Abstract

A novel fiber structure, coreless side-polished fiber (CSPF), is proposed and investigated to implement multimode interference (MMI) and high sensitive refractive index (RI) sensors. For such CSPF, the part of the cladding and the core of a single-mode fiber are side-polished off so as to make the remained cladding a D-shaped multimode waveguide. The excitation and evolution of MMI in the CSPF are simulated numerically. The simulation results show that the high-order modes excited within the D-shaped multimode waveguide are mainly TE0,1 (TM0,1)~TE0,6 (TM0,6) modes. Moreover, the RI sensing characteristics and the influences of residual thickness and dip wavelength on the sensitivity are investigated both numerically and experimentally. The experimental results show that the CSPF with a residual thickness of 43.1 μm can reach an ultra-high sensitivity of 28000 nm/RIU in the RI range of 1.442~1.444. It is also found that the sensitivity can be further increased by reducing the residual thickness and choosing the dip at a longer wavelength. Thanks to the ultra-high RI sensitivity and the ease of fabrication, the CSPF could provide a cost-effective platform to build high-performance fiber devices of various functions.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High performance all-fiber temperature sensor based on coreless side-polished fiber wrapped with polydimethylsiloxane

Caiyan He, Junbin Fang, Yanan Zhang, Yu Yang, Jianhui Yu, Jun Zhang, Heyuan Guan, Wentao Qiu, Pengjun Wu, Jiangli Dong, Huihui Lu, Jieyuan Tang, Wenguo Zhu, N. Arsad, Yi Xiao, and Zhe Chen
Opt. Express 26(8) 9686-9699 (2018)

Fiber refractometer based on a fiber Bragg grating and single-mode–multimode–single-mode fiber structure

Qiang Wu, Yuliya Semenova, Binbin Yan, Youqiao Ma, Pengfei Wang, Chongxiu Yu, and Gerald Farrell
Opt. Lett. 36(12) 2197-2199 (2011)

Side-polished few-mode fiber based surface plasmon resonance biosensor

Jiangli Dong, Yaxin Zhang, Yajun Wang, Fan Yang, Shiqi Hu, Yaofei Chen, Wenguo Zhu, Wentao Qiu, Heyuan Guan, Huihui Lu, Jianhui Yu, Yongchun Zhong, Jun Zhang, Yunhan Luo, and Zhe Chen
Opt. Express 27(8) 11348-11360 (2019)

References

  • View by:
  • |
  • |
  • |

  1. W. S. Mohammed, P. W. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31(17), 2547–2549 (2006).
    [Crossref] [PubMed]
  2. J. E. Antonio-Lopez, A. Castillo-Guzman, D. A. May-Arrioja, R. Selvas-Aguilar, and P. Likamwa, “Tunable multimode-interference bandpass fiber filter,” Opt. Lett. 35(3), 324–326 (2010).
    [Crossref] [PubMed]
  3. Y. C. Shi, D. X. Dai, and S. L. He, “Proposal for an ultracompact polarization-beam splitter based on a photonic-crystal-assisted multimode interference coupler,” IEEE Photonics Technol. Lett. 19(11), 825–827 (2007).
    [Crossref]
  4. S. Nagai, G. Morishima, H. Inayoshi, and K. Utaka, “Multimode interference photonic switches (MIPS),” J. Lightwave Technol. 20(4), 675–681 (2002).
    [Crossref]
  5. Q. Wu, M. Yang, J. Yuan, H. P. Chan, Y. Ma, Y. Semenova, P. Wang, C. Yu, and G. Farrell, “The use of a bend singlemode–multimode–singlemode (SMS) fibre structure for vibration sensing,” Opt. Laser Technol. 63, 29–33 (2014).
    [Crossref]
  6. A. Kumar, R. K. Varshney, and R. Kumar, “SMS fiber optic microbend sensor structures: effect of the modal interference,” Opt. Commun. 232(1–6), 239–244 (2004).
    [Crossref]
  7. J. E. Antonio-Lopez, P. LiKamWa, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, “All-fiber multimode interference micro-displacement sensor,” Meas. Sci. Technol. 24(5), 055104 (2013).
    [Crossref]
  8. C. Li, T. Ning, X. Wen, J. Li, J. Zheng, H. You, H. Chen, C. Zhang, and W. Jian, “Strain and temperature discrimination using a fiber Bragg grating and multimode interference effects,” Opt. Commun. 343, 6–9 (2015).
    [Crossref]
  9. J. An, Y. Jin, M. Sun, and X. Dong, “Relative humidity sensor based on sms fiber structure with two waist-enlarged tapers,” IEEE Sens. J. 14(8), 2683–2686 (2014).
    [Crossref]
  10. Y. Zhao, L. Cai, X.-G. Li, and F.-C. Meng, “Liquid concentration measurement based on SMS fiber sensor with temperature compensation using an FBG,” Sens. Actuators B Chem. 196, 518–524 (2014).
    [Crossref]
  11. S. Silva, O. Frazão, J. L. Santos, and F. X. Malcata, “A reflective optical fiber refractometer based on multimode interference,” Sens. Actuators B Chem. 161(1), 88–92 (2012).
    [Crossref]
  12. Y. Zhao, L. Cai, X.-G. Li, F. Meng, and Z. Zhao, “Investigation of the high sensitivity RI sensor based on SMS fiber structure,” Sens. Actuators A Phys. 205, 186–190 (2014).
    [Crossref]
  13. Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer--analysis and experiment,” Opt. Express 19(9), 7937–7944 (2011).
    [Crossref] [PubMed]
  14. Y. Zhao, X. Li, and L. Cai, “A highly sensitive Mach–Zehnder interferometric refractive index sensor based on core-offset single mode fiber,” Sens. Actuators A Phys. 223, 119–124 (2015).
    [Crossref]
  15. Q. K. Wang, Y. Lingxin, F. Dang, Y. Xia, Y. Zhang, H. Zhao, Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
    [Crossref]
  16. C. R. Biazoli, S. Silva, M. A. Franco, O. Frazão, and C. M. Cordeiro, “Multimode interference tapered fiber refractive index sensors,” Appl. Opt. 51(24), 5941–5945 (2012).
    [Crossref] [PubMed]
  17. J. Tang, J. Zhou, J. Guan, S. Long, J. Yu, H. Guan, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Fabrication of side-polished single mode-multimode-single mode fiber and its characteristics of refractive index sensing,” IEEE J. Sel. Top. Quantum Electron. 99(1), 1 (2016).
    [Crossref]
  18. A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Sensitivity enhancement in a multimode interference-based SMS fibre structure coated with a thin-film: Theoretical and experimental study,” Sens. Actuators B Chem. 190, 363–369 (2014).
    [Crossref]
  19. D. Liu, A. K. Mallik, J. Yuan, C. Yu, G. Farrell, Y. Semenova, and Q. Wu, “High sensitivity refractive index sensor based on a tapered small core single-mode fiber structure,” Opt. Lett. 40(17), 4166–4169 (2015).
    [Crossref] [PubMed]
  20. T.-H. Xia, A. P. Zhang, B. Gu, and J.-J. Zhu, “Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers,” Opt. Commun. 283(10), 2136–2139 (2010).
    [Crossref]
  21. Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2) based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
    [Crossref] [PubMed]
  22. Y. Wang, H. Liu, Y. Wang, W. Qiu, J. Zhang, Z. Tian, J. Yu, J. Tang, Y. Luo, H. Guan, Z. Chen, and H. Lu, “Side polished fiber with coated graphene sheet and its control characteristic of violet light,” Opt. Mater. Express 6(6), 2088 (2016).
    [Crossref]
  23. H. S. Jang, K. N. Park, J. P. Kim, S. J. Sim, O. J. Kwon, Y. G. Han, and K. S. Lee, “Sensitive DNA biosensor based on a long-period grating formed on the side-polished fiber surface,” Opt. Express 17(5), 3855–3860 (2009).
    [Crossref] [PubMed]
  24. Y. E. Fan, T. Zhu, L. Shi, and Y. J. Rao, “Highly sensitive refractive index sensor based on two cascaded special long-period fiber gratings with rotary refractive index modulation,” Appl. Opt. 50(23), 4604–4610 (2011).
    [Crossref] [PubMed]
  25. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
    [Crossref]
  26. Q. L. Qi Liu and Q. W. Qin Wang, “Refractive index sensor based on tapered PCF in-line interferometer,” Chin. Opt. Lett. 10(9), 090601 (2012).
    [Crossref]
  27. Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “A comprehensive analysis verified by experiment of a refractometer based on an SMF28–small-core singlemode fiber (SCSMF)–SMF28 fiber structure,” J. Opt. 13(12), 125401 (2011).
    [Crossref]
  28. M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).
  29. J. Yu, Y. Han, H. Huang, H. Li, V. K. Hsiao, W. Liu, J. Tang, H. Lu, J. Zhang, Y. Luo, Y. Zhong, Z. Zang, and Z. Chen, “All-optically reconfigurable and tunable fiber surface grating for in-fiber devices: a wideband tunable filter,” Opt. Express 22(5), 5950–5961 (2014).
    [Crossref] [PubMed]
  30. J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5, 7710 (2015).
    [Crossref] [PubMed]

2016 (4)

Q. K. Wang, Y. Lingxin, F. Dang, Y. Xia, Y. Zhang, H. Zhao, Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

J. Tang, J. Zhou, J. Guan, S. Long, J. Yu, H. Guan, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Fabrication of side-polished single mode-multimode-single mode fiber and its characteristics of refractive index sensing,” IEEE J. Sel. Top. Quantum Electron. 99(1), 1 (2016).
[Crossref]

Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2) based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
[Crossref] [PubMed]

Y. Wang, H. Liu, Y. Wang, W. Qiu, J. Zhang, Z. Tian, J. Yu, J. Tang, Y. Luo, H. Guan, Z. Chen, and H. Lu, “Side polished fiber with coated graphene sheet and its control characteristic of violet light,” Opt. Mater. Express 6(6), 2088 (2016).
[Crossref]

2015 (4)

D. Liu, A. K. Mallik, J. Yuan, C. Yu, G. Farrell, Y. Semenova, and Q. Wu, “High sensitivity refractive index sensor based on a tapered small core single-mode fiber structure,” Opt. Lett. 40(17), 4166–4169 (2015).
[Crossref] [PubMed]

Y. Zhao, X. Li, and L. Cai, “A highly sensitive Mach–Zehnder interferometric refractive index sensor based on core-offset single mode fiber,” Sens. Actuators A Phys. 223, 119–124 (2015).
[Crossref]

J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5, 7710 (2015).
[Crossref] [PubMed]

C. Li, T. Ning, X. Wen, J. Li, J. Zheng, H. You, H. Chen, C. Zhang, and W. Jian, “Strain and temperature discrimination using a fiber Bragg grating and multimode interference effects,” Opt. Commun. 343, 6–9 (2015).
[Crossref]

2014 (6)

J. An, Y. Jin, M. Sun, and X. Dong, “Relative humidity sensor based on sms fiber structure with two waist-enlarged tapers,” IEEE Sens. J. 14(8), 2683–2686 (2014).
[Crossref]

Y. Zhao, L. Cai, X.-G. Li, and F.-C. Meng, “Liquid concentration measurement based on SMS fiber sensor with temperature compensation using an FBG,” Sens. Actuators B Chem. 196, 518–524 (2014).
[Crossref]

Q. Wu, M. Yang, J. Yuan, H. P. Chan, Y. Ma, Y. Semenova, P. Wang, C. Yu, and G. Farrell, “The use of a bend singlemode–multimode–singlemode (SMS) fibre structure for vibration sensing,” Opt. Laser Technol. 63, 29–33 (2014).
[Crossref]

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Sensitivity enhancement in a multimode interference-based SMS fibre structure coated with a thin-film: Theoretical and experimental study,” Sens. Actuators B Chem. 190, 363–369 (2014).
[Crossref]

Y. Zhao, L. Cai, X.-G. Li, F. Meng, and Z. Zhao, “Investigation of the high sensitivity RI sensor based on SMS fiber structure,” Sens. Actuators A Phys. 205, 186–190 (2014).
[Crossref]

J. Yu, Y. Han, H. Huang, H. Li, V. K. Hsiao, W. Liu, J. Tang, H. Lu, J. Zhang, Y. Luo, Y. Zhong, Z. Zang, and Z. Chen, “All-optically reconfigurable and tunable fiber surface grating for in-fiber devices: a wideband tunable filter,” Opt. Express 22(5), 5950–5961 (2014).
[Crossref] [PubMed]

2013 (1)

J. E. Antonio-Lopez, P. LiKamWa, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, “All-fiber multimode interference micro-displacement sensor,” Meas. Sci. Technol. 24(5), 055104 (2013).
[Crossref]

2012 (3)

2011 (3)

2010 (2)

J. E. Antonio-Lopez, A. Castillo-Guzman, D. A. May-Arrioja, R. Selvas-Aguilar, and P. Likamwa, “Tunable multimode-interference bandpass fiber filter,” Opt. Lett. 35(3), 324–326 (2010).
[Crossref] [PubMed]

T.-H. Xia, A. P. Zhang, B. Gu, and J.-J. Zhu, “Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers,” Opt. Commun. 283(10), 2136–2139 (2010).
[Crossref]

2009 (1)

2007 (1)

Y. C. Shi, D. X. Dai, and S. L. He, “Proposal for an ultracompact polarization-beam splitter based on a photonic-crystal-assisted multimode interference coupler,” IEEE Photonics Technol. Lett. 19(11), 825–827 (2007).
[Crossref]

2006 (1)

2004 (1)

A. Kumar, R. K. Varshney, and R. Kumar, “SMS fiber optic microbend sensor structures: effect of the modal interference,” Opt. Commun. 232(1–6), 239–244 (2004).
[Crossref]

2002 (1)

1995 (1)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

An, J.

J. An, Y. Jin, M. Sun, and X. Dong, “Relative humidity sensor based on sms fiber structure with two waist-enlarged tapers,” IEEE Sens. J. 14(8), 2683–2686 (2014).
[Crossref]

Antonio-Lopez, J. E.

J. E. Antonio-Lopez, P. LiKamWa, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, “All-fiber multimode interference micro-displacement sensor,” Meas. Sci. Technol. 24(5), 055104 (2013).
[Crossref]

J. E. Antonio-Lopez, A. Castillo-Guzman, D. A. May-Arrioja, R. Selvas-Aguilar, and P. Likamwa, “Tunable multimode-interference bandpass fiber filter,” Opt. Lett. 35(3), 324–326 (2010).
[Crossref] [PubMed]

Arregui, F. J.

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Sensitivity enhancement in a multimode interference-based SMS fibre structure coated with a thin-film: Theoretical and experimental study,” Sens. Actuators B Chem. 190, 363–369 (2014).
[Crossref]

Biazoli, C. R.

Cai, L.

Y. Zhao, X. Li, and L. Cai, “A highly sensitive Mach–Zehnder interferometric refractive index sensor based on core-offset single mode fiber,” Sens. Actuators A Phys. 223, 119–124 (2015).
[Crossref]

Y. Zhao, L. Cai, X.-G. Li, F. Meng, and Z. Zhao, “Investigation of the high sensitivity RI sensor based on SMS fiber structure,” Sens. Actuators A Phys. 205, 186–190 (2014).
[Crossref]

Y. Zhao, L. Cai, X.-G. Li, and F.-C. Meng, “Liquid concentration measurement based on SMS fiber sensor with temperature compensation using an FBG,” Sens. Actuators B Chem. 196, 518–524 (2014).
[Crossref]

Castillo-Guzman, A.

Chan, H. P.

Q. Wu, M. Yang, J. Yuan, H. P. Chan, Y. Ma, Y. Semenova, P. Wang, C. Yu, and G. Farrell, “The use of a bend singlemode–multimode–singlemode (SMS) fibre structure for vibration sensing,” Opt. Laser Technol. 63, 29–33 (2014).
[Crossref]

Chen, C.

Chen, H.

C. Li, T. Ning, X. Wen, J. Li, J. Zheng, H. You, H. Chen, C. Zhang, and W. Jian, “Strain and temperature discrimination using a fiber Bragg grating and multimode interference effects,” Opt. Commun. 343, 6–9 (2015).
[Crossref]

Chen, Z.

Cordeiro, C. M.

Corres, J. M.

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Sensitivity enhancement in a multimode interference-based SMS fibre structure coated with a thin-film: Theoretical and experimental study,” Sens. Actuators B Chem. 190, 363–369 (2014).
[Crossref]

Dai, D. X.

Y. C. Shi, D. X. Dai, and S. L. He, “Proposal for an ultracompact polarization-beam splitter based on a photonic-crystal-assisted multimode interference coupler,” IEEE Photonics Technol. Lett. 19(11), 825–827 (2007).
[Crossref]

Dang, F.

Q. K. Wang, Y. Lingxin, F. Dang, Y. Xia, Y. Zhang, H. Zhao, Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

Del Villar, I.

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Sensitivity enhancement in a multimode interference-based SMS fibre structure coated with a thin-film: Theoretical and experimental study,” Sens. Actuators B Chem. 190, 363–369 (2014).
[Crossref]

Dong, X.

J. An, Y. Jin, M. Sun, and X. Dong, “Relative humidity sensor based on sms fiber structure with two waist-enlarged tapers,” IEEE Sens. J. 14(8), 2683–2686 (2014).
[Crossref]

Fan, Y. E.

Farrell, G.

D. Liu, A. K. Mallik, J. Yuan, C. Yu, G. Farrell, Y. Semenova, and Q. Wu, “High sensitivity refractive index sensor based on a tapered small core single-mode fiber structure,” Opt. Lett. 40(17), 4166–4169 (2015).
[Crossref] [PubMed]

Q. Wu, M. Yang, J. Yuan, H. P. Chan, Y. Ma, Y. Semenova, P. Wang, C. Yu, and G. Farrell, “The use of a bend singlemode–multimode–singlemode (SMS) fibre structure for vibration sensing,” Opt. Laser Technol. 63, 29–33 (2014).
[Crossref]

Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer--analysis and experiment,” Opt. Express 19(9), 7937–7944 (2011).
[Crossref] [PubMed]

Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “A comprehensive analysis verified by experiment of a refractometer based on an SMF28–small-core singlemode fiber (SCSMF)–SMF28 fiber structure,” J. Opt. 13(12), 125401 (2011).
[Crossref]

Franco, M. A.

Frazão, O.

C. R. Biazoli, S. Silva, M. A. Franco, O. Frazão, and C. M. Cordeiro, “Multimode interference tapered fiber refractive index sensors,” Appl. Opt. 51(24), 5941–5945 (2012).
[Crossref] [PubMed]

S. Silva, O. Frazão, J. L. Santos, and F. X. Malcata, “A reflective optical fiber refractometer based on multimode interference,” Sens. Actuators B Chem. 161(1), 88–92 (2012).
[Crossref]

Gu, B.

T.-H. Xia, A. P. Zhang, B. Gu, and J.-J. Zhu, “Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers,” Opt. Commun. 283(10), 2136–2139 (2010).
[Crossref]

Gu, X.

Guan, H.

Guan, J.

J. Tang, J. Zhou, J. Guan, S. Long, J. Yu, H. Guan, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Fabrication of side-polished single mode-multimode-single mode fiber and its characteristics of refractive index sensing,” IEEE J. Sel. Top. Quantum Electron. 99(1), 1 (2016).
[Crossref]

Han, Y.

Han, Y. G.

He, S. L.

Y. C. Shi, D. X. Dai, and S. L. He, “Proposal for an ultracompact polarization-beam splitter based on a photonic-crystal-assisted multimode interference coupler,” IEEE Photonics Technol. Lett. 19(11), 825–827 (2007).
[Crossref]

He, X.

J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5, 7710 (2015).
[Crossref] [PubMed]

Hsiao, V. K.

Hu,

Q. K. Wang, Y. Lingxin, F. Dang, Y. Xia, Y. Zhang, H. Zhao, Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

Huang, H.

Inayoshi, H.

Jang, H. S.

Jian, W.

C. Li, T. Ning, X. Wen, J. Li, J. Zheng, H. You, H. Chen, C. Zhang, and W. Jian, “Strain and temperature discrimination using a fiber Bragg grating and multimode interference effects,” Opt. Commun. 343, 6–9 (2015).
[Crossref]

Jin, S.

J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5, 7710 (2015).
[Crossref] [PubMed]

Jin, Y.

J. An, Y. Jin, M. Sun, and X. Dong, “Relative humidity sensor based on sms fiber structure with two waist-enlarged tapers,” IEEE Sens. J. 14(8), 2683–2686 (2014).
[Crossref]

Kim, J. P.

Kumar, A.

A. Kumar, R. K. Varshney, and R. Kumar, “SMS fiber optic microbend sensor structures: effect of the modal interference,” Opt. Commun. 232(1–6), 239–244 (2004).
[Crossref]

Kumar, R.

A. Kumar, R. K. Varshney, and R. Kumar, “SMS fiber optic microbend sensor structures: effect of the modal interference,” Opt. Commun. 232(1–6), 239–244 (2004).
[Crossref]

Kwon, O. J.

Lee, K. S.

Li, C.

C. Li, T. Ning, X. Wen, J. Li, J. Zheng, H. You, H. Chen, C. Zhang, and W. Jian, “Strain and temperature discrimination using a fiber Bragg grating and multimode interference effects,” Opt. Commun. 343, 6–9 (2015).
[Crossref]

Li, H.

Li, J.

Q. K. Wang, Y. Lingxin, F. Dang, Y. Xia, Y. Zhang, H. Zhao, Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

C. Li, T. Ning, X. Wen, J. Li, J. Zheng, H. You, H. Chen, C. Zhang, and W. Jian, “Strain and temperature discrimination using a fiber Bragg grating and multimode interference effects,” Opt. Commun. 343, 6–9 (2015).
[Crossref]

Li, X.

Y. Zhao, X. Li, and L. Cai, “A highly sensitive Mach–Zehnder interferometric refractive index sensor based on core-offset single mode fiber,” Sens. Actuators A Phys. 223, 119–124 (2015).
[Crossref]

Li, X.-G.

Y. Zhao, L. Cai, X.-G. Li, F. Meng, and Z. Zhao, “Investigation of the high sensitivity RI sensor based on SMS fiber structure,” Sens. Actuators A Phys. 205, 186–190 (2014).
[Crossref]

Y. Zhao, L. Cai, X.-G. Li, and F.-C. Meng, “Liquid concentration measurement based on SMS fiber sensor with temperature compensation using an FBG,” Sens. Actuators B Chem. 196, 518–524 (2014).
[Crossref]

LiKamWa, P.

J. E. Antonio-Lopez, P. LiKamWa, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, “All-fiber multimode interference micro-displacement sensor,” Meas. Sci. Technol. 24(5), 055104 (2013).
[Crossref]

J. E. Antonio-Lopez, A. Castillo-Guzman, D. A. May-Arrioja, R. Selvas-Aguilar, and P. Likamwa, “Tunable multimode-interference bandpass fiber filter,” Opt. Lett. 35(3), 324–326 (2010).
[Crossref] [PubMed]

Lingxin, Y.

Q. K. Wang, Y. Lingxin, F. Dang, Y. Xia, Y. Zhang, H. Zhao, Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

Liu, D.

Liu, H.

Liu, W.

Long, S.

J. Tang, J. Zhou, J. Guan, S. Long, J. Yu, H. Guan, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Fabrication of side-polished single mode-multimode-single mode fiber and its characteristics of refractive index sensing,” IEEE J. Sel. Top. Quantum Electron. 99(1), 1 (2016).
[Crossref]

Lu, H.

Luo, Y.

Ma, Y.

Q. Wu, M. Yang, J. Yuan, H. P. Chan, Y. Ma, Y. Semenova, P. Wang, C. Yu, and G. Farrell, “The use of a bend singlemode–multimode–singlemode (SMS) fibre structure for vibration sensing,” Opt. Laser Technol. 63, 29–33 (2014).
[Crossref]

Malcata, F. X.

S. Silva, O. Frazão, J. L. Santos, and F. X. Malcata, “A reflective optical fiber refractometer based on multimode interference,” Sens. Actuators B Chem. 161(1), 88–92 (2012).
[Crossref]

Mallik, A. K.

Matias, I. R.

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Sensitivity enhancement in a multimode interference-based SMS fibre structure coated with a thin-film: Theoretical and experimental study,” Sens. Actuators B Chem. 190, 363–369 (2014).
[Crossref]

May-Arrioja, D. A.

J. E. Antonio-Lopez, P. LiKamWa, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, “All-fiber multimode interference micro-displacement sensor,” Meas. Sci. Technol. 24(5), 055104 (2013).
[Crossref]

J. E. Antonio-Lopez, A. Castillo-Guzman, D. A. May-Arrioja, R. Selvas-Aguilar, and P. Likamwa, “Tunable multimode-interference bandpass fiber filter,” Opt. Lett. 35(3), 324–326 (2010).
[Crossref] [PubMed]

Meng, F.

Y. Zhao, L. Cai, X.-G. Li, F. Meng, and Z. Zhao, “Investigation of the high sensitivity RI sensor based on SMS fiber structure,” Sens. Actuators A Phys. 205, 186–190 (2014).
[Crossref]

Meng, F.-C.

Y. Zhao, L. Cai, X.-G. Li, and F.-C. Meng, “Liquid concentration measurement based on SMS fiber sensor with temperature compensation using an FBG,” Sens. Actuators B Chem. 196, 518–524 (2014).
[Crossref]

Mohammed, W. S.

Morishima, G.

Nagai, S.

Ning, T.

C. Li, T. Ning, X. Wen, J. Li, J. Zheng, H. You, H. Chen, C. Zhang, and W. Jian, “Strain and temperature discrimination using a fiber Bragg grating and multimode interference effects,” Opt. Commun. 343, 6–9 (2015).
[Crossref]

Park, K. N.

Peng, S.

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Qi Liu, Q. L.

Qin Wang, Q. W.

Qiu, W.

Rao, Y. J.

Sanchez-Mondragon, J. J.

J. E. Antonio-Lopez, P. LiKamWa, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, “All-fiber multimode interference micro-displacement sensor,” Meas. Sci. Technol. 24(5), 055104 (2013).
[Crossref]

Santos, J. L.

S. Silva, O. Frazão, J. L. Santos, and F. X. Malcata, “A reflective optical fiber refractometer based on multimode interference,” Sens. Actuators B Chem. 161(1), 88–92 (2012).
[Crossref]

Selvas-Aguilar, R.

Semenova, Y.

D. Liu, A. K. Mallik, J. Yuan, C. Yu, G. Farrell, Y. Semenova, and Q. Wu, “High sensitivity refractive index sensor based on a tapered small core single-mode fiber structure,” Opt. Lett. 40(17), 4166–4169 (2015).
[Crossref] [PubMed]

Q. Wu, M. Yang, J. Yuan, H. P. Chan, Y. Ma, Y. Semenova, P. Wang, C. Yu, and G. Farrell, “The use of a bend singlemode–multimode–singlemode (SMS) fibre structure for vibration sensing,” Opt. Laser Technol. 63, 29–33 (2014).
[Crossref]

Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “A comprehensive analysis verified by experiment of a refractometer based on an SMF28–small-core singlemode fiber (SCSMF)–SMF28 fiber structure,” J. Opt. 13(12), 125401 (2011).
[Crossref]

Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer--analysis and experiment,” Opt. Express 19(9), 7937–7944 (2011).
[Crossref] [PubMed]

Shi, L.

Shi, Y. C.

Y. C. Shi, D. X. Dai, and S. L. He, “Proposal for an ultracompact polarization-beam splitter based on a photonic-crystal-assisted multimode interference coupler,” IEEE Photonics Technol. Lett. 19(11), 825–827 (2007).
[Crossref]

Silva, S.

C. R. Biazoli, S. Silva, M. A. Franco, O. Frazão, and C. M. Cordeiro, “Multimode interference tapered fiber refractive index sensors,” Appl. Opt. 51(24), 5941–5945 (2012).
[Crossref] [PubMed]

S. Silva, O. Frazão, J. L. Santos, and F. X. Malcata, “A reflective optical fiber refractometer based on multimode interference,” Sens. Actuators B Chem. 161(1), 88–92 (2012).
[Crossref]

Sim, S. J.

Smith, P. W.

Socorro, A. B.

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Sensitivity enhancement in a multimode interference-based SMS fibre structure coated with a thin-film: Theoretical and experimental study,” Sens. Actuators B Chem. 190, 363–369 (2014).
[Crossref]

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Sun, M.

J. An, Y. Jin, M. Sun, and X. Dong, “Relative humidity sensor based on sms fiber structure with two waist-enlarged tapers,” IEEE Sens. J. 14(8), 2683–2686 (2014).
[Crossref]

Tang, J.

Tian, Z.

Utaka, K.

Varshney, R. K.

A. Kumar, R. K. Varshney, and R. Kumar, “SMS fiber optic microbend sensor structures: effect of the modal interference,” Opt. Commun. 232(1–6), 239–244 (2004).
[Crossref]

Wang, P.

Q. Wu, M. Yang, J. Yuan, H. P. Chan, Y. Ma, Y. Semenova, P. Wang, C. Yu, and G. Farrell, “The use of a bend singlemode–multimode–singlemode (SMS) fibre structure for vibration sensing,” Opt. Laser Technol. 63, 29–33 (2014).
[Crossref]

Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “A comprehensive analysis verified by experiment of a refractometer based on an SMF28–small-core singlemode fiber (SCSMF)–SMF28 fiber structure,” J. Opt. 13(12), 125401 (2011).
[Crossref]

Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer--analysis and experiment,” Opt. Express 19(9), 7937–7944 (2011).
[Crossref] [PubMed]

Wang, Q. K.

Q. K. Wang, Y. Lingxin, F. Dang, Y. Xia, Y. Zhang, H. Zhao, Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

Wang, Y.

Wei, Q.

J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5, 7710 (2015).
[Crossref] [PubMed]

Wen, X.

C. Li, T. Ning, X. Wen, J. Li, J. Zheng, H. You, H. Chen, C. Zhang, and W. Jian, “Strain and temperature discrimination using a fiber Bragg grating and multimode interference effects,” Opt. Commun. 343, 6–9 (2015).
[Crossref]

Wu, Q.

D. Liu, A. K. Mallik, J. Yuan, C. Yu, G. Farrell, Y. Semenova, and Q. Wu, “High sensitivity refractive index sensor based on a tapered small core single-mode fiber structure,” Opt. Lett. 40(17), 4166–4169 (2015).
[Crossref] [PubMed]

Q. Wu, M. Yang, J. Yuan, H. P. Chan, Y. Ma, Y. Semenova, P. Wang, C. Yu, and G. Farrell, “The use of a bend singlemode–multimode–singlemode (SMS) fibre structure for vibration sensing,” Opt. Laser Technol. 63, 29–33 (2014).
[Crossref]

Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “A comprehensive analysis verified by experiment of a refractometer based on an SMF28–small-core singlemode fiber (SCSMF)–SMF28 fiber structure,” J. Opt. 13(12), 125401 (2011).
[Crossref]

Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer--analysis and experiment,” Opt. Express 19(9), 7937–7944 (2011).
[Crossref] [PubMed]

Xia, K.

Xia, T.-H.

T.-H. Xia, A. P. Zhang, B. Gu, and J.-J. Zhu, “Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers,” Opt. Commun. 283(10), 2136–2139 (2010).
[Crossref]

Xia, Y.

Q. K. Wang, Y. Lingxin, F. Dang, Y. Xia, Y. Zhang, H. Zhao, Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

Xiao, Y.

Yang, M.

Q. Wu, M. Yang, J. Yuan, H. P. Chan, Y. Ma, Y. Semenova, P. Wang, C. Yu, and G. Farrell, “The use of a bend singlemode–multimode–singlemode (SMS) fibre structure for vibration sensing,” Opt. Laser Technol. 63, 29–33 (2014).
[Crossref]

You, H.

C. Li, T. Ning, X. Wen, J. Li, J. Zheng, H. You, H. Chen, C. Zhang, and W. Jian, “Strain and temperature discrimination using a fiber Bragg grating and multimode interference effects,” Opt. Commun. 343, 6–9 (2015).
[Crossref]

Yu, C.

D. Liu, A. K. Mallik, J. Yuan, C. Yu, G. Farrell, Y. Semenova, and Q. Wu, “High sensitivity refractive index sensor based on a tapered small core single-mode fiber structure,” Opt. Lett. 40(17), 4166–4169 (2015).
[Crossref] [PubMed]

Q. Wu, M. Yang, J. Yuan, H. P. Chan, Y. Ma, Y. Semenova, P. Wang, C. Yu, and G. Farrell, “The use of a bend singlemode–multimode–singlemode (SMS) fibre structure for vibration sensing,” Opt. Laser Technol. 63, 29–33 (2014).
[Crossref]

Yu, J.

Yuan, J.

D. Liu, A. K. Mallik, J. Yuan, C. Yu, G. Farrell, Y. Semenova, and Q. Wu, “High sensitivity refractive index sensor based on a tapered small core single-mode fiber structure,” Opt. Lett. 40(17), 4166–4169 (2015).
[Crossref] [PubMed]

Q. Wu, M. Yang, J. Yuan, H. P. Chan, Y. Ma, Y. Semenova, P. Wang, C. Yu, and G. Farrell, “The use of a bend singlemode–multimode–singlemode (SMS) fibre structure for vibration sensing,” Opt. Laser Technol. 63, 29–33 (2014).
[Crossref]

Zang, Z.

J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5, 7710 (2015).
[Crossref] [PubMed]

J. Yu, Y. Han, H. Huang, H. Li, V. K. Hsiao, W. Liu, J. Tang, H. Lu, J. Zhang, Y. Luo, Y. Zhong, Z. Zang, and Z. Chen, “All-optically reconfigurable and tunable fiber surface grating for in-fiber devices: a wideband tunable filter,” Opt. Express 22(5), 5950–5961 (2014).
[Crossref] [PubMed]

Zhang, A. P.

T.-H. Xia, A. P. Zhang, B. Gu, and J.-J. Zhu, “Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers,” Opt. Commun. 283(10), 2136–2139 (2010).
[Crossref]

Zhang, C.

C. Li, T. Ning, X. Wen, J. Li, J. Zheng, H. You, H. Chen, C. Zhang, and W. Jian, “Strain and temperature discrimination using a fiber Bragg grating and multimode interference effects,” Opt. Commun. 343, 6–9 (2015).
[Crossref]

Zhang, J.

Zhang, Y.

Q. K. Wang, Y. Lingxin, F. Dang, Y. Xia, Y. Zhang, H. Zhao, Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

Zhao, H.

Q. K. Wang, Y. Lingxin, F. Dang, Y. Xia, Y. Zhang, H. Zhao, Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

Zhao, Y.

Y. Zhao, X. Li, and L. Cai, “A highly sensitive Mach–Zehnder interferometric refractive index sensor based on core-offset single mode fiber,” Sens. Actuators A Phys. 223, 119–124 (2015).
[Crossref]

Y. Zhao, L. Cai, X.-G. Li, and F.-C. Meng, “Liquid concentration measurement based on SMS fiber sensor with temperature compensation using an FBG,” Sens. Actuators B Chem. 196, 518–524 (2014).
[Crossref]

Y. Zhao, L. Cai, X.-G. Li, F. Meng, and Z. Zhao, “Investigation of the high sensitivity RI sensor based on SMS fiber structure,” Sens. Actuators A Phys. 205, 186–190 (2014).
[Crossref]

Zhao, Z.

Y. Zhao, L. Cai, X.-G. Li, F. Meng, and Z. Zhao, “Investigation of the high sensitivity RI sensor based on SMS fiber structure,” Sens. Actuators A Phys. 205, 186–190 (2014).
[Crossref]

Zheng, J.

C. Li, T. Ning, X. Wen, J. Li, J. Zheng, H. You, H. Chen, C. Zhang, and W. Jian, “Strain and temperature discrimination using a fiber Bragg grating and multimode interference effects,” Opt. Commun. 343, 6–9 (2015).
[Crossref]

Zhong, Y.

Zhou, J.

J. Tang, J. Zhou, J. Guan, S. Long, J. Yu, H. Guan, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Fabrication of side-polished single mode-multimode-single mode fiber and its characteristics of refractive index sensing,” IEEE J. Sel. Top. Quantum Electron. 99(1), 1 (2016).
[Crossref]

Zhu, J.-J.

T.-H. Xia, A. P. Zhang, B. Gu, and J.-J. Zhu, “Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers,” Opt. Commun. 283(10), 2136–2139 (2010).
[Crossref]

Zhu, T.

Appl. Opt. (2)

Chin. Opt. Lett. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

J. Tang, J. Zhou, J. Guan, S. Long, J. Yu, H. Guan, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Fabrication of side-polished single mode-multimode-single mode fiber and its characteristics of refractive index sensing,” IEEE J. Sel. Top. Quantum Electron. 99(1), 1 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. C. Shi, D. X. Dai, and S. L. He, “Proposal for an ultracompact polarization-beam splitter based on a photonic-crystal-assisted multimode interference coupler,” IEEE Photonics Technol. Lett. 19(11), 825–827 (2007).
[Crossref]

IEEE Sens. J. (1)

J. An, Y. Jin, M. Sun, and X. Dong, “Relative humidity sensor based on sms fiber structure with two waist-enlarged tapers,” IEEE Sens. J. 14(8), 2683–2686 (2014).
[Crossref]

J. Lightwave Technol. (2)

S. Nagai, G. Morishima, H. Inayoshi, and K. Utaka, “Multimode interference photonic switches (MIPS),” J. Lightwave Technol. 20(4), 675–681 (2002).
[Crossref]

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

J. Opt. (1)

Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “A comprehensive analysis verified by experiment of a refractometer based on an SMF28–small-core singlemode fiber (SCSMF)–SMF28 fiber structure,” J. Opt. 13(12), 125401 (2011).
[Crossref]

Meas. Sci. Technol. (1)

J. E. Antonio-Lopez, P. LiKamWa, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, “All-fiber multimode interference micro-displacement sensor,” Meas. Sci. Technol. 24(5), 055104 (2013).
[Crossref]

Opt. Commun. (3)

C. Li, T. Ning, X. Wen, J. Li, J. Zheng, H. You, H. Chen, C. Zhang, and W. Jian, “Strain and temperature discrimination using a fiber Bragg grating and multimode interference effects,” Opt. Commun. 343, 6–9 (2015).
[Crossref]

T.-H. Xia, A. P. Zhang, B. Gu, and J.-J. Zhu, “Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers,” Opt. Commun. 283(10), 2136–2139 (2010).
[Crossref]

A. Kumar, R. K. Varshney, and R. Kumar, “SMS fiber optic microbend sensor structures: effect of the modal interference,” Opt. Commun. 232(1–6), 239–244 (2004).
[Crossref]

Opt. Express (4)

Opt. Laser Technol. (1)

Q. Wu, M. Yang, J. Yuan, H. P. Chan, Y. Ma, Y. Semenova, P. Wang, C. Yu, and G. Farrell, “The use of a bend singlemode–multimode–singlemode (SMS) fibre structure for vibration sensing,” Opt. Laser Technol. 63, 29–33 (2014).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (1)

Sci. Rep. (1)

J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, Y. Luo, J. Tang, J. Zhang, and Z. Chen, “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Sci. Rep. 5, 7710 (2015).
[Crossref] [PubMed]

Sens. Actuators A Phys. (2)

Y. Zhao, X. Li, and L. Cai, “A highly sensitive Mach–Zehnder interferometric refractive index sensor based on core-offset single mode fiber,” Sens. Actuators A Phys. 223, 119–124 (2015).
[Crossref]

Y. Zhao, L. Cai, X.-G. Li, F. Meng, and Z. Zhao, “Investigation of the high sensitivity RI sensor based on SMS fiber structure,” Sens. Actuators A Phys. 205, 186–190 (2014).
[Crossref]

Sens. Actuators B Chem. (4)

Q. K. Wang, Y. Lingxin, F. Dang, Y. Xia, Y. Zhang, H. Zhao, Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Sensitivity enhancement in a multimode interference-based SMS fibre structure coated with a thin-film: Theoretical and experimental study,” Sens. Actuators B Chem. 190, 363–369 (2014).
[Crossref]

Y. Zhao, L. Cai, X.-G. Li, and F.-C. Meng, “Liquid concentration measurement based on SMS fiber sensor with temperature compensation using an FBG,” Sens. Actuators B Chem. 196, 518–524 (2014).
[Crossref]

S. Silva, O. Frazão, J. L. Santos, and F. X. Malcata, “A reflective optical fiber refractometer based on multimode interference,” Sens. Actuators B Chem. 161(1), 88–92 (2012).
[Crossref]

Other (1)

M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).

Supplementary Material (2)

NameDescription
» Visualization 1: MP4 (11358 KB)      Field evolution at 1292 nm in the cross-section of CSPF
» Visualization 2: MP4 (10879 KB)      Field evolution at 1322nm in the cross-section of CSPF

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic diagrams of coreless side-polished fiber (CSPF): (a) three-dimensional view and (b) vertical section.
Fig. 2
Fig. 2 Simulated results of the CSPF with a residual thickness (RT) of 53.3 μm. (a) Transmission spectra with SRI = 1.454 and SRI = 1.456; (b) field evolutions along the CSPF at dip wavelength of 1292nm (see Visualization 1) and (c) peak wavelength of 1322nm (see Visualization 2), respectively.
Fig. 3
Fig. 3 (a) One-dimensional field intensity distributions extracted along the symmetrical axis of mode fields; (b) TE and TM propagation mode fields in the coreless flat sections of the CSPF; Here, RT = 53.3 μm for the CSPF.
Fig. 4
Fig. 4 Spatial spectra of one-dimensional field intensities of TE0,n modes for n = 0~8.
Fig. 5
Fig. 5 (a) Field evolution along the CSPF with a RT of 53.3 μm at the dip wavelength of 1292 nm; (b) Corresponding mode evolution along the CSPF, which is analyzed by spatial spectra of the TE0,n (TM0,n) modes.
Fig. 6
Fig. 6 Field evolution of the MMI for the CSPFs with RT = 50μm (a), 51μm (b), 52μm (c), 53μm (d) and 54μm (e), respectively. In the simulation, the wavelength is fixed at 1292nm.
Fig. 7
Fig. 7 (a) Microscopic image of the flat section of the CSPF with a RT of 50.1 μm; (b) Microscopic image of polished surface of the CSPF; (c) Variations of residual thicknesses for the three fabricated CSPFs.
Fig. 8
Fig. 8 Schematic of experimental setup to investigate the RI sensing characteristics of the CSPF.
Fig. 9
Fig. 9 The measured transmission spectra of the CSPFs with RTs of (a) 43.1 μm, (c) 50.1 μm and (e) 53.3 μm. Simulated transmission spectra of the CSPFs with RTs of (b) 43.1 μm, (d) 50.1 μm and (f) 53.3 μm. Measured (g) and simulated (h) dependencies of dip wavelength on surrounding refractive index (SRI).
Fig. 10
Fig. 10 Influence of the RW on the sensitivity of the CSPF. Experimental results for the CSPF with a RT of 43.1 μm: (a) the measured spectra, (b) shift of the dip with SRI at different RWs, and (c) the corresponding sensitivities in three RI ranges. Simulated results for the CSPF with a RT of 53.3 μm: (d) the simulated spectra, (e) shift of dip wavelength with SRI at different RWs, and (f) the corresponding sensitivities in the three RI ranges.
Fig. 11
Fig. 11 Sensitivities in three SRI ranges for spectral dips of CSPFs with different RTs: (a) experimental results and (b) simulated results.
Fig. 12
Fig. 12 Schematic of estimating the tilted angle θ (slope t = tanθ) of polishing surface to excite the highest order mode in the cladding of CSPF using optical ray approximation

Tables (1)

Tables Icon

Table 1 Performances and fabrications of MMI-based fiber sensors.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E i n ( r , θ ) = m = 1 M n = 1 N b m , n Ψ m , n ( r , θ ) ,
b m , n = 0 2 π 0 E i n ( r , θ ) Ψ m , n ( r , θ ) r d r d θ 0 2 π 0 Ψ m , n ( r , θ ) Ψ m , n ( r , θ ) r d r d θ .
E ( r , θ , z ) = n = 1 N b 0 , n Ψ 0 , n ( r , θ ) exp ( j β 0 , n z ) ,
α = 90 ° 2 θ
θ max = 45 ° 1 2 sin 1 ( n S n c l )

Metrics