Abstract

The growing demand of ultrafast mode-locked fiber lasers in the near infrared has boosted the research activity in this area. One of the most convenient ways to achieve passive mode locking consists of inserting a semiconductor saturable absorber in the laser cavity to modulate the losses. However, in such a configuration, the limited power range of operation is still an unsolved issue. Here we report the fabrication of an ultrafast, high-power, widely power-tunable and non-polarization-dependent mode-locked fiber laser operating at 1.55 µm, using an InN layer as saturable absorber. With post-amplification, this laser delivers 55-fs pulses with a repetition rate of 4.84 MHz and peak power in the range of 1 MW in an all-fiber arrangement.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Passive mode locking of ytterbium- and erbium-doped all-fiber lasers using graphene oxide saturable absorbers

Hou-Ren Chen, Chih-Ya Tsai, Hsin-Ming Cheng, Kuei-Huei Lin, and Wen-Feng Hsieh
Opt. Express 22(11) 12880-12889 (2014)

Polarization insensitive graphene saturable absorbers using etched fiber for highly stable ultrafast fiber lasers

Hyub Lee, Won Sik Kwon, Jin Hwan Kim, Daewon Kang, and Soohyun Kim
Opt. Express 23(17) 22116-22122 (2015)

High power L-band mode-locked fiber laser based on topological insulator saturable absorber

Yichang Meng, Georges Semaan, Mohamed Salhi, Alioune Niang, Khmaies Guesmi, Zhi-chao Luo, and Francois Sanchez
Opt. Express 23(18) 23053-23058 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
    [Crossref]
  2. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B Lasers Opt. 65(2), 277–294 (1997).
    [Crossref]
  3. K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, “Unidirectional ring resonators for self-starting passively mode-locked lasers,” Opt. Lett. 18(3), 220–222 (1993).
    [Crossref] [PubMed]
  4. R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54μm,” Electron. Lett. 23(19), 1026–1028 (1987).
    [Crossref]
  5. M. Jiang, G. Sucha, M. E. Fermann, J. Jimenez, D. Harter, M. Dagenais, S. Fox, and Y. Hu, “Nonlinearly limited saturable-absorber mode locking of an erbium fiber laser,” Opt. Lett. 24(15), 1074–1076 (1999).
    [Crossref] [PubMed]
  6. K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photonics Technol. Lett. 21(3), 128–130 (2009).
    [Crossref] [PubMed]
  7. Y. Fedoryshin, P. Ma, J. Faist, P. Kaspar, R. Kappeler, M. Beck, J. F. Holzman, and H. Jäckel, “Three operation modes for Tb/s all-optical switching with intersubband transitions in InGaAs/AlAs/AlAsSb quantum wells,” IEEE J. Quantum Electron. 48(7), 885–890 (2012).
    [Crossref]
  8. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
    [Crossref] [PubMed]
  9. H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
    [Crossref]
  10. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22(1), 51–56 (2004).
    [Crossref]
  11. F. Shohda, T. Shirato, M. Nakazawa, K. Komatsu, and T. Kaino, “A passively mode-locked femtosecond soliton fiber laser at 1.5 microm with a CNT-doped polycarbonate saturable absorber,” Opt. Express 16(26), 21191–21198 (2008).
    [Crossref] [PubMed]
  12. D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101(15), 153107 (2012).
    [Crossref]
  13. Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38(24), 5212–5215 (2013).
    [Crossref] [PubMed]
  14. F. Shohda, M. Nakazawa, R. Akimoto, and H. Ishikawa, “An 88 fs fiber soliton laser using a quantum well saturable absorber with an ultrafast intersubband transition,” Opt. Express 17(25), 22499–22504 (2009).
    [Crossref] [PubMed]
  15. F. B. Naranjo, P. K. Kandaswamy, S. Valdueza-Felip, V. Calvo, M. González-Herráez, S. Martín-López, P. Corredera, J. A. Méndez, G. R. Mutta, B. Lacroix, and E. Monroy, “Nonlinear absorption of InN/InGaN multiple-quantum-well structures at optical telecommunication wavelengths,” Appl. Phys. Lett. 98(3), 031902 (2011).
    [Crossref]
  16. F. B. Naranjo, M. Gonzáñez-Herráez, H. Fernández, J. Solís, and E. Monroy, “Third order nonlinear susceptibility of InN at near band-gap wavelengths,” Appl. Phys. Lett. 90(9), 091903 (2007).
    [Crossref]
  17. L. Monteagudo-Lerma, S. Valdueza-Felip, F. B. Naranjo, P. Corredera, L. Rapenne, E. Sarigiannidou, G. Strasser, E. Monroy, and M. González-Herráez, “Waveguide saturable absorbers at 1.55 μm based on intraband transitions in GaN/AlN QDs,” Opt. Express 21(23), 27578–27586 (2013).
    [Crossref] [PubMed]
  18. Y. Li, A. Bhattacharyya, C. Thomidis, T. D. Moustakas, and R. Paiella, “Nonlinear optical waveguides based on near-infrared intersubband transitions in GaN/AlN quantum wells,” Opt. Express 15(9), 5860–5865 (2007).
    [Crossref] [PubMed]
  19. S. C. Jain, M. Willander, J. Narayan, and R. V. Overstraeten, “III–nitrides: Growth, characterization, and properties,” J. Appl. Phys. 87(3), 965–1006 (2000).
    [Crossref]
  20. J. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 1–28 (2009).
    [Crossref]
  21. M. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. Sect. A Gen. Solid State Phys. 372, 3124–3128 (2008).
  22. J. Koester and E. Snitzer, “Amplification in a fiber laser,” Appl. Opt. 3(10), 1182 (1964).
    [Crossref]
  23. J. Limpert, F. Roser, T. Schreiber, and A. Tünnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12(2), 233–244 (2006).
    [Crossref]
  24. J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull. 3(1), 37–46 (1968).
    [Crossref]
  25. M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004).
    [Crossref]
  26. I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, “Semiconductor saturable absorber mirrors supporting sub-10-fs pulses,” Appl. Phys. B Lasers Opt. 65(2), 137–150 (1997).
    [Crossref]
  27. S. Yamashita, A. Martinez, and B. Xu, “Short pulse fiber lasers mode-locked by carbon nanotubes and graphene,” Opt. Fiber Technol. 20(6), 702–713 (2014).
    [Crossref]
  28. S. Valdueza-Felip, L. Rigutti, F. B. Naranjo, P. Ruterana, J. Mangeney, F. H. Julien, M. González-Herráez, and E. Monroy, “Carrier localization in InN/InGaN multiple-quantum wells with high In-content,” Appl. Phys. Lett. 101(6), 062109 (2012).
    [Crossref]
  29. E. Snitzer, H. Po, R. Tumminelli, and B. C. McCollum, “Double clad, offset core Nd fiber laser,” Opt. Fiber Sensors 2, PD5 (1988).
    [Crossref]
  30. L. Zenteno, “High-power double-clad fiber lasers,” J. Lightwave Technol. 11(9), 1435–1446 (1993).
    [Crossref]
  31. L. Goldberg, B. Cole, and E. Snitzer, “V-groove side-pumped 1.5 µm fibre amplifier,” Electron. Lett. 33(25), 2127–2129 (1997).
    [Crossref]
  32. F. X. Kartner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers-what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
    [Crossref]
  33. C. J. Chen, P. K. Wai, and C. R. Menyuk, “Soliton fiber ring laser,” Opt. Lett. 17(6), 417–419 (1992).
    [Crossref] [PubMed]
  34. L. F. Mollenauer and R. H. Stolen, “The soliton laser,” Opt. Lett. 9(1), 13–15 (1984).
    [Crossref] [PubMed]
  35. J. D. Kafka, T. Baer, and D. W. Hall, “Mode-locked erbium-doped fiber laser with soliton pulse shaping,” Opt. Lett. 14(22), 1269–1271 (1989).
    [Crossref] [PubMed]
  36. B. Grudinin and S. Gray, “Passive harmonic mode locking in soliton fiber lasers,” J. Opt. Soc. Am. B 14(1), 144 (1997).
    [Crossref]
  37. R. Goldhahn, P. Schley, A. T. Winzer, G. Gobsch, V. Cimalla, O. Ambacher, M. Rakel, C. Cobet, N. Esser, H. Lu, and W. J. Schaff, “Detailed analysis of the dielectric function for wurtzite InN and In-rich InAlN alloys,” Phys. Status Solidi Appl. Mater. Sci. 203(1), 42–49 (2006).
    [Crossref]
  38. S. Chouli, J. M. Soto-Crespo, and P. Grelu, “Optical spectra beyond the amplifier bandwidth limitation in dispersion-managed mode-locked fiber lasers,” Opt. Express 19(4), 2959–2964 (2011).
    [Crossref] [PubMed]
  39. M. Hofer, M. H. Ober, F. Haberl, and M. E. Fermann, “Characterization of ultrashort pulse formation in passively mode-locked fiber lasers,” IEEE J. Quantum Electron. 28(3), 720–728 (1992).
    [Crossref]
  40. K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226 (1992).
    [Crossref]
  41. V. J. Matsas, T. P. Newson, and M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching,” Opt. Commun. 92(1-3), 61–66 (1992).
    [Crossref]
  42. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]

2014 (1)

S. Yamashita, A. Martinez, and B. Xu, “Short pulse fiber lasers mode-locked by carbon nanotubes and graphene,” Opt. Fiber Technol. 20(6), 702–713 (2014).
[Crossref]

2013 (3)

2012 (3)

Y. Fedoryshin, P. Ma, J. Faist, P. Kaspar, R. Kappeler, M. Beck, J. F. Holzman, and H. Jäckel, “Three operation modes for Tb/s all-optical switching with intersubband transitions in InGaAs/AlAs/AlAsSb quantum wells,” IEEE J. Quantum Electron. 48(7), 885–890 (2012).
[Crossref]

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101(15), 153107 (2012).
[Crossref]

S. Valdueza-Felip, L. Rigutti, F. B. Naranjo, P. Ruterana, J. Mangeney, F. H. Julien, M. González-Herráez, and E. Monroy, “Carrier localization in InN/InGaN multiple-quantum wells with high In-content,” Appl. Phys. Lett. 101(6), 062109 (2012).
[Crossref]

2011 (2)

F. B. Naranjo, P. K. Kandaswamy, S. Valdueza-Felip, V. Calvo, M. González-Herráez, S. Martín-López, P. Corredera, J. A. Méndez, G. R. Mutta, B. Lacroix, and E. Monroy, “Nonlinear absorption of InN/InGaN multiple-quantum-well structures at optical telecommunication wavelengths,” Appl. Phys. Lett. 98(3), 031902 (2011).
[Crossref]

S. Chouli, J. M. Soto-Crespo, and P. Grelu, “Optical spectra beyond the amplifier bandwidth limitation in dispersion-managed mode-locked fiber lasers,” Opt. Express 19(4), 2959–2964 (2011).
[Crossref] [PubMed]

2010 (3)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

2009 (3)

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photonics Technol. Lett. 21(3), 128–130 (2009).
[Crossref] [PubMed]

J. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 1–28 (2009).
[Crossref]

F. Shohda, M. Nakazawa, R. Akimoto, and H. Ishikawa, “An 88 fs fiber soliton laser using a quantum well saturable absorber with an ultrafast intersubband transition,” Opt. Express 17(25), 22499–22504 (2009).
[Crossref] [PubMed]

2008 (2)

F. Shohda, T. Shirato, M. Nakazawa, K. Komatsu, and T. Kaino, “A passively mode-locked femtosecond soliton fiber laser at 1.5 microm with a CNT-doped polycarbonate saturable absorber,” Opt. Express 16(26), 21191–21198 (2008).
[Crossref] [PubMed]

M. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. Sect. A Gen. Solid State Phys. 372, 3124–3128 (2008).

2007 (2)

F. B. Naranjo, M. Gonzáñez-Herráez, H. Fernández, J. Solís, and E. Monroy, “Third order nonlinear susceptibility of InN at near band-gap wavelengths,” Appl. Phys. Lett. 90(9), 091903 (2007).
[Crossref]

Y. Li, A. Bhattacharyya, C. Thomidis, T. D. Moustakas, and R. Paiella, “Nonlinear optical waveguides based on near-infrared intersubband transitions in GaN/AlN quantum wells,” Opt. Express 15(9), 5860–5865 (2007).
[Crossref] [PubMed]

2006 (2)

J. Limpert, F. Roser, T. Schreiber, and A. Tünnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12(2), 233–244 (2006).
[Crossref]

R. Goldhahn, P. Schley, A. T. Winzer, G. Gobsch, V. Cimalla, O. Ambacher, M. Rakel, C. Cobet, N. Esser, H. Lu, and W. J. Schaff, “Detailed analysis of the dielectric function for wurtzite InN and In-rich InAlN alloys,” Phys. Status Solidi Appl. Mater. Sci. 203(1), 42–49 (2006).
[Crossref]

2004 (2)

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22(1), 51–56 (2004).
[Crossref]

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004).
[Crossref]

2000 (1)

S. C. Jain, M. Willander, J. Narayan, and R. V. Overstraeten, “III–nitrides: Growth, characterization, and properties,” J. Appl. Phys. 87(3), 965–1006 (2000).
[Crossref]

1999 (1)

1998 (1)

F. X. Kartner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers-what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
[Crossref]

1997 (4)

B. Grudinin and S. Gray, “Passive harmonic mode locking in soliton fiber lasers,” J. Opt. Soc. Am. B 14(1), 144 (1997).
[Crossref]

L. Goldberg, B. Cole, and E. Snitzer, “V-groove side-pumped 1.5 µm fibre amplifier,” Electron. Lett. 33(25), 2127–2129 (1997).
[Crossref]

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B Lasers Opt. 65(2), 277–294 (1997).
[Crossref]

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, “Semiconductor saturable absorber mirrors supporting sub-10-fs pulses,” Appl. Phys. B Lasers Opt. 65(2), 137–150 (1997).
[Crossref]

1993 (2)

1992 (4)

M. Hofer, M. H. Ober, F. Haberl, and M. E. Fermann, “Characterization of ultrashort pulse formation in passively mode-locked fiber lasers,” IEEE J. Quantum Electron. 28(3), 720–728 (1992).
[Crossref]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226 (1992).
[Crossref]

V. J. Matsas, T. P. Newson, and M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching,” Opt. Commun. 92(1-3), 61–66 (1992).
[Crossref]

C. J. Chen, P. K. Wai, and C. R. Menyuk, “Soliton fiber ring laser,” Opt. Lett. 17(6), 417–419 (1992).
[Crossref] [PubMed]

1989 (1)

1988 (1)

E. Snitzer, H. Po, R. Tumminelli, and B. C. McCollum, “Double clad, offset core Nd fiber laser,” Opt. Fiber Sensors 2, PD5 (1988).
[Crossref]

1987 (1)

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54μm,” Electron. Lett. 23(19), 1026–1028 (1987).
[Crossref]

1984 (1)

1968 (1)

J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull. 3(1), 37–46 (1968).
[Crossref]

1964 (1)

Akhmediev, M.

M. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. Sect. A Gen. Solid State Phys. 372, 3124–3128 (2008).

Akimoto, R.

Ambacher, O.

R. Goldhahn, P. Schley, A. T. Winzer, G. Gobsch, V. Cimalla, O. Ambacher, M. Rakel, C. Cobet, N. Esser, H. Lu, and W. J. Schaff, “Detailed analysis of the dielectric function for wurtzite InN and In-rich InAlN alloys,” Phys. Status Solidi Appl. Mater. Sci. 203(1), 42–49 (2006).
[Crossref]

Baer, T.

Bao, Q.

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Beck, M.

Y. Fedoryshin, P. Ma, J. Faist, P. Kaspar, R. Kappeler, M. Beck, J. F. Holzman, and H. Jäckel, “Three operation modes for Tb/s all-optical switching with intersubband transitions in InGaAs/AlAs/AlAsSb quantum wells,” IEEE J. Quantum Electron. 48(7), 885–890 (2012).
[Crossref]

Bhattacharyya, A.

Bonaccorso, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Calvo, V.

F. B. Naranjo, P. K. Kandaswamy, S. Valdueza-Felip, V. Calvo, M. González-Herráez, S. Martín-López, P. Corredera, J. A. Méndez, G. R. Mutta, B. Lacroix, and E. Monroy, “Nonlinear absorption of InN/InGaN multiple-quantum-well structures at optical telecommunication wavelengths,” Appl. Phys. Lett. 98(3), 031902 (2011).
[Crossref]

Chen, C. J.

Cho, W. B.

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101(15), 153107 (2012).
[Crossref]

Chouli, S.

Cimalla, V.

R. Goldhahn, P. Schley, A. T. Winzer, G. Gobsch, V. Cimalla, O. Ambacher, M. Rakel, C. Cobet, N. Esser, H. Lu, and W. J. Schaff, “Detailed analysis of the dielectric function for wurtzite InN and In-rich InAlN alloys,” Phys. Status Solidi Appl. Mater. Sci. 203(1), 42–49 (2006).
[Crossref]

Cobet, C.

R. Goldhahn, P. Schley, A. T. Winzer, G. Gobsch, V. Cimalla, O. Ambacher, M. Rakel, C. Cobet, N. Esser, H. Lu, and W. J. Schaff, “Detailed analysis of the dielectric function for wurtzite InN and In-rich InAlN alloys,” Phys. Status Solidi Appl. Mater. Sci. 203(1), 42–49 (2006).
[Crossref]

Cole, B.

L. Goldberg, B. Cole, and E. Snitzer, “V-groove side-pumped 1.5 µm fibre amplifier,” Electron. Lett. 33(25), 2127–2129 (1997).
[Crossref]

Corredera, P.

L. Monteagudo-Lerma, S. Valdueza-Felip, F. B. Naranjo, P. Corredera, L. Rapenne, E. Sarigiannidou, G. Strasser, E. Monroy, and M. González-Herráez, “Waveguide saturable absorbers at 1.55 μm based on intraband transitions in GaN/AlN QDs,” Opt. Express 21(23), 27578–27586 (2013).
[Crossref] [PubMed]

F. B. Naranjo, P. K. Kandaswamy, S. Valdueza-Felip, V. Calvo, M. González-Herráez, S. Martín-López, P. Corredera, J. A. Méndez, G. R. Mutta, B. Lacroix, and E. Monroy, “Nonlinear absorption of InN/InGaN multiple-quantum-well structures at optical telecommunication wavelengths,” Appl. Phys. Lett. 98(3), 031902 (2011).
[Crossref]

Dagenais, M.

der Au, J. A.

F. X. Kartner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers-what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
[Crossref]

Esser, N.

R. Goldhahn, P. Schley, A. T. Winzer, G. Gobsch, V. Cimalla, O. Ambacher, M. Rakel, C. Cobet, N. Esser, H. Lu, and W. J. Schaff, “Detailed analysis of the dielectric function for wurtzite InN and In-rich InAlN alloys,” Phys. Status Solidi Appl. Mater. Sci. 203(1), 42–49 (2006).
[Crossref]

Faist, J.

Y. Fedoryshin, P. Ma, J. Faist, P. Kaspar, R. Kappeler, M. Beck, J. F. Holzman, and H. Jäckel, “Three operation modes for Tb/s all-optical switching with intersubband transitions in InGaAs/AlAs/AlAsSb quantum wells,” IEEE J. Quantum Electron. 48(7), 885–890 (2012).
[Crossref]

Fedoryshin, Y.

Y. Fedoryshin, P. Ma, J. Faist, P. Kaspar, R. Kappeler, M. Beck, J. F. Holzman, and H. Jäckel, “Three operation modes for Tb/s all-optical switching with intersubband transitions in InGaAs/AlAs/AlAsSb quantum wells,” IEEE J. Quantum Electron. 48(7), 885–890 (2012).
[Crossref]

Fermann, M. E.

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

M. Jiang, G. Sucha, M. E. Fermann, J. Jimenez, D. Harter, M. Dagenais, S. Fox, and Y. Hu, “Nonlinearly limited saturable-absorber mode locking of an erbium fiber laser,” Opt. Lett. 24(15), 1074–1076 (1999).
[Crossref] [PubMed]

M. Hofer, M. H. Ober, F. Haberl, and M. E. Fermann, “Characterization of ultrashort pulse formation in passively mode-locked fiber lasers,” IEEE J. Quantum Electron. 28(3), 720–728 (1992).
[Crossref]

Fernández, H.

F. B. Naranjo, M. Gonzáñez-Herráez, H. Fernández, J. Solís, and E. Monroy, “Third order nonlinear susceptibility of InN at near band-gap wavelengths,” Appl. Phys. Lett. 90(9), 091903 (2007).
[Crossref]

Ferrari, A. C.

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101(15), 153107 (2012).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Fox, S.

Fujimoto, J. G.

Gobsch, G.

R. Goldhahn, P. Schley, A. T. Winzer, G. Gobsch, V. Cimalla, O. Ambacher, M. Rakel, C. Cobet, N. Esser, H. Lu, and W. J. Schaff, “Detailed analysis of the dielectric function for wurtzite InN and In-rich InAlN alloys,” Phys. Status Solidi Appl. Mater. Sci. 203(1), 42–49 (2006).
[Crossref]

Goldberg, L.

L. Goldberg, B. Cole, and E. Snitzer, “V-groove side-pumped 1.5 µm fibre amplifier,” Electron. Lett. 33(25), 2127–2129 (1997).
[Crossref]

Goldhahn, R.

R. Goldhahn, P. Schley, A. T. Winzer, G. Gobsch, V. Cimalla, O. Ambacher, M. Rakel, C. Cobet, N. Esser, H. Lu, and W. J. Schaff, “Detailed analysis of the dielectric function for wurtzite InN and In-rich InAlN alloys,” Phys. Status Solidi Appl. Mater. Sci. 203(1), 42–49 (2006).
[Crossref]

González-Herráez, M.

L. Monteagudo-Lerma, S. Valdueza-Felip, F. B. Naranjo, P. Corredera, L. Rapenne, E. Sarigiannidou, G. Strasser, E. Monroy, and M. González-Herráez, “Waveguide saturable absorbers at 1.55 μm based on intraband transitions in GaN/AlN QDs,” Opt. Express 21(23), 27578–27586 (2013).
[Crossref] [PubMed]

S. Valdueza-Felip, L. Rigutti, F. B. Naranjo, P. Ruterana, J. Mangeney, F. H. Julien, M. González-Herráez, and E. Monroy, “Carrier localization in InN/InGaN multiple-quantum wells with high In-content,” Appl. Phys. Lett. 101(6), 062109 (2012).
[Crossref]

F. B. Naranjo, P. K. Kandaswamy, S. Valdueza-Felip, V. Calvo, M. González-Herráez, S. Martín-López, P. Corredera, J. A. Méndez, G. R. Mutta, B. Lacroix, and E. Monroy, “Nonlinear absorption of InN/InGaN multiple-quantum-well structures at optical telecommunication wavelengths,” Appl. Phys. Lett. 98(3), 031902 (2011).
[Crossref]

Gonzáñez-Herráez, M.

F. B. Naranjo, M. Gonzáñez-Herráez, H. Fernández, J. Solís, and E. Monroy, “Third order nonlinear susceptibility of InN at near band-gap wavelengths,” Appl. Phys. Lett. 90(9), 091903 (2007).
[Crossref]

Grange, R.

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004).
[Crossref]

Gray, S.

Grelu, P.

S. Chouli, J. M. Soto-Crespo, and P. Grelu, “Optical spectra beyond the amplifier bandwidth limitation in dispersion-managed mode-locked fiber lasers,” Opt. Express 19(4), 2959–2964 (2011).
[Crossref] [PubMed]

M. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. Sect. A Gen. Solid State Phys. 372, 3124–3128 (2008).

Grudinin, B.

Haberl, F.

M. Hofer, M. H. Ober, F. Haberl, and M. E. Fermann, “Characterization of ultrashort pulse formation in passively mode-locked fiber lasers,” IEEE J. Quantum Electron. 28(3), 720–728 (1992).
[Crossref]

Haiml, M.

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004).
[Crossref]

Hall, D. W.

Harter, D.

Hartl, I.

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

Hasan, T.

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101(15), 153107 (2012).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Haus, H. A.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B Lasers Opt. 65(2), 277–294 (1997).
[Crossref]

K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, “Unidirectional ring resonators for self-starting passively mode-locked lasers,” Opt. Lett. 18(3), 220–222 (1993).
[Crossref] [PubMed]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226 (1992).
[Crossref]

Hofer, M.

M. Hofer, M. H. Ober, F. Haberl, and M. E. Fermann, “Characterization of ultrashort pulse formation in passively mode-locked fiber lasers,” IEEE J. Quantum Electron. 28(3), 720–728 (1992).
[Crossref]

Holzman, J. F.

Y. Fedoryshin, P. Ma, J. Faist, P. Kaspar, R. Kappeler, M. Beck, J. F. Holzman, and H. Jäckel, “Three operation modes for Tb/s all-optical switching with intersubband transitions in InGaAs/AlAs/AlAsSb quantum wells,” IEEE J. Quantum Electron. 48(7), 885–890 (2012).
[Crossref]

Hu, Y.

Ippen, E. P.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B Lasers Opt. 65(2), 277–294 (1997).
[Crossref]

K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, “Unidirectional ring resonators for self-starting passively mode-locked lasers,” Opt. Lett. 18(3), 220–222 (1993).
[Crossref] [PubMed]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226 (1992).
[Crossref]

Ishikawa, H.

Jablonski, M.

Jäckel, H.

Y. Fedoryshin, P. Ma, J. Faist, P. Kaspar, R. Kappeler, M. Beck, J. F. Holzman, and H. Jäckel, “Three operation modes for Tb/s all-optical switching with intersubband transitions in InGaAs/AlAs/AlAsSb quantum wells,” IEEE J. Quantum Electron. 48(7), 885–890 (2012).
[Crossref]

Jacobson, J.

Jain, S. C.

S. C. Jain, M. Willander, J. Narayan, and R. V. Overstraeten, “III–nitrides: Growth, characterization, and properties,” J. Appl. Phys. 87(3), 965–1006 (2000).
[Crossref]

Jauncey, I. M.

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54μm,” Electron. Lett. 23(19), 1026–1028 (1987).
[Crossref]

Jiang, M.

Jimenez, J.

Jones, D. J.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B Lasers Opt. 65(2), 277–294 (1997).
[Crossref]

Julien, F. H.

S. Valdueza-Felip, L. Rigutti, F. B. Naranjo, P. Ruterana, J. Mangeney, F. H. Julien, M. González-Herráez, and E. Monroy, “Carrier localization in InN/InGaN multiple-quantum wells with high In-content,” Appl. Phys. Lett. 101(6), 062109 (2012).
[Crossref]

Jung, I. D.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, “Semiconductor saturable absorber mirrors supporting sub-10-fs pulses,” Appl. Phys. B Lasers Opt. 65(2), 137–150 (1997).
[Crossref]

Kafka, J. D.

Kaino, T.

Kandaswamy, P. K.

F. B. Naranjo, P. K. Kandaswamy, S. Valdueza-Felip, V. Calvo, M. González-Herráez, S. Martín-López, P. Corredera, J. A. Méndez, G. R. Mutta, B. Lacroix, and E. Monroy, “Nonlinear absorption of InN/InGaN multiple-quantum-well structures at optical telecommunication wavelengths,” Appl. Phys. Lett. 98(3), 031902 (2011).
[Crossref]

Kappeler, R.

Y. Fedoryshin, P. Ma, J. Faist, P. Kaspar, R. Kappeler, M. Beck, J. F. Holzman, and H. Jäckel, “Three operation modes for Tb/s all-optical switching with intersubband transitions in InGaAs/AlAs/AlAsSb quantum wells,” IEEE J. Quantum Electron. 48(7), 885–890 (2012).
[Crossref]

Kartner, F. X.

F. X. Kartner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers-what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
[Crossref]

Kärtner, F. X.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, “Semiconductor saturable absorber mirrors supporting sub-10-fs pulses,” Appl. Phys. B Lasers Opt. 65(2), 137–150 (1997).
[Crossref]

Kaspar, P.

Y. Fedoryshin, P. Ma, J. Faist, P. Kaspar, R. Kappeler, M. Beck, J. F. Holzman, and H. Jäckel, “Three operation modes for Tb/s all-optical switching with intersubband transitions in InGaAs/AlAs/AlAsSb quantum wells,” IEEE J. Quantum Electron. 48(7), 885–890 (2012).
[Crossref]

Keller, U.

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004).
[Crossref]

F. X. Kartner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers-what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
[Crossref]

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, “Semiconductor saturable absorber mirrors supporting sub-10-fs pulses,” Appl. Phys. B Lasers Opt. 65(2), 137–150 (1997).
[Crossref]

Kieu, K.

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photonics Technol. Lett. 21(3), 128–130 (2009).
[Crossref] [PubMed]

Knize, R. J.

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Koester, J.

Komatsu, K.

Lacroix, B.

F. B. Naranjo, P. K. Kandaswamy, S. Valdueza-Felip, V. Calvo, M. González-Herráez, S. Martín-López, P. Corredera, J. A. Méndez, G. R. Mutta, B. Lacroix, and E. Monroy, “Nonlinear absorption of InN/InGaN multiple-quantum-well structures at optical telecommunication wavelengths,” Appl. Phys. Lett. 98(3), 031902 (2011).
[Crossref]

Li, Y.

Limpert, J.

J. Limpert, F. Roser, T. Schreiber, and A. Tünnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12(2), 233–244 (2006).
[Crossref]

Liu, H.

Liu, M.

Loh, K. P.

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Lu, H.

R. Goldhahn, P. Schley, A. T. Winzer, G. Gobsch, V. Cimalla, O. Ambacher, M. Rakel, C. Cobet, N. Esser, H. Lu, and W. J. Schaff, “Detailed analysis of the dielectric function for wurtzite InN and In-rich InAlN alloys,” Phys. Status Solidi Appl. Mater. Sci. 203(1), 42–49 (2006).
[Crossref]

Luo, A. P.

Luo, Z. C.

Ma, P.

Y. Fedoryshin, P. Ma, J. Faist, P. Kaspar, R. Kappeler, M. Beck, J. F. Holzman, and H. Jäckel, “Three operation modes for Tb/s all-optical switching with intersubband transitions in InGaAs/AlAs/AlAsSb quantum wells,” IEEE J. Quantum Electron. 48(7), 885–890 (2012).
[Crossref]

Mangeney, J.

S. Valdueza-Felip, L. Rigutti, F. B. Naranjo, P. Ruterana, J. Mangeney, F. H. Julien, M. González-Herráez, and E. Monroy, “Carrier localization in InN/InGaN multiple-quantum wells with high In-content,” Appl. Phys. Lett. 101(6), 062109 (2012).
[Crossref]

Martinez, A.

S. Yamashita, A. Martinez, and B. Xu, “Short pulse fiber lasers mode-locked by carbon nanotubes and graphene,” Opt. Fiber Technol. 20(6), 702–713 (2014).
[Crossref]

Martín-López, S.

F. B. Naranjo, P. K. Kandaswamy, S. Valdueza-Felip, V. Calvo, M. González-Herráez, S. Martín-López, P. Corredera, J. A. Méndez, G. R. Mutta, B. Lacroix, and E. Monroy, “Nonlinear absorption of InN/InGaN multiple-quantum-well structures at optical telecommunication wavelengths,” Appl. Phys. Lett. 98(3), 031902 (2011).
[Crossref]

Matsas, V. J.

V. J. Matsas, T. P. Newson, and M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching,” Opt. Commun. 92(1-3), 61–66 (1992).
[Crossref]

Matuschek, N.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, “Semiconductor saturable absorber mirrors supporting sub-10-fs pulses,” Appl. Phys. B Lasers Opt. 65(2), 137–150 (1997).
[Crossref]

McCollum, B. C.

E. Snitzer, H. Po, R. Tumminelli, and B. C. McCollum, “Double clad, offset core Nd fiber laser,” Opt. Fiber Sensors 2, PD5 (1988).
[Crossref]

Mears, R. J.

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54μm,” Electron. Lett. 23(19), 1026–1028 (1987).
[Crossref]

Méndez, J. A.

F. B. Naranjo, P. K. Kandaswamy, S. Valdueza-Felip, V. Calvo, M. González-Herráez, S. Martín-López, P. Corredera, J. A. Méndez, G. R. Mutta, B. Lacroix, and E. Monroy, “Nonlinear absorption of InN/InGaN multiple-quantum-well structures at optical telecommunication wavelengths,” Appl. Phys. Lett. 98(3), 031902 (2011).
[Crossref]

Menyuk, C. R.

Mollenauer, L. F.

Monroy, E.

L. Monteagudo-Lerma, S. Valdueza-Felip, F. B. Naranjo, P. Corredera, L. Rapenne, E. Sarigiannidou, G. Strasser, E. Monroy, and M. González-Herráez, “Waveguide saturable absorbers at 1.55 μm based on intraband transitions in GaN/AlN QDs,” Opt. Express 21(23), 27578–27586 (2013).
[Crossref] [PubMed]

S. Valdueza-Felip, L. Rigutti, F. B. Naranjo, P. Ruterana, J. Mangeney, F. H. Julien, M. González-Herráez, and E. Monroy, “Carrier localization in InN/InGaN multiple-quantum wells with high In-content,” Appl. Phys. Lett. 101(6), 062109 (2012).
[Crossref]

F. B. Naranjo, P. K. Kandaswamy, S. Valdueza-Felip, V. Calvo, M. González-Herráez, S. Martín-López, P. Corredera, J. A. Méndez, G. R. Mutta, B. Lacroix, and E. Monroy, “Nonlinear absorption of InN/InGaN multiple-quantum-well structures at optical telecommunication wavelengths,” Appl. Phys. Lett. 98(3), 031902 (2011).
[Crossref]

F. B. Naranjo, M. Gonzáñez-Herráez, H. Fernández, J. Solís, and E. Monroy, “Third order nonlinear susceptibility of InN at near band-gap wavelengths,” Appl. Phys. Lett. 90(9), 091903 (2007).
[Crossref]

Monteagudo-Lerma, L.

Morier-Genoud, F.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, “Semiconductor saturable absorber mirrors supporting sub-10-fs pulses,” Appl. Phys. B Lasers Opt. 65(2), 137–150 (1997).
[Crossref]

Moustakas, T. D.

Mutta, G. R.

F. B. Naranjo, P. K. Kandaswamy, S. Valdueza-Felip, V. Calvo, M. González-Herráez, S. Martín-López, P. Corredera, J. A. Méndez, G. R. Mutta, B. Lacroix, and E. Monroy, “Nonlinear absorption of InN/InGaN multiple-quantum-well structures at optical telecommunication wavelengths,” Appl. Phys. Lett. 98(3), 031902 (2011).
[Crossref]

Nakazawa, M.

Naranjo, F. B.

L. Monteagudo-Lerma, S. Valdueza-Felip, F. B. Naranjo, P. Corredera, L. Rapenne, E. Sarigiannidou, G. Strasser, E. Monroy, and M. González-Herráez, “Waveguide saturable absorbers at 1.55 μm based on intraband transitions in GaN/AlN QDs,” Opt. Express 21(23), 27578–27586 (2013).
[Crossref] [PubMed]

S. Valdueza-Felip, L. Rigutti, F. B. Naranjo, P. Ruterana, J. Mangeney, F. H. Julien, M. González-Herráez, and E. Monroy, “Carrier localization in InN/InGaN multiple-quantum wells with high In-content,” Appl. Phys. Lett. 101(6), 062109 (2012).
[Crossref]

F. B. Naranjo, P. K. Kandaswamy, S. Valdueza-Felip, V. Calvo, M. González-Herráez, S. Martín-López, P. Corredera, J. A. Méndez, G. R. Mutta, B. Lacroix, and E. Monroy, “Nonlinear absorption of InN/InGaN multiple-quantum-well structures at optical telecommunication wavelengths,” Appl. Phys. Lett. 98(3), 031902 (2011).
[Crossref]

F. B. Naranjo, M. Gonzáñez-Herráez, H. Fernández, J. Solís, and E. Monroy, “Third order nonlinear susceptibility of InN at near band-gap wavelengths,” Appl. Phys. Lett. 90(9), 091903 (2007).
[Crossref]

Narayan, J.

S. C. Jain, M. Willander, J. Narayan, and R. V. Overstraeten, “III–nitrides: Growth, characterization, and properties,” J. Appl. Phys. 87(3), 965–1006 (2000).
[Crossref]

Nelson, L. E.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B Lasers Opt. 65(2), 277–294 (1997).
[Crossref]

Newson, T. P.

V. J. Matsas, T. P. Newson, and M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching,” Opt. Commun. 92(1-3), 61–66 (1992).
[Crossref]

Ober, M. H.

M. Hofer, M. H. Ober, F. Haberl, and M. E. Fermann, “Characterization of ultrashort pulse formation in passively mode-locked fiber lasers,” IEEE J. Quantum Electron. 28(3), 720–728 (1992).
[Crossref]

Overstraeten, R. V.

S. C. Jain, M. Willander, J. Narayan, and R. V. Overstraeten, “III–nitrides: Growth, characterization, and properties,” J. Appl. Phys. 87(3), 965–1006 (2000).
[Crossref]

Paiella, R.

Payne, D. N.

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54μm,” Electron. Lett. 23(19), 1026–1028 (1987).
[Crossref]

Po, H.

E. Snitzer, H. Po, R. Tumminelli, and B. C. McCollum, “Double clad, offset core Nd fiber laser,” Opt. Fiber Sensors 2, PD5 (1988).
[Crossref]

Popa, D.

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101(15), 153107 (2012).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Rakel, M.

R. Goldhahn, P. Schley, A. T. Winzer, G. Gobsch, V. Cimalla, O. Ambacher, M. Rakel, C. Cobet, N. Esser, H. Lu, and W. J. Schaff, “Detailed analysis of the dielectric function for wurtzite InN and In-rich InAlN alloys,” Phys. Status Solidi Appl. Mater. Sci. 203(1), 42–49 (2006).
[Crossref]

Rapenne, L.

Reekie, L.

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54μm,” Electron. Lett. 23(19), 1026–1028 (1987).
[Crossref]

Rigutti, L.

S. Valdueza-Felip, L. Rigutti, F. B. Naranjo, P. Ruterana, J. Mangeney, F. H. Julien, M. González-Herráez, and E. Monroy, “Carrier localization in InN/InGaN multiple-quantum wells with high In-content,” Appl. Phys. Lett. 101(6), 062109 (2012).
[Crossref]

Roser, F.

J. Limpert, F. Roser, T. Schreiber, and A. Tünnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12(2), 233–244 (2006).
[Crossref]

Ruterana, P.

S. Valdueza-Felip, L. Rigutti, F. B. Naranjo, P. Ruterana, J. Mangeney, F. H. Julien, M. González-Herráez, and E. Monroy, “Carrier localization in InN/InGaN multiple-quantum wells with high In-content,” Appl. Phys. Lett. 101(6), 062109 (2012).
[Crossref]

Sarigiannidou, E.

Schaff, W. J.

R. Goldhahn, P. Schley, A. T. Winzer, G. Gobsch, V. Cimalla, O. Ambacher, M. Rakel, C. Cobet, N. Esser, H. Lu, and W. J. Schaff, “Detailed analysis of the dielectric function for wurtzite InN and In-rich InAlN alloys,” Phys. Status Solidi Appl. Mater. Sci. 203(1), 42–49 (2006).
[Crossref]

Scheuer, V.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, “Semiconductor saturable absorber mirrors supporting sub-10-fs pulses,” Appl. Phys. B Lasers Opt. 65(2), 137–150 (1997).
[Crossref]

Schley, P.

R. Goldhahn, P. Schley, A. T. Winzer, G. Gobsch, V. Cimalla, O. Ambacher, M. Rakel, C. Cobet, N. Esser, H. Lu, and W. J. Schaff, “Detailed analysis of the dielectric function for wurtzite InN and In-rich InAlN alloys,” Phys. Status Solidi Appl. Mater. Sci. 203(1), 42–49 (2006).
[Crossref]

Schreiber, T.

J. Limpert, F. Roser, T. Schreiber, and A. Tünnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12(2), 233–244 (2006).
[Crossref]

Set, S. Y.

Shi, Z.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, “Semiconductor saturable absorber mirrors supporting sub-10-fs pulses,” Appl. Phys. B Lasers Opt. 65(2), 137–150 (1997).
[Crossref]

Shirato, T.

Shohda, F.

Snitzer, E.

L. Goldberg, B. Cole, and E. Snitzer, “V-groove side-pumped 1.5 µm fibre amplifier,” Electron. Lett. 33(25), 2127–2129 (1997).
[Crossref]

E. Snitzer, H. Po, R. Tumminelli, and B. C. McCollum, “Double clad, offset core Nd fiber laser,” Opt. Fiber Sensors 2, PD5 (1988).
[Crossref]

J. Koester and E. Snitzer, “Amplification in a fiber laser,” Appl. Opt. 3(10), 1182 (1964).
[Crossref]

Solís, J.

F. B. Naranjo, M. Gonzáñez-Herráez, H. Fernández, J. Solís, and E. Monroy, “Third order nonlinear susceptibility of InN at near band-gap wavelengths,” Appl. Phys. Lett. 90(9), 091903 (2007).
[Crossref]

Soto-Crespo, J. M.

S. Chouli, J. M. Soto-Crespo, and P. Grelu, “Optical spectra beyond the amplifier bandwidth limitation in dispersion-managed mode-locked fiber lasers,” Opt. Express 19(4), 2959–2964 (2011).
[Crossref] [PubMed]

M. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. Sect. A Gen. Solid State Phys. 372, 3124–3128 (2008).

Stolen, R. H.

Strasser, G.

Sucha, G.

Sun, Z.

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101(15), 153107 (2012).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Sutter, D. H.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, “Semiconductor saturable absorber mirrors supporting sub-10-fs pulses,” Appl. Phys. B Lasers Opt. 65(2), 137–150 (1997).
[Crossref]

Tamura, K.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B Lasers Opt. 65(2), 277–294 (1997).
[Crossref]

K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, “Unidirectional ring resonators for self-starting passively mode-locked lasers,” Opt. Lett. 18(3), 220–222 (1993).
[Crossref] [PubMed]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226 (1992).
[Crossref]

Tanaka, Y.

Tang, D.

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Tauc, J.

J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull. 3(1), 37–46 (1968).
[Crossref]

Thomidis, C.

Tilsch, M.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, “Semiconductor saturable absorber mirrors supporting sub-10-fs pulses,” Appl. Phys. B Lasers Opt. 65(2), 137–150 (1997).
[Crossref]

Torrisi, F.

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101(15), 153107 (2012).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Tschudi, T.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, “Semiconductor saturable absorber mirrors supporting sub-10-fs pulses,” Appl. Phys. B Lasers Opt. 65(2), 137–150 (1997).
[Crossref]

Tumminelli, R.

E. Snitzer, H. Po, R. Tumminelli, and B. C. McCollum, “Double clad, offset core Nd fiber laser,” Opt. Fiber Sensors 2, PD5 (1988).
[Crossref]

Tünnermann, A.

J. Limpert, F. Roser, T. Schreiber, and A. Tünnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12(2), 233–244 (2006).
[Crossref]

Valdueza-Felip, S.

L. Monteagudo-Lerma, S. Valdueza-Felip, F. B. Naranjo, P. Corredera, L. Rapenne, E. Sarigiannidou, G. Strasser, E. Monroy, and M. González-Herráez, “Waveguide saturable absorbers at 1.55 μm based on intraband transitions in GaN/AlN QDs,” Opt. Express 21(23), 27578–27586 (2013).
[Crossref] [PubMed]

S. Valdueza-Felip, L. Rigutti, F. B. Naranjo, P. Ruterana, J. Mangeney, F. H. Julien, M. González-Herráez, and E. Monroy, “Carrier localization in InN/InGaN multiple-quantum wells with high In-content,” Appl. Phys. Lett. 101(6), 062109 (2012).
[Crossref]

F. B. Naranjo, P. K. Kandaswamy, S. Valdueza-Felip, V. Calvo, M. González-Herráez, S. Martín-López, P. Corredera, J. A. Méndez, G. R. Mutta, B. Lacroix, and E. Monroy, “Nonlinear absorption of InN/InGaN multiple-quantum-well structures at optical telecommunication wavelengths,” Appl. Phys. Lett. 98(3), 031902 (2011).
[Crossref]

Wai, P. K.

Wang, F.

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101(15), 153107 (2012).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Wen, S. C.

Willander, M.

S. C. Jain, M. Willander, J. Narayan, and R. V. Overstraeten, “III–nitrides: Growth, characterization, and properties,” J. Appl. Phys. 87(3), 965–1006 (2000).
[Crossref]

Winzer, A. T.

R. Goldhahn, P. Schley, A. T. Winzer, G. Gobsch, V. Cimalla, O. Ambacher, M. Rakel, C. Cobet, N. Esser, H. Lu, and W. J. Schaff, “Detailed analysis of the dielectric function for wurtzite InN and In-rich InAlN alloys,” Phys. Status Solidi Appl. Mater. Sci. 203(1), 42–49 (2006).
[Crossref]

Wise, F. W.

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photonics Technol. Lett. 21(3), 128–130 (2009).
[Crossref] [PubMed]

Wu, J.

J. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 1–28 (2009).
[Crossref]

Xu, B.

S. Yamashita, A. Martinez, and B. Xu, “Short pulse fiber lasers mode-locked by carbon nanotubes and graphene,” Opt. Fiber Technol. 20(6), 702–713 (2014).
[Crossref]

Xu, W. C.

Yaguchi, H.

Yamashita, S.

S. Yamashita, A. Martinez, and B. Xu, “Short pulse fiber lasers mode-locked by carbon nanotubes and graphene,” Opt. Fiber Technol. 20(6), 702–713 (2014).
[Crossref]

Zenteno, L.

L. Zenteno, “High-power double-clad fiber lasers,” J. Lightwave Technol. 11(9), 1435–1446 (1993).
[Crossref]

Zervas, M. N.

V. J. Matsas, T. P. Newson, and M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching,” Opt. Commun. 92(1-3), 61–66 (1992).
[Crossref]

Zhang, H.

Zhao, C. J.

Zhao, L.

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Zheng, X. W.

ACS Nano (1)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004).
[Crossref]

Appl. Phys. B Lasers Opt. (2)

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, “Semiconductor saturable absorber mirrors supporting sub-10-fs pulses,” Appl. Phys. B Lasers Opt. 65(2), 137–150 (1997).
[Crossref]

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B Lasers Opt. 65(2), 277–294 (1997).
[Crossref]

Appl. Phys. Lett. (5)

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101(15), 153107 (2012).
[Crossref]

F. B. Naranjo, P. K. Kandaswamy, S. Valdueza-Felip, V. Calvo, M. González-Herráez, S. Martín-López, P. Corredera, J. A. Méndez, G. R. Mutta, B. Lacroix, and E. Monroy, “Nonlinear absorption of InN/InGaN multiple-quantum-well structures at optical telecommunication wavelengths,” Appl. Phys. Lett. 98(3), 031902 (2011).
[Crossref]

F. B. Naranjo, M. Gonzáñez-Herráez, H. Fernández, J. Solís, and E. Monroy, “Third order nonlinear susceptibility of InN at near band-gap wavelengths,” Appl. Phys. Lett. 90(9), 091903 (2007).
[Crossref]

S. Valdueza-Felip, L. Rigutti, F. B. Naranjo, P. Ruterana, J. Mangeney, F. H. Julien, M. González-Herráez, and E. Monroy, “Carrier localization in InN/InGaN multiple-quantum wells with high In-content,” Appl. Phys. Lett. 101(6), 062109 (2012).
[Crossref]

Electron. Lett. (3)

L. Goldberg, B. Cole, and E. Snitzer, “V-groove side-pumped 1.5 µm fibre amplifier,” Electron. Lett. 33(25), 2127–2129 (1997).
[Crossref]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226 (1992).
[Crossref]

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54μm,” Electron. Lett. 23(19), 1026–1028 (1987).
[Crossref]

IEEE J. Quantum Electron. (2)

Y. Fedoryshin, P. Ma, J. Faist, P. Kaspar, R. Kappeler, M. Beck, J. F. Holzman, and H. Jäckel, “Three operation modes for Tb/s all-optical switching with intersubband transitions in InGaAs/AlAs/AlAsSb quantum wells,” IEEE J. Quantum Electron. 48(7), 885–890 (2012).
[Crossref]

M. Hofer, M. H. Ober, F. Haberl, and M. E. Fermann, “Characterization of ultrashort pulse formation in passively mode-locked fiber lasers,” IEEE J. Quantum Electron. 28(3), 720–728 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

F. X. Kartner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers-what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
[Crossref]

J. Limpert, F. Roser, T. Schreiber, and A. Tünnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12(2), 233–244 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (1)

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photonics Technol. Lett. 21(3), 128–130 (2009).
[Crossref] [PubMed]

J. Appl. Phys. (2)

S. C. Jain, M. Willander, J. Narayan, and R. V. Overstraeten, “III–nitrides: Growth, characterization, and properties,” J. Appl. Phys. 87(3), 965–1006 (2000).
[Crossref]

J. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 1–28 (2009).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Mater. Res. Bull. (1)

J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull. 3(1), 37–46 (1968).
[Crossref]

Nat. Photonics (2)

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Opt. Commun. (1)

V. J. Matsas, T. P. Newson, and M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching,” Opt. Commun. 92(1-3), 61–66 (1992).
[Crossref]

Opt. Express (5)

Opt. Fiber Sensors (1)

E. Snitzer, H. Po, R. Tumminelli, and B. C. McCollum, “Double clad, offset core Nd fiber laser,” Opt. Fiber Sensors 2, PD5 (1988).
[Crossref]

Opt. Fiber Technol. (1)

S. Yamashita, A. Martinez, and B. Xu, “Short pulse fiber lasers mode-locked by carbon nanotubes and graphene,” Opt. Fiber Technol. 20(6), 702–713 (2014).
[Crossref]

Opt. Lett. (6)

Phys. Lett. Sect. A Gen. Solid State Phys. (1)

M. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. Sect. A Gen. Solid State Phys. 372, 3124–3128 (2008).

Phys. Status Solidi Appl. Mater. Sci. (1)

R. Goldhahn, P. Schley, A. T. Winzer, G. Gobsch, V. Cimalla, O. Ambacher, M. Rakel, C. Cobet, N. Esser, H. Lu, and W. J. Schaff, “Detailed analysis of the dielectric function for wurtzite InN and In-rich InAlN alloys,” Phys. Status Solidi Appl. Mater. Sci. 203(1), 42–49 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Characterization of a 1-µm-thick InN layer: (a) Tauc’s plot, i.e. (Eα)2 vs. E, with E = energy, α = absorption coefficient. The dashed line is a linear fit for the determination of the band gap. The vertical dotted line marks the operation wavelength of the laser. (b) Variation of the optical transmittance as a function of the impinging energy fluence. The solid line is a fit of the experimental data to Eq. (1).
Fig. 2
Fig. 2 Scheme of the C-band ultrafast mode-locked fiber laser using InN as saturable absorber.
Fig. 3
Fig. 3 Characterization of the fiber laser described in Fig. 2: (a) Variation of the peak power (only under pulsed operation, and zero in continuous wave) as a function of the average output power. The various operation regimes are identified: continuous wave (CW) and mode-locking (ML), with a ML lower threshold of 5.5 mW of average output power. The normalized linear spectra centered at 1.56 µm with a span of 100 nm are shown for each regime. (b) For the maximum ring average power (minimum attenuation in the ring, autocorrelation trace with a temporal duration of 252 fs. The inset shows the train of pulses generated with a repetition rate of 4.84 MHz. (c) Also for the maximum ring average power (minimum attenuation in the ring, laser spectrum centered at 1562 nm with a FWHM of 16 nm. (d) Time-Bandwidth Product as a function of the ring average power. The solid line represents the sech2 limit.
Fig. 4
Fig. 4 Laser stability for different cavity lengths (from the standard configuration to + 200 m of additional fiber): (a) autocorrelation traces (vertically shifted for clarity), (b) normalized spectra (vertically shifted for clarity), and (c) repetition rates.
Fig. 5
Fig. 5 Ultrafast mode-locked fiber oscillator using InN saturable absorber with output fiber gain: (a) spectra, and (b) autocorrelation traces for different amplification values operating close to the oscillator threshold, with master oscillator output average power of 5.5 mW. The legend indicates the average output power in each case. The green line corresponds to the case of minimum oscillator attenuation, i.e. far from the threshold with master oscillator output average power of 9.7 mW, and minimum output amplification (PAv = 207 mW).

Tables (1)

Tables Icon

Table 1 Experimental results comparing different laser cavity configurations differing in the length of an additional monomode fiber inserted between the output coupler and the variable attenuator (see Fig. 2).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T= T ns ln( 1+ T lin / T ns ( e F/ F sat 1 ) ) F/ F sat

Metrics