chen, and Y. R. Li, “Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection,” Sci. Rep.-UK 6, 23706 (2016).

Sensors (Basel) (1)

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

Small (2)

X. Liu, J. Yang, W. Zhao, Y. Wang, Z. Li, and Z. Lin, “A simple route to reduced graphene oxide-draped nanocomposites with markedly enhanced visible-light photocatalytic performance,” Small 12(30), 4077–4085 (2016).
[Crossref] [PubMed]

Y. Sang, Z. Zhao, J. Tian, P. Hao, H. Jiang, H. Liu, and J. P. Claverie, “Enhanced photocatalytic property of reduced graphene oxide/TiO2 nanobelt surface heterostructures constructed by an in situ photochemical reduction method,” Small 10(18), 3775–3782 (2014).
[Crossref] [PubMed]

Synth. Met. (1)

W. Tang, L. Peng, C. Q. Yuan, J. Wang, S. B. Mo, C. Y. Zhao, Y. H. Yu, Y. G. Min, and A. J. Epstein, “Facile synthesis of 3D reduced graphene oxide and its polyaniline composite for super capacitor application,” Synth. Met. 202, 140–146 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Raman spectral of rGO; (b) Absorption spectrum of rGO.
Fig. 2
Fig. 2 XRD pattern of rGO.
Fig. 3
Fig. 3 (a) Schematic of basin used in deposition of rGO and configuration of a fixed MF on glass slide; (b) ideal enlarge view of MF.
Fig. 4
Fig. 4 Variation of transmitted optical power in MF during the deposition of rGO onto the MF.
Fig. 5
Fig. 5 (a) SEM image of MF with rGO and (b) enlarge view of deposited rGO.
Fig. 6
Fig. 6 Schematic of outside-pumped experimental setup for the MF with rGO sheets.
Fig. 7
Fig. 7 (a) Optical transmitted power change with different pump power of bare MF versus time; (b) Transmitted power of the rGOCMF with different illuminated violet power.
Fig. 8
Fig. 8 Relative optical transmitted power of the rGOCMF versus the pump power.
Fig. 9
Fig. 9 Schematic of experimental setup for the rGOCMF.
Fig. 10
Fig. 10 Optical transmitted power of the MF without rGO (a) and rGOCMF with different 980 nm laser power (b).
Fig. 11
Fig. 11 Relative optical transmitted power of the MF with rGO with different 980 nm laser power.

Metrics