Abstract

We apply spectroscopic ellipsometry (SE) to identify secondary phases in Cu2ZnSnSe4 (CZTSe) absorbers and to investigate the optical properties of CZTSe. A detailed optical model is used to extract the optical parameters, such as refractive index and extinction coefficient in order to extrapolate the band gap values of CZTSe samples, and to obtain information about the presence of secondary phases at the front and back sides of the samples. We show that SE can be used as a non-destructive method for detection of the secondary phases ZnSe and MoSe2 and to extrapolate the band gap values of CZTSe phase.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectral optical properties of Cu2ZnSnS4 thin film between 0.73 and 6.5 eV

Jian Li, Hui Du, John Yarbrough, Andrew Norman, Kim Jones, Glenn Teeter, Fred Lewis Terry, and Dean Levi
Opt. Express 20(S2) A327-A332 (2012)

Assessment of crystal quality and unit cell orientation in epitaxial Cu2ZnSnSe4 layers using polarized Raman scattering

Christoph Krämmer, Mario Lang, Alex Redinger, Johannes Sachs, Chao Gao, Heinz Kalt, Susanne Siebentritt, and Michael Hetterich
Opt. Express 22(23) 28240-28246 (2014)

Optical modeling and optimizations of Cu2ZnSnSe4 solar cells using the modified transfer matrix method

Dario Cozza, Carmen M. Ruiz, David Duché, Sergio Giraldo, Edgardo Saucedo, Jean Jacques Simon, and Ludovic Escoubas
Opt. Express 24(18) A1201-A1209 (2016)

References

  • View by:
  • |
  • |
  • |

  1. I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W. C. Hsu, A. Goodrich, and R. Noufi, “Co-evaporated Cu2ZnSnSe4 films and devices,” Sol. Energy Mater. Sol. Cells 101, 154–159 (2012).
    [Crossref]
  2. C. Wadia, A. P. Alivisatos, and D. M. Kammen, “Materials availability expands the opportunity for large-scale photovoltaics deployment,” Environ. Sci. Technol. 43(6), 2072–2077 (2009).
    [Crossref] [PubMed]
  3. K. Ito and T. Nazakawa, “Electrical and optical properties of stannite-type quaternary semiconductor thin films,” Jpn. J. Appl. Phys. 27, 2094 (1988).
  4. H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, and S. Miyajima, “Development of thin solar cell based on Cu2znSnS4 thin films,” Sol. Energy Mater. Sol. Cells 65(1-4), 141–148 (2001).
    [Crossref]
  5. C. Persson, “Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4,” J. Appl. Phys. 107(5), 053710 (2010).
    [Crossref]
  6. S. Siebentritt and S. Schorr, “Kesterites–a challenging material for solar cells,” Prog. Photovolt. Res. Appl. 20(5), 512–519 (2012).
    [Crossref]
  7. W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency,” Adv. Energy Mater. 4(7), 1301465 (2014).
    [Crossref]
  8. Y. S. Lee, T. Gershon, O. Gunawan, T. K. Todorov, T. Gokmen, Y. Virgus, and S. Guha, “Cu2ZnSnSe4 thin-film solar cells by thermal co-evaporation with 11.6% efficiency and improved minority carrier diffusion length,” Adv. Energy Mater. 5(7), 1401372 (2015).
    [Crossref]
  9. J. Kim, H. Hiroi, T. K. Todorov, O. Gunawan, M. Kuwahara, T. Gokmen, D. Nair, M. Hopstaken, B. Shin, Y. S. Lee, W. Wang, H. Sugimoto, and D. B. Mitzi, “High efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double In2S3/CdS emitter,” Adv. Mater. 26(44), 7427–7431 (2014).
    [Crossref] [PubMed]
  10. A. Redinger, K. Hönes, X. Fontané, V. Izquierdo-Roca, E. Saucedo, N. Valle, A. Pérez-Rodríguez, and S. Siebentritt, “Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin films,” Appl. Phys. Lett. 98(10), 101907 (2011).
    [Crossref]
  11. J. T. Watjen, J. Engman, M. Edoff, and C. Platzer-Björkman, “Direct evidence of current blocking by ZnSe in Cu2ZnSnSe4 solar cells,” Appl. Phys. Lett. 100(17), 173510 (2012).
    [Crossref]
  12. H. Xie, Y. Sánchez, S. López-Marino, M. Espíndola-Rodríguez, M. Neuschitzer, D. Sylla, A. Fairbrother, V. Izquierdo-Roca, A. Pérez-Rodríguez, and E. Saucedo, “Impact of Sn(S,Se) secondary phases in Cu2ZnSn(S,Se)4 solar cells: a chemical route for their selective removal and absorber surface passivation,” ACS Appl. Mater. Interfaces 6(15), 12744–12751 (2014).
    [Crossref] [PubMed]
  13. H. Fujiwara, Spectroscopic Ellipsometry - Principles and Applications, Wiley, 2007.
  14. Ö. Demircioğlu, M. Mousel, A. Redinger, G. Rey, T. Weiss, S. Siebentritt, I. Riedel, and L. Gütay, “Detection of a MoSe2 secondary phase layer in CZTSe by spectroscopic ellipsometry,” J. Appl. Phys. 118(18), 185302 (2015).
    [Crossref]
  15. J. A. Woollam Co., Inc., Guide to Using WVASE32, Software for Spectrocopic Ellipsometry Data Acquisition and Analysis, Chap. 8, page 8–32.
  16. M. Mousel, T. Schwarz, R. Djemour, T. P. Weiss, J. Sendler, J. C. Malaquias, A. Redinger, O. Cojocaru-Mirédin, P.-P. Choi, and S. Siebentritt, “Cu-Rich Precursors Improve Kesterite Solar Cells,” Adv. Energy Mater. 4(2), 1300543 (2014).
    [Crossref]
  17. A. Redinger, J. Sendler, R. Djemour, T. P. Weiss, G. Rey, P. J. Dale, and S. Siebentritt, “Different bandgaps in Cu2ZnSnSe4: Ahigh temperature coevaporation study,” IEEE Photovoltaics 5, 641–648 (2015).
    [Crossref]
  18. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
    [Crossref]
  19. J. J. Scragg, P. J. Dale, D. Colombara, and L. M. Peter, “Thermodynamic aspects of the synthesis of thin-film materials for solar cells,” ChemPhysChem 13(12), 3035–3046 (2012).
    [Crossref] [PubMed]
  20. T. Schwarz, O. Cojocaru-Mirédin, P. Choi, M. Mousel, A. Redinger, S. Siebentritt, and D. Raabe, “Atom probe study of Cu2ZnSnSe4 thin-films prepared by co-evaporation and post deposition annealing,” Appl. Phys. Lett. 102(4), 042101 (2013).
    [Crossref]
  21. D. A. G. Bruggeman, “Dielektrizitätskonstanten und leitfähigkeiten der mishkörper aus isotropen und anisotropen substanzen,” Ann. Physik (Leipzig) 24, 636 (1935).
    [Crossref]
  22. J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London, Series A 203, 385 (1904).
  23. Y. Yu-Manuel and P. Cardona, Fundamentals of Semiconductors Physics and Material Properties, 4th Edition (2010).
  24. L. Gütay, A. Redinger, R. Djemour, and S. Siebentritt, “Lone conduction band in Cu2ZnSnSe4,” Appl. Phys. Lett. 100(10), 102113 (2012).
    [Crossref]
  25. M. León, S. Levcenko, R. Serna, I. V. Bodnar, A. Nateprov, M. Guc, G. Gurieva, N. Lopez, J. M. Merino, R. Caballero, S. Schorr, A. Perez-Rodriguez, and E. Arushanov, “Spectroscopic ellipsometry study of Cu2ZnSnSe4 bulk crystals,” Appl. Phys. Lett. 105(6), 061909 (2014).
    [Crossref]
  26. G. Zoppi, I. Forbes, R. W. Miles, P. J. Dale, J. J. Scragg, and L. M. Peter, “Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors,” Prog. Photovolt. Res. Appl. 17(5), 315–319 (2009).
    [Crossref]
  27. S. Chen, X. G. Gong, A. Walsh, and S.-H. Wei, “Crystal and electronic band structure of Cu2ZnSnX4 (X= S and Se) photovoltaic absorbers: First-principles insights,” Appl. Phys. Lett. 94(4), 041903 (2009).
    [Crossref]
  28. G. Rey, A. Redinger, J. Sendler, T. P. Weiss, M. Thevenin, M. Guennou, B. El Adib, and S. Siebentritt, “The band gap of Cu2ZnSnSe4: Effect of order-disorder,” Appl. Phys. Lett. 105(11), 112106 (2014).
    [Crossref]
  29. S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, and J. H. Yun, “Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values,” Appl. Phys. Lett. 97(2), 021905 (2010).
    [Crossref]
  30. R. Djemour, M. Mousel, A. Redinger, L. Gütay, A. Crossay, D. Colombra, P. J. Dale, and S. Siebentritt, “Detecting ZnSe secondary phase in Cu2ZnSnSe4 by room temperature photoluminescence,” Appl. Phys. Lett. 102(22), 222108 (2013).
    [Crossref]
  31. S. Siebentritt, G. Rey, A. Finger, D. Regesch, J. Sendler, T. P. Weiss, and T. Bertram, “What is the band gap of kesterite?” Sol. Energy Mater. Sol. Cells 158, 126–129 (2016).
    [Crossref]
  32. G. Rey, T. P. Weiss, J. Sendler, A. Finger, C. Spindler, F. Werner, M. Melchiorre, M. Hála, M. Guennou, and S. Siebentritt, “Ordering kesterite improves solar cells: A low temperature post-deposition annealing study,” Sol. Energy Mater. Sol. Cells 151, 131–138 (2016).
    [Crossref]
  33. R. Kondrotas, R. Juskénas, A. Naujokaitis, G. Niaura, Z. Mockus, S. Kanapeckaité, B. Cechavicius, K. Juskevicius, E. Saucedo, and Y. Sánchez, “Investigation of selenization process of electrodeposited Cu-ZnSn precursor for Cu2ZnSnSe4 thin-film solar cells,” Thin Solid Films 589, 165–172 (2015).
    [Crossref]
  34. A. Redinger, D. M. Berg, P. J. Dale, R. Djemour, L. Gütay, T. Eisenbarth, N. Valle, and S. Siebentritt, “Route toward high-efficiency single phase Cu2ZnSn(S,Se)4 thin film solar cells: model experiments and literature review,” IEEE J. Photovoltaics 2(2), 200–206 (2011).
    [Crossref]
  35. A. Redinger, M. Mousel, R. Djemour, L. Gütay, N. Valle, and S. Siebentritt, “Cu2ZnSnSe4 thin film solar cells produced via co-evaporation and annealing including SnSe2 capping layer,” Prog. Photovolt. Res. Appl. 22(1), 51–57 (2014).
    [Crossref]
  36. E. Daub and P. Würfel, “Ultralow values of the absorption coefficient of Si obtained from luminescence,” Phys. Rev. Lett. 74(6), 1020–1023 (1995).
    [Crossref] [PubMed]
  37. L. Gütay and G. H. Bauer, “Local fluctuations of absorber properties of Cu(In,Ga)Se2 by sub-micron resolved PL towards “real life” conditions,” Thin Solid Films 517(7), 2222–2225 (2009).
    [Crossref]
  38. T. Unold and L. Gütay, in: D. Abou-Ras, T. Kircharzt, U. Rau (Eds.), Advanced Characterization Techniques for Thin Film Solar Cells, (WILEY-VCH, 2011), Chap. 7.

2016 (2)

S. Siebentritt, G. Rey, A. Finger, D. Regesch, J. Sendler, T. P. Weiss, and T. Bertram, “What is the band gap of kesterite?” Sol. Energy Mater. Sol. Cells 158, 126–129 (2016).
[Crossref]

G. Rey, T. P. Weiss, J. Sendler, A. Finger, C. Spindler, F. Werner, M. Melchiorre, M. Hála, M. Guennou, and S. Siebentritt, “Ordering kesterite improves solar cells: A low temperature post-deposition annealing study,” Sol. Energy Mater. Sol. Cells 151, 131–138 (2016).
[Crossref]

2015 (4)

R. Kondrotas, R. Juskénas, A. Naujokaitis, G. Niaura, Z. Mockus, S. Kanapeckaité, B. Cechavicius, K. Juskevicius, E. Saucedo, and Y. Sánchez, “Investigation of selenization process of electrodeposited Cu-ZnSn precursor for Cu2ZnSnSe4 thin-film solar cells,” Thin Solid Films 589, 165–172 (2015).
[Crossref]

Y. S. Lee, T. Gershon, O. Gunawan, T. K. Todorov, T. Gokmen, Y. Virgus, and S. Guha, “Cu2ZnSnSe4 thin-film solar cells by thermal co-evaporation with 11.6% efficiency and improved minority carrier diffusion length,” Adv. Energy Mater. 5(7), 1401372 (2015).
[Crossref]

Ö. Demircioğlu, M. Mousel, A. Redinger, G. Rey, T. Weiss, S. Siebentritt, I. Riedel, and L. Gütay, “Detection of a MoSe2 secondary phase layer in CZTSe by spectroscopic ellipsometry,” J. Appl. Phys. 118(18), 185302 (2015).
[Crossref]

A. Redinger, J. Sendler, R. Djemour, T. P. Weiss, G. Rey, P. J. Dale, and S. Siebentritt, “Different bandgaps in Cu2ZnSnSe4: Ahigh temperature coevaporation study,” IEEE Photovoltaics 5, 641–648 (2015).
[Crossref]

2014 (7)

M. Mousel, T. Schwarz, R. Djemour, T. P. Weiss, J. Sendler, J. C. Malaquias, A. Redinger, O. Cojocaru-Mirédin, P.-P. Choi, and S. Siebentritt, “Cu-Rich Precursors Improve Kesterite Solar Cells,” Adv. Energy Mater. 4(2), 1300543 (2014).
[Crossref]

H. Xie, Y. Sánchez, S. López-Marino, M. Espíndola-Rodríguez, M. Neuschitzer, D. Sylla, A. Fairbrother, V. Izquierdo-Roca, A. Pérez-Rodríguez, and E. Saucedo, “Impact of Sn(S,Se) secondary phases in Cu2ZnSn(S,Se)4 solar cells: a chemical route for their selective removal and absorber surface passivation,” ACS Appl. Mater. Interfaces 6(15), 12744–12751 (2014).
[Crossref] [PubMed]

J. Kim, H. Hiroi, T. K. Todorov, O. Gunawan, M. Kuwahara, T. Gokmen, D. Nair, M. Hopstaken, B. Shin, Y. S. Lee, W. Wang, H. Sugimoto, and D. B. Mitzi, “High efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double In2S3/CdS emitter,” Adv. Mater. 26(44), 7427–7431 (2014).
[Crossref] [PubMed]

W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency,” Adv. Energy Mater. 4(7), 1301465 (2014).
[Crossref]

M. León, S. Levcenko, R. Serna, I. V. Bodnar, A. Nateprov, M. Guc, G. Gurieva, N. Lopez, J. M. Merino, R. Caballero, S. Schorr, A. Perez-Rodriguez, and E. Arushanov, “Spectroscopic ellipsometry study of Cu2ZnSnSe4 bulk crystals,” Appl. Phys. Lett. 105(6), 061909 (2014).
[Crossref]

G. Rey, A. Redinger, J. Sendler, T. P. Weiss, M. Thevenin, M. Guennou, B. El Adib, and S. Siebentritt, “The band gap of Cu2ZnSnSe4: Effect of order-disorder,” Appl. Phys. Lett. 105(11), 112106 (2014).
[Crossref]

A. Redinger, M. Mousel, R. Djemour, L. Gütay, N. Valle, and S. Siebentritt, “Cu2ZnSnSe4 thin film solar cells produced via co-evaporation and annealing including SnSe2 capping layer,” Prog. Photovolt. Res. Appl. 22(1), 51–57 (2014).
[Crossref]

2013 (2)

R. Djemour, M. Mousel, A. Redinger, L. Gütay, A. Crossay, D. Colombra, P. J. Dale, and S. Siebentritt, “Detecting ZnSe secondary phase in Cu2ZnSnSe4 by room temperature photoluminescence,” Appl. Phys. Lett. 102(22), 222108 (2013).
[Crossref]

T. Schwarz, O. Cojocaru-Mirédin, P. Choi, M. Mousel, A. Redinger, S. Siebentritt, and D. Raabe, “Atom probe study of Cu2ZnSnSe4 thin-films prepared by co-evaporation and post deposition annealing,” Appl. Phys. Lett. 102(4), 042101 (2013).
[Crossref]

2012 (5)

J. T. Watjen, J. Engman, M. Edoff, and C. Platzer-Björkman, “Direct evidence of current blocking by ZnSe in Cu2ZnSnSe4 solar cells,” Appl. Phys. Lett. 100(17), 173510 (2012).
[Crossref]

S. Siebentritt and S. Schorr, “Kesterites–a challenging material for solar cells,” Prog. Photovolt. Res. Appl. 20(5), 512–519 (2012).
[Crossref]

I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W. C. Hsu, A. Goodrich, and R. Noufi, “Co-evaporated Cu2ZnSnSe4 films and devices,” Sol. Energy Mater. Sol. Cells 101, 154–159 (2012).
[Crossref]

J. J. Scragg, P. J. Dale, D. Colombara, and L. M. Peter, “Thermodynamic aspects of the synthesis of thin-film materials for solar cells,” ChemPhysChem 13(12), 3035–3046 (2012).
[Crossref] [PubMed]

L. Gütay, A. Redinger, R. Djemour, and S. Siebentritt, “Lone conduction band in Cu2ZnSnSe4,” Appl. Phys. Lett. 100(10), 102113 (2012).
[Crossref]

2011 (2)

A. Redinger, D. M. Berg, P. J. Dale, R. Djemour, L. Gütay, T. Eisenbarth, N. Valle, and S. Siebentritt, “Route toward high-efficiency single phase Cu2ZnSn(S,Se)4 thin film solar cells: model experiments and literature review,” IEEE J. Photovoltaics 2(2), 200–206 (2011).
[Crossref]

A. Redinger, K. Hönes, X. Fontané, V. Izquierdo-Roca, E. Saucedo, N. Valle, A. Pérez-Rodríguez, and S. Siebentritt, “Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin films,” Appl. Phys. Lett. 98(10), 101907 (2011).
[Crossref]

2010 (2)

C. Persson, “Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4,” J. Appl. Phys. 107(5), 053710 (2010).
[Crossref]

S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, and J. H. Yun, “Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values,” Appl. Phys. Lett. 97(2), 021905 (2010).
[Crossref]

2009 (4)

L. Gütay and G. H. Bauer, “Local fluctuations of absorber properties of Cu(In,Ga)Se2 by sub-micron resolved PL towards “real life” conditions,” Thin Solid Films 517(7), 2222–2225 (2009).
[Crossref]

G. Zoppi, I. Forbes, R. W. Miles, P. J. Dale, J. J. Scragg, and L. M. Peter, “Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors,” Prog. Photovolt. Res. Appl. 17(5), 315–319 (2009).
[Crossref]

S. Chen, X. G. Gong, A. Walsh, and S.-H. Wei, “Crystal and electronic band structure of Cu2ZnSnX4 (X= S and Se) photovoltaic absorbers: First-principles insights,” Appl. Phys. Lett. 94(4), 041903 (2009).
[Crossref]

C. Wadia, A. P. Alivisatos, and D. M. Kammen, “Materials availability expands the opportunity for large-scale photovoltaics deployment,” Environ. Sci. Technol. 43(6), 2072–2077 (2009).
[Crossref] [PubMed]

2001 (1)

H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, and S. Miyajima, “Development of thin solar cell based on Cu2znSnS4 thin films,” Sol. Energy Mater. Sol. Cells 65(1-4), 141–148 (2001).
[Crossref]

1995 (1)

E. Daub and P. Würfel, “Ultralow values of the absorption coefficient of Si obtained from luminescence,” Phys. Rev. Lett. 74(6), 1020–1023 (1995).
[Crossref] [PubMed]

1988 (1)

K. Ito and T. Nazakawa, “Electrical and optical properties of stannite-type quaternary semiconductor thin films,” Jpn. J. Appl. Phys. 27, 2094 (1988).

1983 (1)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
[Crossref]

1935 (1)

D. A. G. Bruggeman, “Dielektrizitätskonstanten und leitfähigkeiten der mishkörper aus isotropen und anisotropen substanzen,” Ann. Physik (Leipzig) 24, 636 (1935).
[Crossref]

1904 (1)

J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London, Series A 203, 385 (1904).

Ahn, S.

S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, and J. H. Yun, “Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values,” Appl. Phys. Lett. 97(2), 021905 (2010).
[Crossref]

Alivisatos, A. P.

C. Wadia, A. P. Alivisatos, and D. M. Kammen, “Materials availability expands the opportunity for large-scale photovoltaics deployment,” Environ. Sci. Technol. 43(6), 2072–2077 (2009).
[Crossref] [PubMed]

Arushanov, E.

M. León, S. Levcenko, R. Serna, I. V. Bodnar, A. Nateprov, M. Guc, G. Gurieva, N. Lopez, J. M. Merino, R. Caballero, S. Schorr, A. Perez-Rodriguez, and E. Arushanov, “Spectroscopic ellipsometry study of Cu2ZnSnSe4 bulk crystals,” Appl. Phys. Lett. 105(6), 061909 (2014).
[Crossref]

Aspnes, D. E.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
[Crossref]

Bauer, G. H.

L. Gütay and G. H. Bauer, “Local fluctuations of absorber properties of Cu(In,Ga)Se2 by sub-micron resolved PL towards “real life” conditions,” Thin Solid Films 517(7), 2222–2225 (2009).
[Crossref]

Beall, C.

I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W. C. Hsu, A. Goodrich, and R. Noufi, “Co-evaporated Cu2ZnSnSe4 films and devices,” Sol. Energy Mater. Sol. Cells 101, 154–159 (2012).
[Crossref]

Berg, D. M.

A. Redinger, D. M. Berg, P. J. Dale, R. Djemour, L. Gütay, T. Eisenbarth, N. Valle, and S. Siebentritt, “Route toward high-efficiency single phase Cu2ZnSn(S,Se)4 thin film solar cells: model experiments and literature review,” IEEE J. Photovoltaics 2(2), 200–206 (2011).
[Crossref]

Bertram, T.

S. Siebentritt, G. Rey, A. Finger, D. Regesch, J. Sendler, T. P. Weiss, and T. Bertram, “What is the band gap of kesterite?” Sol. Energy Mater. Sol. Cells 158, 126–129 (2016).
[Crossref]

Bodnar, I. V.

M. León, S. Levcenko, R. Serna, I. V. Bodnar, A. Nateprov, M. Guc, G. Gurieva, N. Lopez, J. M. Merino, R. Caballero, S. Schorr, A. Perez-Rodriguez, and E. Arushanov, “Spectroscopic ellipsometry study of Cu2ZnSnSe4 bulk crystals,” Appl. Phys. Lett. 105(6), 061909 (2014).
[Crossref]

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Dielektrizitätskonstanten und leitfähigkeiten der mishkörper aus isotropen und anisotropen substanzen,” Ann. Physik (Leipzig) 24, 636 (1935).
[Crossref]

Caballero, R.

M. León, S. Levcenko, R. Serna, I. V. Bodnar, A. Nateprov, M. Guc, G. Gurieva, N. Lopez, J. M. Merino, R. Caballero, S. Schorr, A. Perez-Rodriguez, and E. Arushanov, “Spectroscopic ellipsometry study of Cu2ZnSnSe4 bulk crystals,” Appl. Phys. Lett. 105(6), 061909 (2014).
[Crossref]

Cechavicius, B.

R. Kondrotas, R. Juskénas, A. Naujokaitis, G. Niaura, Z. Mockus, S. Kanapeckaité, B. Cechavicius, K. Juskevicius, E. Saucedo, and Y. Sánchez, “Investigation of selenization process of electrodeposited Cu-ZnSn precursor for Cu2ZnSnSe4 thin-film solar cells,” Thin Solid Films 589, 165–172 (2015).
[Crossref]

Chen, S.

S. Chen, X. G. Gong, A. Walsh, and S.-H. Wei, “Crystal and electronic band structure of Cu2ZnSnX4 (X= S and Se) photovoltaic absorbers: First-principles insights,” Appl. Phys. Lett. 94(4), 041903 (2009).
[Crossref]

Cheong, H.

S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, and J. H. Yun, “Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values,” Appl. Phys. Lett. 97(2), 021905 (2010).
[Crossref]

Cho, A.

S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, and J. H. Yun, “Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values,” Appl. Phys. Lett. 97(2), 021905 (2010).
[Crossref]

Choi, P.

T. Schwarz, O. Cojocaru-Mirédin, P. Choi, M. Mousel, A. Redinger, S. Siebentritt, and D. Raabe, “Atom probe study of Cu2ZnSnSe4 thin-films prepared by co-evaporation and post deposition annealing,” Appl. Phys. Lett. 102(4), 042101 (2013).
[Crossref]

Choi, P.-P.

M. Mousel, T. Schwarz, R. Djemour, T. P. Weiss, J. Sendler, J. C. Malaquias, A. Redinger, O. Cojocaru-Mirédin, P.-P. Choi, and S. Siebentritt, “Cu-Rich Precursors Improve Kesterite Solar Cells,” Adv. Energy Mater. 4(2), 1300543 (2014).
[Crossref]

Cojocaru-Mirédin, O.

M. Mousel, T. Schwarz, R. Djemour, T. P. Weiss, J. Sendler, J. C. Malaquias, A. Redinger, O. Cojocaru-Mirédin, P.-P. Choi, and S. Siebentritt, “Cu-Rich Precursors Improve Kesterite Solar Cells,” Adv. Energy Mater. 4(2), 1300543 (2014).
[Crossref]

T. Schwarz, O. Cojocaru-Mirédin, P. Choi, M. Mousel, A. Redinger, S. Siebentritt, and D. Raabe, “Atom probe study of Cu2ZnSnSe4 thin-films prepared by co-evaporation and post deposition annealing,” Appl. Phys. Lett. 102(4), 042101 (2013).
[Crossref]

Colombara, D.

J. J. Scragg, P. J. Dale, D. Colombara, and L. M. Peter, “Thermodynamic aspects of the synthesis of thin-film materials for solar cells,” ChemPhysChem 13(12), 3035–3046 (2012).
[Crossref] [PubMed]

Colombra, D.

R. Djemour, M. Mousel, A. Redinger, L. Gütay, A. Crossay, D. Colombra, P. J. Dale, and S. Siebentritt, “Detecting ZnSe secondary phase in Cu2ZnSnSe4 by room temperature photoluminescence,” Appl. Phys. Lett. 102(22), 222108 (2013).
[Crossref]

Crossay, A.

R. Djemour, M. Mousel, A. Redinger, L. Gütay, A. Crossay, D. Colombra, P. J. Dale, and S. Siebentritt, “Detecting ZnSe secondary phase in Cu2ZnSnSe4 by room temperature photoluminescence,” Appl. Phys. Lett. 102(22), 222108 (2013).
[Crossref]

Dale, P. J.

A. Redinger, J. Sendler, R. Djemour, T. P. Weiss, G. Rey, P. J. Dale, and S. Siebentritt, “Different bandgaps in Cu2ZnSnSe4: Ahigh temperature coevaporation study,” IEEE Photovoltaics 5, 641–648 (2015).
[Crossref]

R. Djemour, M. Mousel, A. Redinger, L. Gütay, A. Crossay, D. Colombra, P. J. Dale, and S. Siebentritt, “Detecting ZnSe secondary phase in Cu2ZnSnSe4 by room temperature photoluminescence,” Appl. Phys. Lett. 102(22), 222108 (2013).
[Crossref]

J. J. Scragg, P. J. Dale, D. Colombara, and L. M. Peter, “Thermodynamic aspects of the synthesis of thin-film materials for solar cells,” ChemPhysChem 13(12), 3035–3046 (2012).
[Crossref] [PubMed]

A. Redinger, D. M. Berg, P. J. Dale, R. Djemour, L. Gütay, T. Eisenbarth, N. Valle, and S. Siebentritt, “Route toward high-efficiency single phase Cu2ZnSn(S,Se)4 thin film solar cells: model experiments and literature review,” IEEE J. Photovoltaics 2(2), 200–206 (2011).
[Crossref]

G. Zoppi, I. Forbes, R. W. Miles, P. J. Dale, J. J. Scragg, and L. M. Peter, “Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors,” Prog. Photovolt. Res. Appl. 17(5), 315–319 (2009).
[Crossref]

Daub, E.

E. Daub and P. Würfel, “Ultralow values of the absorption coefficient of Si obtained from luminescence,” Phys. Rev. Lett. 74(6), 1020–1023 (1995).
[Crossref] [PubMed]

DeHart, C.

I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W. C. Hsu, A. Goodrich, and R. Noufi, “Co-evaporated Cu2ZnSnSe4 films and devices,” Sol. Energy Mater. Sol. Cells 101, 154–159 (2012).
[Crossref]

Demircioglu, Ö.

Ö. Demircioğlu, M. Mousel, A. Redinger, G. Rey, T. Weiss, S. Siebentritt, I. Riedel, and L. Gütay, “Detection of a MoSe2 secondary phase layer in CZTSe by spectroscopic ellipsometry,” J. Appl. Phys. 118(18), 185302 (2015).
[Crossref]

Dippo, P.

I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W. C. Hsu, A. Goodrich, and R. Noufi, “Co-evaporated Cu2ZnSnSe4 films and devices,” Sol. Energy Mater. Sol. Cells 101, 154–159 (2012).
[Crossref]

Djemour, R.

A. Redinger, J. Sendler, R. Djemour, T. P. Weiss, G. Rey, P. J. Dale, and S. Siebentritt, “Different bandgaps in Cu2ZnSnSe4: Ahigh temperature coevaporation study,” IEEE Photovoltaics 5, 641–648 (2015).
[Crossref]

M. Mousel, T. Schwarz, R. Djemour, T. P. Weiss, J. Sendler, J. C. Malaquias, A. Redinger, O. Cojocaru-Mirédin, P.-P. Choi, and S. Siebentritt, “Cu-Rich Precursors Improve Kesterite Solar Cells,” Adv. Energy Mater. 4(2), 1300543 (2014).
[Crossref]

A. Redinger, M. Mousel, R. Djemour, L. Gütay, N. Valle, and S. Siebentritt, “Cu2ZnSnSe4 thin film solar cells produced via co-evaporation and annealing including SnSe2 capping layer,” Prog. Photovolt. Res. Appl. 22(1), 51–57 (2014).
[Crossref]

R. Djemour, M. Mousel, A. Redinger, L. Gütay, A. Crossay, D. Colombra, P. J. Dale, and S. Siebentritt, “Detecting ZnSe secondary phase in Cu2ZnSnSe4 by room temperature photoluminescence,” Appl. Phys. Lett. 102(22), 222108 (2013).
[Crossref]

L. Gütay, A. Redinger, R. Djemour, and S. Siebentritt, “Lone conduction band in Cu2ZnSnSe4,” Appl. Phys. Lett. 100(10), 102113 (2012).
[Crossref]

A. Redinger, D. M. Berg, P. J. Dale, R. Djemour, L. Gütay, T. Eisenbarth, N. Valle, and S. Siebentritt, “Route toward high-efficiency single phase Cu2ZnSn(S,Se)4 thin film solar cells: model experiments and literature review,” IEEE J. Photovoltaics 2(2), 200–206 (2011).
[Crossref]

Edoff, M.

J. T. Watjen, J. Engman, M. Edoff, and C. Platzer-Björkman, “Direct evidence of current blocking by ZnSe in Cu2ZnSnSe4 solar cells,” Appl. Phys. Lett. 100(17), 173510 (2012).
[Crossref]

Eisenbarth, T.

A. Redinger, D. M. Berg, P. J. Dale, R. Djemour, L. Gütay, T. Eisenbarth, N. Valle, and S. Siebentritt, “Route toward high-efficiency single phase Cu2ZnSn(S,Se)4 thin film solar cells: model experiments and literature review,” IEEE J. Photovoltaics 2(2), 200–206 (2011).
[Crossref]

El Adib, B.

G. Rey, A. Redinger, J. Sendler, T. P. Weiss, M. Thevenin, M. Guennou, B. El Adib, and S. Siebentritt, “The band gap of Cu2ZnSnSe4: Effect of order-disorder,” Appl. Phys. Lett. 105(11), 112106 (2014).
[Crossref]

Engman, J.

J. T. Watjen, J. Engman, M. Edoff, and C. Platzer-Björkman, “Direct evidence of current blocking by ZnSe in Cu2ZnSnSe4 solar cells,” Appl. Phys. Lett. 100(17), 173510 (2012).
[Crossref]

Espíndola-Rodríguez, M.

H. Xie, Y. Sánchez, S. López-Marino, M. Espíndola-Rodríguez, M. Neuschitzer, D. Sylla, A. Fairbrother, V. Izquierdo-Roca, A. Pérez-Rodríguez, and E. Saucedo, “Impact of Sn(S,Se) secondary phases in Cu2ZnSn(S,Se)4 solar cells: a chemical route for their selective removal and absorber surface passivation,” ACS Appl. Mater. Interfaces 6(15), 12744–12751 (2014).
[Crossref] [PubMed]

Fairbrother, A.

H. Xie, Y. Sánchez, S. López-Marino, M. Espíndola-Rodríguez, M. Neuschitzer, D. Sylla, A. Fairbrother, V. Izquierdo-Roca, A. Pérez-Rodríguez, and E. Saucedo, “Impact of Sn(S,Se) secondary phases in Cu2ZnSn(S,Se)4 solar cells: a chemical route for their selective removal and absorber surface passivation,” ACS Appl. Mater. Interfaces 6(15), 12744–12751 (2014).
[Crossref] [PubMed]

Finger, A.

G. Rey, T. P. Weiss, J. Sendler, A. Finger, C. Spindler, F. Werner, M. Melchiorre, M. Hála, M. Guennou, and S. Siebentritt, “Ordering kesterite improves solar cells: A low temperature post-deposition annealing study,” Sol. Energy Mater. Sol. Cells 151, 131–138 (2016).
[Crossref]

S. Siebentritt, G. Rey, A. Finger, D. Regesch, J. Sendler, T. P. Weiss, and T. Bertram, “What is the band gap of kesterite?” Sol. Energy Mater. Sol. Cells 158, 126–129 (2016).
[Crossref]

Fontané, X.

A. Redinger, K. Hönes, X. Fontané, V. Izquierdo-Roca, E. Saucedo, N. Valle, A. Pérez-Rodríguez, and S. Siebentritt, “Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin films,” Appl. Phys. Lett. 98(10), 101907 (2011).
[Crossref]

Forbes, I.

G. Zoppi, I. Forbes, R. W. Miles, P. J. Dale, J. J. Scragg, and L. M. Peter, “Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors,” Prog. Photovolt. Res. Appl. 17(5), 315–319 (2009).
[Crossref]

Garnett, J. C. M.

J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London, Series A 203, 385 (1904).

Gershon, T.

Y. S. Lee, T. Gershon, O. Gunawan, T. K. Todorov, T. Gokmen, Y. Virgus, and S. Guha, “Cu2ZnSnSe4 thin-film solar cells by thermal co-evaporation with 11.6% efficiency and improved minority carrier diffusion length,” Adv. Energy Mater. 5(7), 1401372 (2015).
[Crossref]

Gokmen, T.

Y. S. Lee, T. Gershon, O. Gunawan, T. K. Todorov, T. Gokmen, Y. Virgus, and S. Guha, “Cu2ZnSnSe4 thin-film solar cells by thermal co-evaporation with 11.6% efficiency and improved minority carrier diffusion length,” Adv. Energy Mater. 5(7), 1401372 (2015).
[Crossref]

W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency,” Adv. Energy Mater. 4(7), 1301465 (2014).
[Crossref]

J. Kim, H. Hiroi, T. K. Todorov, O. Gunawan, M. Kuwahara, T. Gokmen, D. Nair, M. Hopstaken, B. Shin, Y. S. Lee, W. Wang, H. Sugimoto, and D. B. Mitzi, “High efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double In2S3/CdS emitter,” Adv. Mater. 26(44), 7427–7431 (2014).
[Crossref] [PubMed]

Gong, X. G.

S. Chen, X. G. Gong, A. Walsh, and S.-H. Wei, “Crystal and electronic band structure of Cu2ZnSnX4 (X= S and Se) photovoltaic absorbers: First-principles insights,” Appl. Phys. Lett. 94(4), 041903 (2009).
[Crossref]

Goodrich, A.

I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W. C. Hsu, A. Goodrich, and R. Noufi, “Co-evaporated Cu2ZnSnSe4 films and devices,” Sol. Energy Mater. Sol. Cells 101, 154–159 (2012).
[Crossref]

Guc, M.

M. León, S. Levcenko, R. Serna, I. V. Bodnar, A. Nateprov, M. Guc, G. Gurieva, N. Lopez, J. M. Merino, R. Caballero, S. Schorr, A. Perez-Rodriguez, and E. Arushanov, “Spectroscopic ellipsometry study of Cu2ZnSnSe4 bulk crystals,” Appl. Phys. Lett. 105(6), 061909 (2014).
[Crossref]

Guennou, M.

G. Rey, T. P. Weiss, J. Sendler, A. Finger, C. Spindler, F. Werner, M. Melchiorre, M. Hála, M. Guennou, and S. Siebentritt, “Ordering kesterite improves solar cells: A low temperature post-deposition annealing study,” Sol. Energy Mater. Sol. Cells 151, 131–138 (2016).
[Crossref]

G. Rey, A. Redinger, J. Sendler, T. P. Weiss, M. Thevenin, M. Guennou, B. El Adib, and S. Siebentritt, “The band gap of Cu2ZnSnSe4: Effect of order-disorder,” Appl. Phys. Lett. 105(11), 112106 (2014).
[Crossref]

Guha, S.

Y. S. Lee, T. Gershon, O. Gunawan, T. K. Todorov, T. Gokmen, Y. Virgus, and S. Guha, “Cu2ZnSnSe4 thin-film solar cells by thermal co-evaporation with 11.6% efficiency and improved minority carrier diffusion length,” Adv. Energy Mater. 5(7), 1401372 (2015).
[Crossref]

Gunawan, O.

Y. S. Lee, T. Gershon, O. Gunawan, T. K. Todorov, T. Gokmen, Y. Virgus, and S. Guha, “Cu2ZnSnSe4 thin-film solar cells by thermal co-evaporation with 11.6% efficiency and improved minority carrier diffusion length,” Adv. Energy Mater. 5(7), 1401372 (2015).
[Crossref]

W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency,” Adv. Energy Mater. 4(7), 1301465 (2014).
[Crossref]

J. Kim, H. Hiroi, T. K. Todorov, O. Gunawan, M. Kuwahara, T. Gokmen, D. Nair, M. Hopstaken, B. Shin, Y. S. Lee, W. Wang, H. Sugimoto, and D. B. Mitzi, “High efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double In2S3/CdS emitter,” Adv. Mater. 26(44), 7427–7431 (2014).
[Crossref] [PubMed]

Gurieva, G.

M. León, S. Levcenko, R. Serna, I. V. Bodnar, A. Nateprov, M. Guc, G. Gurieva, N. Lopez, J. M. Merino, R. Caballero, S. Schorr, A. Perez-Rodriguez, and E. Arushanov, “Spectroscopic ellipsometry study of Cu2ZnSnSe4 bulk crystals,” Appl. Phys. Lett. 105(6), 061909 (2014).
[Crossref]

Gütay, L.

Ö. Demircioğlu, M. Mousel, A. Redinger, G. Rey, T. Weiss, S. Siebentritt, I. Riedel, and L. Gütay, “Detection of a MoSe2 secondary phase layer in CZTSe by spectroscopic ellipsometry,” J. Appl. Phys. 118(18), 185302 (2015).
[Crossref]

A. Redinger, M. Mousel, R. Djemour, L. Gütay, N. Valle, and S. Siebentritt, “Cu2ZnSnSe4 thin film solar cells produced via co-evaporation and annealing including SnSe2 capping layer,” Prog. Photovolt. Res. Appl. 22(1), 51–57 (2014).
[Crossref]

R. Djemour, M. Mousel, A. Redinger, L. Gütay, A. Crossay, D. Colombra, P. J. Dale, and S. Siebentritt, “Detecting ZnSe secondary phase in Cu2ZnSnSe4 by room temperature photoluminescence,” Appl. Phys. Lett. 102(22), 222108 (2013).
[Crossref]

L. Gütay, A. Redinger, R. Djemour, and S. Siebentritt, “Lone conduction band in Cu2ZnSnSe4,” Appl. Phys. Lett. 100(10), 102113 (2012).
[Crossref]

A. Redinger, D. M. Berg, P. J. Dale, R. Djemour, L. Gütay, T. Eisenbarth, N. Valle, and S. Siebentritt, “Route toward high-efficiency single phase Cu2ZnSn(S,Se)4 thin film solar cells: model experiments and literature review,” IEEE J. Photovoltaics 2(2), 200–206 (2011).
[Crossref]

L. Gütay and G. H. Bauer, “Local fluctuations of absorber properties of Cu(In,Ga)Se2 by sub-micron resolved PL towards “real life” conditions,” Thin Solid Films 517(7), 2222–2225 (2009).
[Crossref]

Gwak, J.

S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, and J. H. Yun, “Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values,” Appl. Phys. Lett. 97(2), 021905 (2010).
[Crossref]

Hála, M.

G. Rey, T. P. Weiss, J. Sendler, A. Finger, C. Spindler, F. Werner, M. Melchiorre, M. Hála, M. Guennou, and S. Siebentritt, “Ordering kesterite improves solar cells: A low temperature post-deposition annealing study,” Sol. Energy Mater. Sol. Cells 151, 131–138 (2016).
[Crossref]

Hiroi, H.

J. Kim, H. Hiroi, T. K. Todorov, O. Gunawan, M. Kuwahara, T. Gokmen, D. Nair, M. Hopstaken, B. Shin, Y. S. Lee, W. Wang, H. Sugimoto, and D. B. Mitzi, “High efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double In2S3/CdS emitter,” Adv. Mater. 26(44), 7427–7431 (2014).
[Crossref] [PubMed]

Hönes, K.

A. Redinger, K. Hönes, X. Fontané, V. Izquierdo-Roca, E. Saucedo, N. Valle, A. Pérez-Rodríguez, and S. Siebentritt, “Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin films,” Appl. Phys. Lett. 98(10), 101907 (2011).
[Crossref]

Hopstaken, M.

J. Kim, H. Hiroi, T. K. Todorov, O. Gunawan, M. Kuwahara, T. Gokmen, D. Nair, M. Hopstaken, B. Shin, Y. S. Lee, W. Wang, H. Sugimoto, and D. B. Mitzi, “High efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double In2S3/CdS emitter,” Adv. Mater. 26(44), 7427–7431 (2014).
[Crossref] [PubMed]

Hsu, W. C.

I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W. C. Hsu, A. Goodrich, and R. Noufi, “Co-evaporated Cu2ZnSnSe4 films and devices,” Sol. Energy Mater. Sol. Cells 101, 154–159 (2012).
[Crossref]

Ito, K.

K. Ito and T. Nazakawa, “Electrical and optical properties of stannite-type quaternary semiconductor thin films,” Jpn. J. Appl. Phys. 27, 2094 (1988).

Izquierdo-Roca, V.

H. Xie, Y. Sánchez, S. López-Marino, M. Espíndola-Rodríguez, M. Neuschitzer, D. Sylla, A. Fairbrother, V. Izquierdo-Roca, A. Pérez-Rodríguez, and E. Saucedo, “Impact of Sn(S,Se) secondary phases in Cu2ZnSn(S,Se)4 solar cells: a chemical route for their selective removal and absorber surface passivation,” ACS Appl. Mater. Interfaces 6(15), 12744–12751 (2014).
[Crossref] [PubMed]

A. Redinger, K. Hönes, X. Fontané, V. Izquierdo-Roca, E. Saucedo, N. Valle, A. Pérez-Rodríguez, and S. Siebentritt, “Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin films,” Appl. Phys. Lett. 98(10), 101907 (2011).
[Crossref]

Jung, S.

S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, and J. H. Yun, “Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values,” Appl. Phys. Lett. 97(2), 021905 (2010).
[Crossref]

Juskénas, R.

R. Kondrotas, R. Juskénas, A. Naujokaitis, G. Niaura, Z. Mockus, S. Kanapeckaité, B. Cechavicius, K. Juskevicius, E. Saucedo, and Y. Sánchez, “Investigation of selenization process of electrodeposited Cu-ZnSn precursor for Cu2ZnSnSe4 thin-film solar cells,” Thin Solid Films 589, 165–172 (2015).
[Crossref]

Juskevicius, K.

R. Kondrotas, R. Juskénas, A. Naujokaitis, G. Niaura, Z. Mockus, S. Kanapeckaité, B. Cechavicius, K. Juskevicius, E. Saucedo, and Y. Sánchez, “Investigation of selenization process of electrodeposited Cu-ZnSn precursor for Cu2ZnSnSe4 thin-film solar cells,” Thin Solid Films 589, 165–172 (2015).
[Crossref]

Kammen, D. M.

C. Wadia, A. P. Alivisatos, and D. M. Kammen, “Materials availability expands the opportunity for large-scale photovoltaics deployment,” Environ. Sci. Technol. 43(6), 2072–2077 (2009).
[Crossref] [PubMed]

Kanapeckaité, S.

R. Kondrotas, R. Juskénas, A. Naujokaitis, G. Niaura, Z. Mockus, S. Kanapeckaité, B. Cechavicius, K. Juskevicius, E. Saucedo, and Y. Sánchez, “Investigation of selenization process of electrodeposited Cu-ZnSn precursor for Cu2ZnSnSe4 thin-film solar cells,” Thin Solid Films 589, 165–172 (2015).
[Crossref]

Katagiri, H.

H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, and S. Miyajima, “Development of thin solar cell based on Cu2znSnS4 thin films,” Sol. Energy Mater. Sol. Cells 65(1-4), 141–148 (2001).
[Crossref]

Kim, J.

J. Kim, H. Hiroi, T. K. Todorov, O. Gunawan, M. Kuwahara, T. Gokmen, D. Nair, M. Hopstaken, B. Shin, Y. S. Lee, W. Wang, H. Sugimoto, and D. B. Mitzi, “High efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double In2S3/CdS emitter,” Adv. Mater. 26(44), 7427–7431 (2014).
[Crossref] [PubMed]

Kondrotas, R.

R. Kondrotas, R. Juskénas, A. Naujokaitis, G. Niaura, Z. Mockus, S. Kanapeckaité, B. Cechavicius, K. Juskevicius, E. Saucedo, and Y. Sánchez, “Investigation of selenization process of electrodeposited Cu-ZnSn precursor for Cu2ZnSnSe4 thin-film solar cells,” Thin Solid Films 589, 165–172 (2015).
[Crossref]

Kuciauskas, D.

I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W. C. Hsu, A. Goodrich, and R. Noufi, “Co-evaporated Cu2ZnSnSe4 films and devices,” Sol. Energy Mater. Sol. Cells 101, 154–159 (2012).
[Crossref]

Kurumadani, T.

H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, and S. Miyajima, “Development of thin solar cell based on Cu2znSnS4 thin films,” Sol. Energy Mater. Sol. Cells 65(1-4), 141–148 (2001).
[Crossref]

Kuwahara, M.

J. Kim, H. Hiroi, T. K. Todorov, O. Gunawan, M. Kuwahara, T. Gokmen, D. Nair, M. Hopstaken, B. Shin, Y. S. Lee, W. Wang, H. Sugimoto, and D. B. Mitzi, “High efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double In2S3/CdS emitter,” Adv. Mater. 26(44), 7427–7431 (2014).
[Crossref] [PubMed]

Lee, Y. S.

Y. S. Lee, T. Gershon, O. Gunawan, T. K. Todorov, T. Gokmen, Y. Virgus, and S. Guha, “Cu2ZnSnSe4 thin-film solar cells by thermal co-evaporation with 11.6% efficiency and improved minority carrier diffusion length,” Adv. Energy Mater. 5(7), 1401372 (2015).
[Crossref]

J. Kim, H. Hiroi, T. K. Todorov, O. Gunawan, M. Kuwahara, T. Gokmen, D. Nair, M. Hopstaken, B. Shin, Y. S. Lee, W. Wang, H. Sugimoto, and D. B. Mitzi, “High efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double In2S3/CdS emitter,” Adv. Mater. 26(44), 7427–7431 (2014).
[Crossref] [PubMed]

León, M.

M. León, S. Levcenko, R. Serna, I. V. Bodnar, A. Nateprov, M. Guc, G. Gurieva, N. Lopez, J. M. Merino, R. Caballero, S. Schorr, A. Perez-Rodriguez, and E. Arushanov, “Spectroscopic ellipsometry study of Cu2ZnSnSe4 bulk crystals,” Appl. Phys. Lett. 105(6), 061909 (2014).
[Crossref]

Levcenko, S.

M. León, S. Levcenko, R. Serna, I. V. Bodnar, A. Nateprov, M. Guc, G. Gurieva, N. Lopez, J. M. Merino, R. Caballero, S. Schorr, A. Perez-Rodriguez, and E. Arushanov, “Spectroscopic ellipsometry study of Cu2ZnSnSe4 bulk crystals,” Appl. Phys. Lett. 105(6), 061909 (2014).
[Crossref]

Lopez, N.

M. León, S. Levcenko, R. Serna, I. V. Bodnar, A. Nateprov, M. Guc, G. Gurieva, N. Lopez, J. M. Merino, R. Caballero, S. Schorr, A. Perez-Rodriguez, and E. Arushanov, “Spectroscopic ellipsometry study of Cu2ZnSnSe4 bulk crystals,” Appl. Phys. Lett. 105(6), 061909 (2014).
[Crossref]

López-Marino, S.

H. Xie, Y. Sánchez, S. López-Marino, M. Espíndola-Rodríguez, M. Neuschitzer, D. Sylla, A. Fairbrother, V. Izquierdo-Roca, A. Pérez-Rodríguez, and E. Saucedo, “Impact of Sn(S,Se) secondary phases in Cu2ZnSn(S,Se)4 solar cells: a chemical route for their selective removal and absorber surface passivation,” ACS Appl. Mater. Interfaces 6(15), 12744–12751 (2014).
[Crossref] [PubMed]

Malaquias, J. C.

M. Mousel, T. Schwarz, R. Djemour, T. P. Weiss, J. Sendler, J. C. Malaquias, A. Redinger, O. Cojocaru-Mirédin, P.-P. Choi, and S. Siebentritt, “Cu-Rich Precursors Improve Kesterite Solar Cells,” Adv. Energy Mater. 4(2), 1300543 (2014).
[Crossref]

Mann, J.

I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W. C. Hsu, A. Goodrich, and R. Noufi, “Co-evaporated Cu2ZnSnSe4 films and devices,” Sol. Energy Mater. Sol. Cells 101, 154–159 (2012).
[Crossref]

Melchiorre, M.

G. Rey, T. P. Weiss, J. Sendler, A. Finger, C. Spindler, F. Werner, M. Melchiorre, M. Hála, M. Guennou, and S. Siebentritt, “Ordering kesterite improves solar cells: A low temperature post-deposition annealing study,” Sol. Energy Mater. Sol. Cells 151, 131–138 (2016).
[Crossref]

Merino, J. M.

M. León, S. Levcenko, R. Serna, I. V. Bodnar, A. Nateprov, M. Guc, G. Gurieva, N. Lopez, J. M. Merino, R. Caballero, S. Schorr, A. Perez-Rodriguez, and E. Arushanov, “Spectroscopic ellipsometry study of Cu2ZnSnSe4 bulk crystals,” Appl. Phys. Lett. 105(6), 061909 (2014).
[Crossref]

Miles, R. W.

G. Zoppi, I. Forbes, R. W. Miles, P. J. Dale, J. J. Scragg, and L. M. Peter, “Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors,” Prog. Photovolt. Res. Appl. 17(5), 315–319 (2009).
[Crossref]

Mitzi, D. B.

W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency,” Adv. Energy Mater. 4(7), 1301465 (2014).
[Crossref]

J. Kim, H. Hiroi, T. K. Todorov, O. Gunawan, M. Kuwahara, T. Gokmen, D. Nair, M. Hopstaken, B. Shin, Y. S. Lee, W. Wang, H. Sugimoto, and D. B. Mitzi, “High efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double In2S3/CdS emitter,” Adv. Mater. 26(44), 7427–7431 (2014).
[Crossref] [PubMed]

Miyajima, S.

H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, and S. Miyajima, “Development of thin solar cell based on Cu2znSnS4 thin films,” Sol. Energy Mater. Sol. Cells 65(1-4), 141–148 (2001).
[Crossref]

Mockus, Z.

R. Kondrotas, R. Juskénas, A. Naujokaitis, G. Niaura, Z. Mockus, S. Kanapeckaité, B. Cechavicius, K. Juskevicius, E. Saucedo, and Y. Sánchez, “Investigation of selenization process of electrodeposited Cu-ZnSn precursor for Cu2ZnSnSe4 thin-film solar cells,” Thin Solid Films 589, 165–172 (2015).
[Crossref]

Mousel, M.

Ö. Demircioğlu, M. Mousel, A. Redinger, G. Rey, T. Weiss, S. Siebentritt, I. Riedel, and L. Gütay, “Detection of a MoSe2 secondary phase layer in CZTSe by spectroscopic ellipsometry,” J. Appl. Phys. 118(18), 185302 (2015).
[Crossref]

M. Mousel, T. Schwarz, R. Djemour, T. P. Weiss, J. Sendler, J. C. Malaquias, A. Redinger, O. Cojocaru-Mirédin, P.-P. Choi, and S. Siebentritt, “Cu-Rich Precursors Improve Kesterite Solar Cells,” Adv. Energy Mater. 4(2), 1300543 (2014).
[Crossref]

A. Redinger, M. Mousel, R. Djemour, L. Gütay, N. Valle, and S. Siebentritt, “Cu2ZnSnSe4 thin film solar cells produced via co-evaporation and annealing including SnSe2 capping layer,” Prog. Photovolt. Res. Appl. 22(1), 51–57 (2014).
[Crossref]

R. Djemour, M. Mousel, A. Redinger, L. Gütay, A. Crossay, D. Colombra, P. J. Dale, and S. Siebentritt, “Detecting ZnSe secondary phase in Cu2ZnSnSe4 by room temperature photoluminescence,” Appl. Phys. Lett. 102(22), 222108 (2013).
[Crossref]

T. Schwarz, O. Cojocaru-Mirédin, P. Choi, M. Mousel, A. Redinger, S. Siebentritt, and D. Raabe, “Atom probe study of Cu2ZnSnSe4 thin-films prepared by co-evaporation and post deposition annealing,” Appl. Phys. Lett. 102(4), 042101 (2013).
[Crossref]

Nair, D.

J. Kim, H. Hiroi, T. K. Todorov, O. Gunawan, M. Kuwahara, T. Gokmen, D. Nair, M. Hopstaken, B. Shin, Y. S. Lee, W. Wang, H. Sugimoto, and D. B. Mitzi, “High efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double In2S3/CdS emitter,” Adv. Mater. 26(44), 7427–7431 (2014).
[Crossref] [PubMed]

Nateprov, A.

M. León, S. Levcenko, R. Serna, I. V. Bodnar, A. Nateprov, M. Guc, G. Gurieva, N. Lopez, J. M. Merino, R. Caballero, S. Schorr, A. Perez-Rodriguez, and E. Arushanov, “Spectroscopic ellipsometry study of Cu2ZnSnSe4 bulk crystals,” Appl. Phys. Lett. 105(6), 061909 (2014).
[Crossref]

Naujokaitis, A.

R. Kondrotas, R. Juskénas, A. Naujokaitis, G. Niaura, Z. Mockus, S. Kanapeckaité, B. Cechavicius, K. Juskevicius, E. Saucedo, and Y. Sánchez, “Investigation of selenization process of electrodeposited Cu-ZnSn precursor for Cu2ZnSnSe4 thin-film solar cells,” Thin Solid Films 589, 165–172 (2015).
[Crossref]

Nazakawa, T.

K. Ito and T. Nazakawa, “Electrical and optical properties of stannite-type quaternary semiconductor thin films,” Jpn. J. Appl. Phys. 27, 2094 (1988).

Neuschitzer, M.

H. Xie, Y. Sánchez, S. López-Marino, M. Espíndola-Rodríguez, M. Neuschitzer, D. Sylla, A. Fairbrother, V. Izquierdo-Roca, A. Pérez-Rodríguez, and E. Saucedo, “Impact of Sn(S,Se) secondary phases in Cu2ZnSn(S,Se)4 solar cells: a chemical route for their selective removal and absorber surface passivation,” ACS Appl. Mater. Interfaces 6(15), 12744–12751 (2014).
[Crossref] [PubMed]

Niaura, G.

R. Kondrotas, R. Juskénas, A. Naujokaitis, G. Niaura, Z. Mockus, S. Kanapeckaité, B. Cechavicius, K. Juskevicius, E. Saucedo, and Y. Sánchez, “Investigation of selenization process of electrodeposited Cu-ZnSn precursor for Cu2ZnSnSe4 thin-film solar cells,” Thin Solid Films 589, 165–172 (2015).
[Crossref]

Noufi, R.

I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W. C. Hsu, A. Goodrich, and R. Noufi, “Co-evaporated Cu2ZnSnSe4 films and devices,” Sol. Energy Mater. Sol. Cells 101, 154–159 (2012).
[Crossref]

Park, D.

S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, and J. H. Yun, “Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values,” Appl. Phys. Lett. 97(2), 021905 (2010).
[Crossref]

Perez-Rodriguez, A.

M. León, S. Levcenko, R. Serna, I. V. Bodnar, A. Nateprov, M. Guc, G. Gurieva, N. Lopez, J. M. Merino, R. Caballero, S. Schorr, A. Perez-Rodriguez, and E. Arushanov, “Spectroscopic ellipsometry study of Cu2ZnSnSe4 bulk crystals,” Appl. Phys. Lett. 105(6), 061909 (2014).
[Crossref]

Pérez-Rodríguez, A.

H. Xie, Y. Sánchez, S. López-Marino, M. Espíndola-Rodríguez, M. Neuschitzer, D. Sylla, A. Fairbrother, V. Izquierdo-Roca, A. Pérez-Rodríguez, and E. Saucedo, “Impact of Sn(S,Se) secondary phases in Cu2ZnSn(S,Se)4 solar cells: a chemical route for their selective removal and absorber surface passivation,” ACS Appl. Mater. Interfaces 6(15), 12744–12751 (2014).
[Crossref] [PubMed]

A. Redinger, K. Hönes, X. Fontané, V. Izquierdo-Roca, E. Saucedo, N. Valle, A. Pérez-Rodríguez, and S. Siebentritt, “Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin films,” Appl. Phys. Lett. 98(10), 101907 (2011).
[Crossref]

Persson, C.

C. Persson, “Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4,” J. Appl. Phys. 107(5), 053710 (2010).
[Crossref]

Peter, L. M.

J. J. Scragg, P. J. Dale, D. Colombara, and L. M. Peter, “Thermodynamic aspects of the synthesis of thin-film materials for solar cells,” ChemPhysChem 13(12), 3035–3046 (2012).
[Crossref] [PubMed]

G. Zoppi, I. Forbes, R. W. Miles, P. J. Dale, J. J. Scragg, and L. M. Peter, “Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors,” Prog. Photovolt. Res. Appl. 17(5), 315–319 (2009).
[Crossref]

Platzer-Björkman, C.

J. T. Watjen, J. Engman, M. Edoff, and C. Platzer-Björkman, “Direct evidence of current blocking by ZnSe in Cu2ZnSnSe4 solar cells,” Appl. Phys. Lett. 100(17), 173510 (2012).
[Crossref]

Raabe, D.

T. Schwarz, O. Cojocaru-Mirédin, P. Choi, M. Mousel, A. Redinger, S. Siebentritt, and D. Raabe, “Atom probe study of Cu2ZnSnSe4 thin-films prepared by co-evaporation and post deposition annealing,” Appl. Phys. Lett. 102(4), 042101 (2013).
[Crossref]

Redinger, A.

A. Redinger, J. Sendler, R. Djemour, T. P. Weiss, G. Rey, P. J. Dale, and S. Siebentritt, “Different bandgaps in Cu2ZnSnSe4: Ahigh temperature coevaporation study,” IEEE Photovoltaics 5, 641–648 (2015).
[Crossref]

Ö. Demircioğlu, M. Mousel, A. Redinger, G. Rey, T. Weiss, S. Siebentritt, I. Riedel, and L. Gütay, “Detection of a MoSe2 secondary phase layer in CZTSe by spectroscopic ellipsometry,” J. Appl. Phys. 118(18), 185302 (2015).
[Crossref]

M. Mousel, T. Schwarz, R. Djemour, T. P. Weiss, J. Sendler, J. C. Malaquias, A. Redinger, O. Cojocaru-Mirédin, P.-P. Choi, and S. Siebentritt, “Cu-Rich Precursors Improve Kesterite Solar Cells,” Adv. Energy Mater. 4(2), 1300543 (2014).
[Crossref]

G. Rey, A. Redinger, J. Sendler, T. P. Weiss, M. Thevenin, M. Guennou, B. El Adib, and S. Siebentritt, “The band gap of Cu2ZnSnSe4: Effect of order-disorder,” Appl. Phys. Lett. 105(11), 112106 (2014).
[Crossref]

A. Redinger, M. Mousel, R. Djemour, L. Gütay, N. Valle, and S. Siebentritt, “Cu2ZnSnSe4 thin film solar cells produced via co-evaporation and annealing including SnSe2 capping layer,” Prog. Photovolt. Res. Appl. 22(1), 51–57 (2014).
[Crossref]

R. Djemour, M. Mousel, A. Redinger, L. Gütay, A. Crossay, D. Colombra, P. J. Dale, and S. Siebentritt, “Detecting ZnSe secondary phase in Cu2ZnSnSe4 by room temperature photoluminescence,” Appl. Phys. Lett. 102(22), 222108 (2013).
[Crossref]

T. Schwarz, O. Cojocaru-Mirédin, P. Choi, M. Mousel, A. Redinger, S. Siebentritt, and D. Raabe, “Atom probe study of Cu2ZnSnSe4 thin-films prepared by co-evaporation and post deposition annealing,” Appl. Phys. Lett. 102(4), 042101 (2013).
[Crossref]

L. Gütay, A. Redinger, R. Djemour, and S. Siebentritt, “Lone conduction band in Cu2ZnSnSe4,” Appl. Phys. Lett. 100(10), 102113 (2012).
[Crossref]

A. Redinger, K. Hönes, X. Fontané, V. Izquierdo-Roca, E. Saucedo, N. Valle, A. Pérez-Rodríguez, and S. Siebentritt, “Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin films,” Appl. Phys. Lett. 98(10), 101907 (2011).
[Crossref]

A. Redinger, D. M. Berg, P. J. Dale, R. Djemour, L. Gütay, T. Eisenbarth, N. Valle, and S. Siebentritt, “Route toward high-efficiency single phase Cu2ZnSn(S,Se)4 thin film solar cells: model experiments and literature review,” IEEE J. Photovoltaics 2(2), 200–206 (2011).
[Crossref]

Regesch, D.

S. Siebentritt, G. Rey, A. Finger, D. Regesch, J. Sendler, T. P. Weiss, and T. Bertram, “What is the band gap of kesterite?” Sol. Energy Mater. Sol. Cells 158, 126–129 (2016).
[Crossref]

Repins, I.

I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W. C. Hsu, A. Goodrich, and R. Noufi, “Co-evaporated Cu2ZnSnSe4 films and devices,” Sol. Energy Mater. Sol. Cells 101, 154–159 (2012).
[Crossref]

Rey, G.

G. Rey, T. P. Weiss, J. Sendler, A. Finger, C. Spindler, F. Werner, M. Melchiorre, M. Hála, M. Guennou, and S. Siebentritt, “Ordering kesterite improves solar cells: A low temperature post-deposition annealing study,” Sol. Energy Mater. Sol. Cells 151, 131–138 (2016).
[Crossref]

S. Siebentritt, G. Rey, A. Finger, D. Regesch, J. Sendler, T. P. Weiss, and T. Bertram, “What is the band gap of kesterite?” Sol. Energy Mater. Sol. Cells 158, 126–129 (2016).
[Crossref]

Ö. Demircioğlu, M. Mousel, A. Redinger, G. Rey, T. Weiss, S. Siebentritt, I. Riedel, and L. Gütay, “Detection of a MoSe2 secondary phase layer in CZTSe by spectroscopic ellipsometry,” J. Appl. Phys. 118(18), 185302 (2015).
[Crossref]

A. Redinger, J. Sendler, R. Djemour, T. P. Weiss, G. Rey, P. J. Dale, and S. Siebentritt, “Different bandgaps in Cu2ZnSnSe4: Ahigh temperature coevaporation study,” IEEE Photovoltaics 5, 641–648 (2015).
[Crossref]

G. Rey, A. Redinger, J. Sendler, T. P. Weiss, M. Thevenin, M. Guennou, B. El Adib, and S. Siebentritt, “The band gap of Cu2ZnSnSe4: Effect of order-disorder,” Appl. Phys. Lett. 105(11), 112106 (2014).
[Crossref]

Riedel, I.

Ö. Demircioğlu, M. Mousel, A. Redinger, G. Rey, T. Weiss, S. Siebentritt, I. Riedel, and L. Gütay, “Detection of a MoSe2 secondary phase layer in CZTSe by spectroscopic ellipsometry,” J. Appl. Phys. 118(18), 185302 (2015).
[Crossref]

Saitoh, K.

H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, and S. Miyajima, “Development of thin solar cell based on Cu2znSnS4 thin films,” Sol. Energy Mater. Sol. Cells 65(1-4), 141–148 (2001).
[Crossref]

Sánchez, Y.

R. Kondrotas, R. Juskénas, A. Naujokaitis, G. Niaura, Z. Mockus, S. Kanapeckaité, B. Cechavicius, K. Juskevicius, E. Saucedo, and Y. Sánchez, “Investigation of selenization process of electrodeposited Cu-ZnSn precursor for Cu2ZnSnSe4 thin-film solar cells,” Thin Solid Films 589, 165–172 (2015).
[Crossref]

H. Xie, Y. Sánchez, S. López-Marino, M. Espíndola-Rodríguez, M. Neuschitzer, D. Sylla, A. Fairbrother, V. Izquierdo-Roca, A. Pérez-Rodríguez, and E. Saucedo, “Impact of Sn(S,Se) secondary phases in Cu2ZnSn(S,Se)4 solar cells: a chemical route for their selective removal and absorber surface passivation,” ACS Appl. Mater. Interfaces 6(15), 12744–12751 (2014).
[Crossref] [PubMed]

Saucedo, E.

R. Kondrotas, R. Juskénas, A. Naujokaitis, G. Niaura, Z. Mockus, S. Kanapeckaité, B. Cechavicius, K. Juskevicius, E. Saucedo, and Y. Sánchez, “Investigation of selenization process of electrodeposited Cu-ZnSn precursor for Cu2ZnSnSe4 thin-film solar cells,” Thin Solid Films 589, 165–172 (2015).
[Crossref]

H. Xie, Y. Sánchez, S. López-Marino, M. Espíndola-Rodríguez, M. Neuschitzer, D. Sylla, A. Fairbrother, V. Izquierdo-Roca, A. Pérez-Rodríguez, and E. Saucedo, “Impact of Sn(S,Se) secondary phases in Cu2ZnSn(S,Se)4 solar cells: a chemical route for their selective removal and absorber surface passivation,” ACS Appl. Mater. Interfaces 6(15), 12744–12751 (2014).
[Crossref] [PubMed]

A. Redinger, K. Hönes, X. Fontané, V. Izquierdo-Roca, E. Saucedo, N. Valle, A. Pérez-Rodríguez, and S. Siebentritt, “Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin films,” Appl. Phys. Lett. 98(10), 101907 (2011).
[Crossref]

Schorr, S.

M. León, S. Levcenko, R. Serna, I. V. Bodnar, A. Nateprov, M. Guc, G. Gurieva, N. Lopez, J. M. Merino, R. Caballero, S. Schorr, A. Perez-Rodriguez, and E. Arushanov, “Spectroscopic ellipsometry study of Cu2ZnSnSe4 bulk crystals,” Appl. Phys. Lett. 105(6), 061909 (2014).
[Crossref]

S. Siebentritt and S. Schorr, “Kesterites–a challenging material for solar cells,” Prog. Photovolt. Res. Appl. 20(5), 512–519 (2012).
[Crossref]

Schwarz, T.

M. Mousel, T. Schwarz, R. Djemour, T. P. Weiss, J. Sendler, J. C. Malaquias, A. Redinger, O. Cojocaru-Mirédin, P.-P. Choi, and S. Siebentritt, “Cu-Rich Precursors Improve Kesterite Solar Cells,” Adv. Energy Mater. 4(2), 1300543 (2014).
[Crossref]

T. Schwarz, O. Cojocaru-Mirédin, P. Choi, M. Mousel, A. Redinger, S. Siebentritt, and D. Raabe, “Atom probe study of Cu2ZnSnSe4 thin-films prepared by co-evaporation and post deposition annealing,” Appl. Phys. Lett. 102(4), 042101 (2013).
[Crossref]

Scragg, J. J.

J. J. Scragg, P. J. Dale, D. Colombara, and L. M. Peter, “Thermodynamic aspects of the synthesis of thin-film materials for solar cells,” ChemPhysChem 13(12), 3035–3046 (2012).
[Crossref] [PubMed]

G. Zoppi, I. Forbes, R. W. Miles, P. J. Dale, J. J. Scragg, and L. M. Peter, “Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors,” Prog. Photovolt. Res. Appl. 17(5), 315–319 (2009).
[Crossref]

Sendler, J.

G. Rey, T. P. Weiss, J. Sendler, A. Finger, C. Spindler, F. Werner, M. Melchiorre, M. Hála, M. Guennou, and S. Siebentritt, “Ordering kesterite improves solar cells: A low temperature post-deposition annealing study,” Sol. Energy Mater. Sol. Cells 151, 131–138 (2016).
[Crossref]

S. Siebentritt, G. Rey, A. Finger, D. Regesch, J. Sendler, T. P. Weiss, and T. Bertram, “What is the band gap of kesterite?” Sol. Energy Mater. Sol. Cells 158, 126–129 (2016).
[Crossref]

A. Redinger, J. Sendler, R. Djemour, T. P. Weiss, G. Rey, P. J. Dale, and S. Siebentritt, “Different bandgaps in Cu2ZnSnSe4: Ahigh temperature coevaporation study,” IEEE Photovoltaics 5, 641–648 (2015).
[Crossref]

M. Mousel, T. Schwarz, R. Djemour, T. P. Weiss, J. Sendler, J. C. Malaquias, A. Redinger, O. Cojocaru-Mirédin, P.-P. Choi, and S. Siebentritt, “Cu-Rich Precursors Improve Kesterite Solar Cells,” Adv. Energy Mater. 4(2), 1300543 (2014).
[Crossref]

G. Rey, A. Redinger, J. Sendler, T. P. Weiss, M. Thevenin, M. Guennou, B. El Adib, and S. Siebentritt, “The band gap of Cu2ZnSnSe4: Effect of order-disorder,” Appl. Phys. Lett. 105(11), 112106 (2014).
[Crossref]

Serna, R.

M. León, S. Levcenko, R. Serna, I. V. Bodnar, A. Nateprov, M. Guc, G. Gurieva, N. Lopez, J. M. Merino, R. Caballero, S. Schorr, A. Perez-Rodriguez, and E. Arushanov, “Spectroscopic ellipsometry study of Cu2ZnSnSe4 bulk crystals,” Appl. Phys. Lett. 105(6), 061909 (2014).
[Crossref]

Shin, B.

J. Kim, H. Hiroi, T. K. Todorov, O. Gunawan, M. Kuwahara, T. Gokmen, D. Nair, M. Hopstaken, B. Shin, Y. S. Lee, W. Wang, H. Sugimoto, and D. B. Mitzi, “High efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double In2S3/CdS emitter,” Adv. Mater. 26(44), 7427–7431 (2014).
[Crossref] [PubMed]

Shin, K.

S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, and J. H. Yun, “Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values,” Appl. Phys. Lett. 97(2), 021905 (2010).
[Crossref]

Shinohara, H.

H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, and S. Miyajima, “Development of thin solar cell based on Cu2znSnS4 thin films,” Sol. Energy Mater. Sol. Cells 65(1-4), 141–148 (2001).
[Crossref]

Siebentritt, S.

S. Siebentritt, G. Rey, A. Finger, D. Regesch, J. Sendler, T. P. Weiss, and T. Bertram, “What is the band gap of kesterite?” Sol. Energy Mater. Sol. Cells 158, 126–129 (2016).
[Crossref]

G. Rey, T. P. Weiss, J. Sendler, A. Finger, C. Spindler, F. Werner, M. Melchiorre, M. Hála, M. Guennou, and S. Siebentritt, “Ordering kesterite improves solar cells: A low temperature post-deposition annealing study,” Sol. Energy Mater. Sol. Cells 151, 131–138 (2016).
[Crossref]

Ö. Demircioğlu, M. Mousel, A. Redinger, G. Rey, T. Weiss, S. Siebentritt, I. Riedel, and L. Gütay, “Detection of a MoSe2 secondary phase layer in CZTSe by spectroscopic ellipsometry,” J. Appl. Phys. 118(18), 185302 (2015).
[Crossref]

A. Redinger, J. Sendler, R. Djemour, T. P. Weiss, G. Rey, P. J. Dale, and S. Siebentritt, “Different bandgaps in Cu2ZnSnSe4: Ahigh temperature coevaporation study,” IEEE Photovoltaics 5, 641–648 (2015).
[Crossref]

M. Mousel, T. Schwarz, R. Djemour, T. P. Weiss, J. Sendler, J. C. Malaquias, A. Redinger, O. Cojocaru-Mirédin, P.-P. Choi, and S. Siebentritt, “Cu-Rich Precursors Improve Kesterite Solar Cells,” Adv. Energy Mater. 4(2), 1300543 (2014).
[Crossref]

A. Redinger, M. Mousel, R. Djemour, L. Gütay, N. Valle, and S. Siebentritt, “Cu2ZnSnSe4 thin film solar cells produced via co-evaporation and annealing including SnSe2 capping layer,” Prog. Photovolt. Res. Appl. 22(1), 51–57 (2014).
[Crossref]

G. Rey, A. Redinger, J. Sendler, T. P. Weiss, M. Thevenin, M. Guennou, B. El Adib, and S. Siebentritt, “The band gap of Cu2ZnSnSe4: Effect of order-disorder,” Appl. Phys. Lett. 105(11), 112106 (2014).
[Crossref]

R. Djemour, M. Mousel, A. Redinger, L. Gütay, A. Crossay, D. Colombra, P. J. Dale, and S. Siebentritt, “Detecting ZnSe secondary phase in Cu2ZnSnSe4 by room temperature photoluminescence,” Appl. Phys. Lett. 102(22), 222108 (2013).
[Crossref]

T. Schwarz, O. Cojocaru-Mirédin, P. Choi, M. Mousel, A. Redinger, S. Siebentritt, and D. Raabe, “Atom probe study of Cu2ZnSnSe4 thin-films prepared by co-evaporation and post deposition annealing,” Appl. Phys. Lett. 102(4), 042101 (2013).
[Crossref]

L. Gütay, A. Redinger, R. Djemour, and S. Siebentritt, “Lone conduction band in Cu2ZnSnSe4,” Appl. Phys. Lett. 100(10), 102113 (2012).
[Crossref]

S. Siebentritt and S. Schorr, “Kesterites–a challenging material for solar cells,” Prog. Photovolt. Res. Appl. 20(5), 512–519 (2012).
[Crossref]

A. Redinger, K. Hönes, X. Fontané, V. Izquierdo-Roca, E. Saucedo, N. Valle, A. Pérez-Rodríguez, and S. Siebentritt, “Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin films,” Appl. Phys. Lett. 98(10), 101907 (2011).
[Crossref]

A. Redinger, D. M. Berg, P. J. Dale, R. Djemour, L. Gütay, T. Eisenbarth, N. Valle, and S. Siebentritt, “Route toward high-efficiency single phase Cu2ZnSn(S,Se)4 thin film solar cells: model experiments and literature review,” IEEE J. Photovoltaics 2(2), 200–206 (2011).
[Crossref]

Spindler, C.

G. Rey, T. P. Weiss, J. Sendler, A. Finger, C. Spindler, F. Werner, M. Melchiorre, M. Hála, M. Guennou, and S. Siebentritt, “Ordering kesterite improves solar cells: A low temperature post-deposition annealing study,” Sol. Energy Mater. Sol. Cells 151, 131–138 (2016).
[Crossref]

Studna, A. A.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
[Crossref]

Sugimoto, H.

J. Kim, H. Hiroi, T. K. Todorov, O. Gunawan, M. Kuwahara, T. Gokmen, D. Nair, M. Hopstaken, B. Shin, Y. S. Lee, W. Wang, H. Sugimoto, and D. B. Mitzi, “High efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double In2S3/CdS emitter,” Adv. Mater. 26(44), 7427–7431 (2014).
[Crossref] [PubMed]

Sylla, D.

H. Xie, Y. Sánchez, S. López-Marino, M. Espíndola-Rodríguez, M. Neuschitzer, D. Sylla, A. Fairbrother, V. Izquierdo-Roca, A. Pérez-Rodríguez, and E. Saucedo, “Impact of Sn(S,Se) secondary phases in Cu2ZnSn(S,Se)4 solar cells: a chemical route for their selective removal and absorber surface passivation,” ACS Appl. Mater. Interfaces 6(15), 12744–12751 (2014).
[Crossref] [PubMed]

Thevenin, M.

G. Rey, A. Redinger, J. Sendler, T. P. Weiss, M. Thevenin, M. Guennou, B. El Adib, and S. Siebentritt, “The band gap of Cu2ZnSnSe4: Effect of order-disorder,” Appl. Phys. Lett. 105(11), 112106 (2014).
[Crossref]

To, B.

I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W. C. Hsu, A. Goodrich, and R. Noufi, “Co-evaporated Cu2ZnSnSe4 films and devices,” Sol. Energy Mater. Sol. Cells 101, 154–159 (2012).
[Crossref]

Todorov, T. K.

Y. S. Lee, T. Gershon, O. Gunawan, T. K. Todorov, T. Gokmen, Y. Virgus, and S. Guha, “Cu2ZnSnSe4 thin-film solar cells by thermal co-evaporation with 11.6% efficiency and improved minority carrier diffusion length,” Adv. Energy Mater. 5(7), 1401372 (2015).
[Crossref]

W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency,” Adv. Energy Mater. 4(7), 1301465 (2014).
[Crossref]

J. Kim, H. Hiroi, T. K. Todorov, O. Gunawan, M. Kuwahara, T. Gokmen, D. Nair, M. Hopstaken, B. Shin, Y. S. Lee, W. Wang, H. Sugimoto, and D. B. Mitzi, “High efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double In2S3/CdS emitter,” Adv. Mater. 26(44), 7427–7431 (2014).
[Crossref] [PubMed]

Valle, N.

A. Redinger, M. Mousel, R. Djemour, L. Gütay, N. Valle, and S. Siebentritt, “Cu2ZnSnSe4 thin film solar cells produced via co-evaporation and annealing including SnSe2 capping layer,” Prog. Photovolt. Res. Appl. 22(1), 51–57 (2014).
[Crossref]

A. Redinger, D. M. Berg, P. J. Dale, R. Djemour, L. Gütay, T. Eisenbarth, N. Valle, and S. Siebentritt, “Route toward high-efficiency single phase Cu2ZnSn(S,Se)4 thin film solar cells: model experiments and literature review,” IEEE J. Photovoltaics 2(2), 200–206 (2011).
[Crossref]

A. Redinger, K. Hönes, X. Fontané, V. Izquierdo-Roca, E. Saucedo, N. Valle, A. Pérez-Rodríguez, and S. Siebentritt, “Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin films,” Appl. Phys. Lett. 98(10), 101907 (2011).
[Crossref]

Virgus, Y.

Y. S. Lee, T. Gershon, O. Gunawan, T. K. Todorov, T. Gokmen, Y. Virgus, and S. Guha, “Cu2ZnSnSe4 thin-film solar cells by thermal co-evaporation with 11.6% efficiency and improved minority carrier diffusion length,” Adv. Energy Mater. 5(7), 1401372 (2015).
[Crossref]

Vora, N.

I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W. C. Hsu, A. Goodrich, and R. Noufi, “Co-evaporated Cu2ZnSnSe4 films and devices,” Sol. Energy Mater. Sol. Cells 101, 154–159 (2012).
[Crossref]

Wadia, C.

C. Wadia, A. P. Alivisatos, and D. M. Kammen, “Materials availability expands the opportunity for large-scale photovoltaics deployment,” Environ. Sci. Technol. 43(6), 2072–2077 (2009).
[Crossref] [PubMed]

Walsh, A.

S. Chen, X. G. Gong, A. Walsh, and S.-H. Wei, “Crystal and electronic band structure of Cu2ZnSnX4 (X= S and Se) photovoltaic absorbers: First-principles insights,” Appl. Phys. Lett. 94(4), 041903 (2009).
[Crossref]

Wang, W.

W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency,” Adv. Energy Mater. 4(7), 1301465 (2014).
[Crossref]

J. Kim, H. Hiroi, T. K. Todorov, O. Gunawan, M. Kuwahara, T. Gokmen, D. Nair, M. Hopstaken, B. Shin, Y. S. Lee, W. Wang, H. Sugimoto, and D. B. Mitzi, “High efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double In2S3/CdS emitter,” Adv. Mater. 26(44), 7427–7431 (2014).
[Crossref] [PubMed]

Washio, T.

H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, and S. Miyajima, “Development of thin solar cell based on Cu2znSnS4 thin films,” Sol. Energy Mater. Sol. Cells 65(1-4), 141–148 (2001).
[Crossref]

Watjen, J. T.

J. T. Watjen, J. Engman, M. Edoff, and C. Platzer-Björkman, “Direct evidence of current blocking by ZnSe in Cu2ZnSnSe4 solar cells,” Appl. Phys. Lett. 100(17), 173510 (2012).
[Crossref]

Wei, S.-H.

S. Chen, X. G. Gong, A. Walsh, and S.-H. Wei, “Crystal and electronic band structure of Cu2ZnSnX4 (X= S and Se) photovoltaic absorbers: First-principles insights,” Appl. Phys. Lett. 94(4), 041903 (2009).
[Crossref]

Weiss, T.

Ö. Demircioğlu, M. Mousel, A. Redinger, G. Rey, T. Weiss, S. Siebentritt, I. Riedel, and L. Gütay, “Detection of a MoSe2 secondary phase layer in CZTSe by spectroscopic ellipsometry,” J. Appl. Phys. 118(18), 185302 (2015).
[Crossref]

Weiss, T. P.

G. Rey, T. P. Weiss, J. Sendler, A. Finger, C. Spindler, F. Werner, M. Melchiorre, M. Hála, M. Guennou, and S. Siebentritt, “Ordering kesterite improves solar cells: A low temperature post-deposition annealing study,” Sol. Energy Mater. Sol. Cells 151, 131–138 (2016).
[Crossref]

S. Siebentritt, G. Rey, A. Finger, D. Regesch, J. Sendler, T. P. Weiss, and T. Bertram, “What is the band gap of kesterite?” Sol. Energy Mater. Sol. Cells 158, 126–129 (2016).
[Crossref]

A. Redinger, J. Sendler, R. Djemour, T. P. Weiss, G. Rey, P. J. Dale, and S. Siebentritt, “Different bandgaps in Cu2ZnSnSe4: Ahigh temperature coevaporation study,” IEEE Photovoltaics 5, 641–648 (2015).
[Crossref]

M. Mousel, T. Schwarz, R. Djemour, T. P. Weiss, J. Sendler, J. C. Malaquias, A. Redinger, O. Cojocaru-Mirédin, P.-P. Choi, and S. Siebentritt, “Cu-Rich Precursors Improve Kesterite Solar Cells,” Adv. Energy Mater. 4(2), 1300543 (2014).
[Crossref]

G. Rey, A. Redinger, J. Sendler, T. P. Weiss, M. Thevenin, M. Guennou, B. El Adib, and S. Siebentritt, “The band gap of Cu2ZnSnSe4: Effect of order-disorder,” Appl. Phys. Lett. 105(11), 112106 (2014).
[Crossref]

Werner, F.

G. Rey, T. P. Weiss, J. Sendler, A. Finger, C. Spindler, F. Werner, M. Melchiorre, M. Hála, M. Guennou, and S. Siebentritt, “Ordering kesterite improves solar cells: A low temperature post-deposition annealing study,” Sol. Energy Mater. Sol. Cells 151, 131–138 (2016).
[Crossref]

Winkler, M. T.

W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency,” Adv. Energy Mater. 4(7), 1301465 (2014).
[Crossref]

Würfel, P.

E. Daub and P. Würfel, “Ultralow values of the absorption coefficient of Si obtained from luminescence,” Phys. Rev. Lett. 74(6), 1020–1023 (1995).
[Crossref] [PubMed]

Xie, H.

H. Xie, Y. Sánchez, S. López-Marino, M. Espíndola-Rodríguez, M. Neuschitzer, D. Sylla, A. Fairbrother, V. Izquierdo-Roca, A. Pérez-Rodríguez, and E. Saucedo, “Impact of Sn(S,Se) secondary phases in Cu2ZnSn(S,Se)4 solar cells: a chemical route for their selective removal and absorber surface passivation,” ACS Appl. Mater. Interfaces 6(15), 12744–12751 (2014).
[Crossref] [PubMed]

Yoon, K.

S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, and J. H. Yun, “Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values,” Appl. Phys. Lett. 97(2), 021905 (2010).
[Crossref]

Yun, J. H.

S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, and J. H. Yun, “Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values,” Appl. Phys. Lett. 97(2), 021905 (2010).
[Crossref]

Zhu, Y.

W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency,” Adv. Energy Mater. 4(7), 1301465 (2014).
[Crossref]

Zoppi, G.

G. Zoppi, I. Forbes, R. W. Miles, P. J. Dale, J. J. Scragg, and L. M. Peter, “Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors,” Prog. Photovolt. Res. Appl. 17(5), 315–319 (2009).
[Crossref]

ACS Appl. Mater. Interfaces (1)

H. Xie, Y. Sánchez, S. López-Marino, M. Espíndola-Rodríguez, M. Neuschitzer, D. Sylla, A. Fairbrother, V. Izquierdo-Roca, A. Pérez-Rodríguez, and E. Saucedo, “Impact of Sn(S,Se) secondary phases in Cu2ZnSn(S,Se)4 solar cells: a chemical route for their selective removal and absorber surface passivation,” ACS Appl. Mater. Interfaces 6(15), 12744–12751 (2014).
[Crossref] [PubMed]

Adv. Energy Mater. (3)

M. Mousel, T. Schwarz, R. Djemour, T. P. Weiss, J. Sendler, J. C. Malaquias, A. Redinger, O. Cojocaru-Mirédin, P.-P. Choi, and S. Siebentritt, “Cu-Rich Precursors Improve Kesterite Solar Cells,” Adv. Energy Mater. 4(2), 1300543 (2014).
[Crossref]

W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency,” Adv. Energy Mater. 4(7), 1301465 (2014).
[Crossref]

Y. S. Lee, T. Gershon, O. Gunawan, T. K. Todorov, T. Gokmen, Y. Virgus, and S. Guha, “Cu2ZnSnSe4 thin-film solar cells by thermal co-evaporation with 11.6% efficiency and improved minority carrier diffusion length,” Adv. Energy Mater. 5(7), 1401372 (2015).
[Crossref]

Adv. Mater. (1)

J. Kim, H. Hiroi, T. K. Todorov, O. Gunawan, M. Kuwahara, T. Gokmen, D. Nair, M. Hopstaken, B. Shin, Y. S. Lee, W. Wang, H. Sugimoto, and D. B. Mitzi, “High efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double In2S3/CdS emitter,” Adv. Mater. 26(44), 7427–7431 (2014).
[Crossref] [PubMed]

Ann. Physik (Leipzig) (1)

D. A. G. Bruggeman, “Dielektrizitätskonstanten und leitfähigkeiten der mishkörper aus isotropen und anisotropen substanzen,” Ann. Physik (Leipzig) 24, 636 (1935).
[Crossref]

Appl. Phys. Lett. (9)

L. Gütay, A. Redinger, R. Djemour, and S. Siebentritt, “Lone conduction band in Cu2ZnSnSe4,” Appl. Phys. Lett. 100(10), 102113 (2012).
[Crossref]

M. León, S. Levcenko, R. Serna, I. V. Bodnar, A. Nateprov, M. Guc, G. Gurieva, N. Lopez, J. M. Merino, R. Caballero, S. Schorr, A. Perez-Rodriguez, and E. Arushanov, “Spectroscopic ellipsometry study of Cu2ZnSnSe4 bulk crystals,” Appl. Phys. Lett. 105(6), 061909 (2014).
[Crossref]

S. Chen, X. G. Gong, A. Walsh, and S.-H. Wei, “Crystal and electronic band structure of Cu2ZnSnX4 (X= S and Se) photovoltaic absorbers: First-principles insights,” Appl. Phys. Lett. 94(4), 041903 (2009).
[Crossref]

G. Rey, A. Redinger, J. Sendler, T. P. Weiss, M. Thevenin, M. Guennou, B. El Adib, and S. Siebentritt, “The band gap of Cu2ZnSnSe4: Effect of order-disorder,” Appl. Phys. Lett. 105(11), 112106 (2014).
[Crossref]

S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, and J. H. Yun, “Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values,” Appl. Phys. Lett. 97(2), 021905 (2010).
[Crossref]

R. Djemour, M. Mousel, A. Redinger, L. Gütay, A. Crossay, D. Colombra, P. J. Dale, and S. Siebentritt, “Detecting ZnSe secondary phase in Cu2ZnSnSe4 by room temperature photoluminescence,” Appl. Phys. Lett. 102(22), 222108 (2013).
[Crossref]

T. Schwarz, O. Cojocaru-Mirédin, P. Choi, M. Mousel, A. Redinger, S. Siebentritt, and D. Raabe, “Atom probe study of Cu2ZnSnSe4 thin-films prepared by co-evaporation and post deposition annealing,” Appl. Phys. Lett. 102(4), 042101 (2013).
[Crossref]

A. Redinger, K. Hönes, X. Fontané, V. Izquierdo-Roca, E. Saucedo, N. Valle, A. Pérez-Rodríguez, and S. Siebentritt, “Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin films,” Appl. Phys. Lett. 98(10), 101907 (2011).
[Crossref]

J. T. Watjen, J. Engman, M. Edoff, and C. Platzer-Björkman, “Direct evidence of current blocking by ZnSe in Cu2ZnSnSe4 solar cells,” Appl. Phys. Lett. 100(17), 173510 (2012).
[Crossref]

ChemPhysChem (1)

J. J. Scragg, P. J. Dale, D. Colombara, and L. M. Peter, “Thermodynamic aspects of the synthesis of thin-film materials for solar cells,” ChemPhysChem 13(12), 3035–3046 (2012).
[Crossref] [PubMed]

Environ. Sci. Technol. (1)

C. Wadia, A. P. Alivisatos, and D. M. Kammen, “Materials availability expands the opportunity for large-scale photovoltaics deployment,” Environ. Sci. Technol. 43(6), 2072–2077 (2009).
[Crossref] [PubMed]

IEEE J. Photovoltaics (1)

A. Redinger, D. M. Berg, P. J. Dale, R. Djemour, L. Gütay, T. Eisenbarth, N. Valle, and S. Siebentritt, “Route toward high-efficiency single phase Cu2ZnSn(S,Se)4 thin film solar cells: model experiments and literature review,” IEEE J. Photovoltaics 2(2), 200–206 (2011).
[Crossref]

IEEE Photovoltaics (1)

A. Redinger, J. Sendler, R. Djemour, T. P. Weiss, G. Rey, P. J. Dale, and S. Siebentritt, “Different bandgaps in Cu2ZnSnSe4: Ahigh temperature coevaporation study,” IEEE Photovoltaics 5, 641–648 (2015).
[Crossref]

J. Appl. Phys. (2)

Ö. Demircioğlu, M. Mousel, A. Redinger, G. Rey, T. Weiss, S. Siebentritt, I. Riedel, and L. Gütay, “Detection of a MoSe2 secondary phase layer in CZTSe by spectroscopic ellipsometry,” J. Appl. Phys. 118(18), 185302 (2015).
[Crossref]

C. Persson, “Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4,” J. Appl. Phys. 107(5), 053710 (2010).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Ito and T. Nazakawa, “Electrical and optical properties of stannite-type quaternary semiconductor thin films,” Jpn. J. Appl. Phys. 27, 2094 (1988).

Philos. Trans. R. Soc. London, Series A (1)

J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London, Series A 203, 385 (1904).

Phys. Rev. B (1)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
[Crossref]

Phys. Rev. Lett. (1)

E. Daub and P. Würfel, “Ultralow values of the absorption coefficient of Si obtained from luminescence,” Phys. Rev. Lett. 74(6), 1020–1023 (1995).
[Crossref] [PubMed]

Prog. Photovolt. Res. Appl. (3)

A. Redinger, M. Mousel, R. Djemour, L. Gütay, N. Valle, and S. Siebentritt, “Cu2ZnSnSe4 thin film solar cells produced via co-evaporation and annealing including SnSe2 capping layer,” Prog. Photovolt. Res. Appl. 22(1), 51–57 (2014).
[Crossref]

G. Zoppi, I. Forbes, R. W. Miles, P. J. Dale, J. J. Scragg, and L. M. Peter, “Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors,” Prog. Photovolt. Res. Appl. 17(5), 315–319 (2009).
[Crossref]

S. Siebentritt and S. Schorr, “Kesterites–a challenging material for solar cells,” Prog. Photovolt. Res. Appl. 20(5), 512–519 (2012).
[Crossref]

Sol. Energy Mater. Sol. Cells (4)

H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, and S. Miyajima, “Development of thin solar cell based on Cu2znSnS4 thin films,” Sol. Energy Mater. Sol. Cells 65(1-4), 141–148 (2001).
[Crossref]

I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W. C. Hsu, A. Goodrich, and R. Noufi, “Co-evaporated Cu2ZnSnSe4 films and devices,” Sol. Energy Mater. Sol. Cells 101, 154–159 (2012).
[Crossref]

S. Siebentritt, G. Rey, A. Finger, D. Regesch, J. Sendler, T. P. Weiss, and T. Bertram, “What is the band gap of kesterite?” Sol. Energy Mater. Sol. Cells 158, 126–129 (2016).
[Crossref]

G. Rey, T. P. Weiss, J. Sendler, A. Finger, C. Spindler, F. Werner, M. Melchiorre, M. Hála, M. Guennou, and S. Siebentritt, “Ordering kesterite improves solar cells: A low temperature post-deposition annealing study,” Sol. Energy Mater. Sol. Cells 151, 131–138 (2016).
[Crossref]

Thin Solid Films (2)

R. Kondrotas, R. Juskénas, A. Naujokaitis, G. Niaura, Z. Mockus, S. Kanapeckaité, B. Cechavicius, K. Juskevicius, E. Saucedo, and Y. Sánchez, “Investigation of selenization process of electrodeposited Cu-ZnSn precursor for Cu2ZnSnSe4 thin-film solar cells,” Thin Solid Films 589, 165–172 (2015).
[Crossref]

L. Gütay and G. H. Bauer, “Local fluctuations of absorber properties of Cu(In,Ga)Se2 by sub-micron resolved PL towards “real life” conditions,” Thin Solid Films 517(7), 2222–2225 (2009).
[Crossref]

Other (4)

T. Unold and L. Gütay, in: D. Abou-Ras, T. Kircharzt, U. Rau (Eds.), Advanced Characterization Techniques for Thin Film Solar Cells, (WILEY-VCH, 2011), Chap. 7.

Y. Yu-Manuel and P. Cardona, Fundamentals of Semiconductors Physics and Material Properties, 4th Edition (2010).

J. A. Woollam Co., Inc., Guide to Using WVASE32, Software for Spectrocopic Ellipsometry Data Acquisition and Analysis, Chap. 8, page 8–32.

H. Fujiwara, Spectroscopic Ellipsometry - Principles and Applications, Wiley, 2007.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic representation of the multi-layer optical model for SE data analysis. Layers labeled with a star are based on Bruggeman Effective Medium Approximation (EMA), with a 50:50 mixture of adjacent layers. The ZnSe: CZTSe EMA layer contains a variable fraction which is varied in the fitting procedure.
Fig. 2
Fig. 2 Measured and fitted ellipsometry data for samples A, B, and C, respectively. Psi (Ψ, green colored symbol) and Delta (Δ, blue colored symbol) values are shown for only one incidence angle (70°) together with the fit results (red solid lines)
Fig. 3
Fig. 3 The plot of (αhν)2 vs. hν from a) SE results b) R&T results for all samples and extraction of band gaps via linear extrapolation to zero (dashed lines).
Fig. 4
Fig. 4 Raman spectra for each sample (a) front side of the samples, (b)back side of samples and (c) the remaining substrate after lift-off process. Excitation wavelengths are indicated in a) and b) by green and blue lines for 532nm and 457.9 nm, respectively. In figures a) and b) the black and red markers show the peak positions of CZTSe and ZnSe phases. In figure c) orange markers show MoSe2 peaks.
Fig. 5
Fig. 5 PL spectra for a) sample A, b) sample B, c) sample C, respectively. Solid lines represent the backside of each absorber for different excitation wavelengths, these are given in the legend and are color coded, respectively. Dotted lines represent the front side of the absorbers for only 532 nm excitation. The band gap from R&T measurements is indicated in the plot.

Tables (1)

Tables Icon

Table 1 Fitting results of the optical model including the thicknesses and their standard deviations are shown for surface roughness, EMA layer with the ratio of components, CZTSe absorber layer, the interface layer. Mean Square Error (MSE) from SE, and the thicknesses of absorbers MoSe2 layers from SEM.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

a= A (hvEg) 1/2 hv

Metrics