Abstract

Micrometer-sized vapor-gas bubbles are formed due to local heating of a water suspension containing absorptive pigment particles of 100 nm diameter. The heating is performed by CW near-infrared (980 nm) laser radiation with controllable power, focused into a 100 μm spot within a 2 mm suspension layer. By changing the laser power, four regimes are realized: (1) bubble generation; (2) stable growth of the existing bubbles; (3) stationary existence of the bubbles and (4) the bubbles’ shrinkage and collapse. This behavior is interpreted based on the temperature conditions. The generation and evolution of single bubbles and ensembles of bubbles with controllable sizes and numbers is demonstrated. The bubbles are grouped within the laser-illuminated region and form quasi-ordered structures. They can easily be moved and transported controlled by the focal spot. The results are useful for applications associated with the precise manipulation, sorting and specific delivery in nano- and micro-engineering problems.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Time-resolved analysis of cavitation induced by CW lasers in absorbing liquids

J.C. Ramirez-San-Juan, E. Rodriguez-Aboytes, A. E. Martinez-Canton, O. Baldovino-Pantaleon, A. Robledo-Martinez, N. Korneev, and R. Ramos-Garcia
Opt. Express 18(9) 8735-8742 (2010)

Trapping and mixing of particles in water using a microbubble attached to an NSOM fiber probe

R. S. Taylor and C. Hnatovsky
Opt. Express 12(5) 916-928 (2004)

Self-action of continuous laser radiation and Pearcey diffraction in a water suspension with light-absorbing particles

O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Yu. Zenkova
Opt. Express 22(3) 2267-2277 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. Baffou and H. Rigneault, “Femtosecond-Pulsed Optical Heating of Gold Nanoparticles,” Phys. Rev. B 84(3), 035415 (2011).
    [Crossref]
  2. Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
    [Crossref] [PubMed]
  3. D. A. Boyd, J. R. Adleman, D. G. Goodwin, and D. Psaltis, “Chemical separations by bubble-assisted interphase mass-transfer,” Anal. Chem. 80(7), 2452–2456 (2008).
    [Crossref] [PubMed]
  4. D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6(11), 2592–2597 (2006).
    [Crossref] [PubMed]
  5. C. Li, Z. Wang, P. I. Wang, Y. Peles, N. Koratkar, and G. P. Peterson, “Nanostructured copper interfaces for enhanced boiling,” Small 4(8), 1084–1088 (2008).
    [Crossref] [PubMed]
  6. E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
    [Crossref] [PubMed]
  7. J. Kao, X. Wang, J. Warren, J. Xu, and D. Attinger, “A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization,” J. Micromech. Microeng. 17(12), 2454–2460 (2007).
    [Crossref]
  8. A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
    [Crossref] [PubMed]
  9. C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
    [Crossref] [PubMed]
  10. P. Marmottant and S. Hilgenfeldt, “A bubble-driven microfluidic transport element for bioengineering,” Proc. Natl. Acad. Sci. U.S.A. 101(26), 9523–9527 (2004).
    [Crossref] [PubMed]
  11. S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-Enabled Photothermal Cancer Therapy: Impending Clinical Impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
    [Crossref] [PubMed]
  12. M. Delcea, N. Sternberg, A. M. Yashchenok, R. Georgieva, H. Bäumler, H. Möhwald, and A. G. Skirtach, “Nanoplasmonics for Dual-Molecule Release through Nanopores in the Membrane of Red Blood Cells,” ACS Nano 6(5), 4169–4180 (2012).
    [Crossref] [PubMed]
  13. P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, “Gold Nanoparticles in Delivery Applications,” Adv. Drug Deliv. Rev. 60(11), 1307–1315 (2008).
    [Crossref] [PubMed]
  14. S. V. Oshemkov, L. P. Dvorkin, and V. Y. Dmitriev, “Trapping and manipulating gas bubbles in water with ultrashort laser pulses at a high repetition rate,” Tech. Phys. Lett. 35(3), 282–285 (2009).
    [Crossref]
  15. V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
    [Crossref] [PubMed]
  16. M. T. Carlson, A. J. Green, and H. H. Richardson, “Superheating water by CW excitation of gold nanodots,” Nano Lett. 12(3), 1534–1537 (2012).
    [Crossref] [PubMed]
  17. I. Akhatov, N. Vakhitova, A. Topolnikov, K. Zakirov, B. Wolfrum, T. Kurz, O. Lindau, R. Mettin, and W. Lauterborn, “Dynamics of laser-induced cavitation bubbles,” Exp. Therm. Fluid Sci. 26(6-7), 731–737 (2002).
    [Crossref]
  18. S. F. Rastopov and A. T. Sukhodol’sky, “Cluster nucleation in the process of CW laser induced thermocavitation,” Phys. Lett. A 149(4), 229–232 (1990).
    [Crossref]
  19. J. C. Ramirez-San-Juan, E. Rodriguez-Aboytes, A. E. Martinez-Canton, O. Baldovino-Pantaleon, A. Robledo-Martinez, N. Korneev, and R. Ramos-Garcia, “Time-resolved analysis of cavitation induced by CW lasers in absorbing liquids,” Opt. Express 18(9), 8735–8742 (2010).
    [Crossref] [PubMed]
  20. J. P. Padilla-Martinez, C. Berrospe-Rodriguez, G. Aguilar, J. C. Ramirez-San-Juan, and R. Ramos-Garcial, “Optic cavitation with CW lasers: A review,” Phys. Fluids 26(12), 122007 (2014).
    [Crossref]
  21. G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
    [Crossref]
  22. O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Yu. Zenkova, “Self-action of continuous laser radiation and Pearcey diffraction in a water suspension with light-absorbing particles,” Opt. Express 22(3), 2267–2277 (2014).
    [Crossref] [PubMed]
  23. C. Mätzler, MATLAB Functions for Mie Scattering and Absorption, Version 2, IAP Research Report, No. 2002–11 (Institut für angewandte Physik, Universität Bern, 2002).
  24. N. V. Tsederberg, Thermal Conductivity of Gases and Liquids (Massachusetts Institute of Technology, 1965).
  25. M. Abramovitz, and I. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, Applied Mathematics Series, 55 1964).
  26. C. Yang, C. Yang, T. Dabros, D. Li, J. Czarnecki, and J. H. Masliyah, “Measurement of the Zeta Potential of Gas Bubbles in Aqueous Solutions by Microelectrophoresis Method,” J. Colloid Interface Sci. 243(1), 128–135 (2001).
    [Crossref]
  27. W. Jia, S. Ren, and B. Hu, “Effect of Water Chemistry on Zeta Potential of Air Bubbles,” Electrochem. Sci. 8, 5828–5837 (2013).
  28. M. Chaplin, “Theory vs Experiment: What is the Surface Charge of Water,” Water 1, 1–28 (2009).
  29. Y. Y. Geguzin, Bubbles (Moscow, Nauka, 1985) (In Russian).
  30. N. B. Vargaftik, B. N. Volkov, and L. D. Voljak, “International tables of the surface tension of water,” J. Phys. Chem. Ref. Data 12(3), 817–820 (1983).
    [Crossref]
  31. A. Y. Bekshaev, “Subwavelength particles in an inhomogeneous light field: optical forces associated with the spin and orbital energy flows,” J. Opt. 15(4), 044004 (2013).
    [Crossref]
  32. G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University, 1967).
  33. Viscopedia: A free encyclopedia for viscosity, “Water,” http://www.viscopedia.com/viscosity-tables/substances/water .
  34. E. Flores-Flores, S. A. Torres-Hurtado, R. Páez, U. Ruiz, G. Beltrán-Pérez, S. L. Neale, J. C. Ramirez-San-Juan, and R. Ramos-García, “Trapping and manipulation of microparticles using laser-induced convection currents and photophoresis,” Biomed. Opt. Express 6(10), 4079–4087 (2015).
    [Crossref] [PubMed]
  35. M.-R. Kalus, N. Bärsch, R. Streubel, E. Gökce, S. Barcikowski, and B. Gökce, “How persistent microbubbles shield nanoparticle productivity in laser synthesis of colloids – quantification of their volume, dwell dynamics, and gas composition,” Phys. Chem. Chem. Phys. 19, Accepted Manuscript (2017)
    [Crossref]

2015 (1)

2014 (3)

J. P. Padilla-Martinez, C. Berrospe-Rodriguez, G. Aguilar, J. C. Ramirez-San-Juan, and R. Ramos-Garcial, “Optic cavitation with CW lasers: A review,” Phys. Fluids 26(12), 122007 (2014).
[Crossref]

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Yu. Zenkova, “Self-action of continuous laser radiation and Pearcey diffraction in a water suspension with light-absorbing particles,” Opt. Express 22(3), 2267–2277 (2014).
[Crossref] [PubMed]

2013 (4)

W. Jia, S. Ren, and B. Hu, “Effect of Water Chemistry on Zeta Potential of Air Bubbles,” Electrochem. Sci. 8, 5828–5837 (2013).

A. Y. Bekshaev, “Subwavelength particles in an inhomogeneous light field: optical forces associated with the spin and orbital energy flows,” J. Opt. 15(4), 044004 (2013).
[Crossref]

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[Crossref] [PubMed]

2012 (3)

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref] [PubMed]

M. Delcea, N. Sternberg, A. M. Yashchenok, R. Georgieva, H. Bäumler, H. Möhwald, and A. G. Skirtach, “Nanoplasmonics for Dual-Molecule Release through Nanopores in the Membrane of Red Blood Cells,” ACS Nano 6(5), 4169–4180 (2012).
[Crossref] [PubMed]

M. T. Carlson, A. J. Green, and H. H. Richardson, “Superheating water by CW excitation of gold nanodots,” Nano Lett. 12(3), 1534–1537 (2012).
[Crossref] [PubMed]

2011 (1)

G. Baffou and H. Rigneault, “Femtosecond-Pulsed Optical Heating of Gold Nanoparticles,” Phys. Rev. B 84(3), 035415 (2011).
[Crossref]

2010 (2)

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

J. C. Ramirez-San-Juan, E. Rodriguez-Aboytes, A. E. Martinez-Canton, O. Baldovino-Pantaleon, A. Robledo-Martinez, N. Korneev, and R. Ramos-Garcia, “Time-resolved analysis of cavitation induced by CW lasers in absorbing liquids,” Opt. Express 18(9), 8735–8742 (2010).
[Crossref] [PubMed]

2009 (2)

M. Chaplin, “Theory vs Experiment: What is the Surface Charge of Water,” Water 1, 1–28 (2009).

S. V. Oshemkov, L. P. Dvorkin, and V. Y. Dmitriev, “Trapping and manipulating gas bubbles in water with ultrashort laser pulses at a high repetition rate,” Tech. Phys. Lett. 35(3), 282–285 (2009).
[Crossref]

2008 (4)

P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, “Gold Nanoparticles in Delivery Applications,” Adv. Drug Deliv. Rev. 60(11), 1307–1315 (2008).
[Crossref] [PubMed]

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-Enabled Photothermal Cancer Therapy: Impending Clinical Impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
[Crossref] [PubMed]

C. Li, Z. Wang, P. I. Wang, Y. Peles, N. Koratkar, and G. P. Peterson, “Nanostructured copper interfaces for enhanced boiling,” Small 4(8), 1084–1088 (2008).
[Crossref] [PubMed]

D. A. Boyd, J. R. Adleman, D. G. Goodwin, and D. Psaltis, “Chemical separations by bubble-assisted interphase mass-transfer,” Anal. Chem. 80(7), 2452–2456 (2008).
[Crossref] [PubMed]

2007 (1)

J. Kao, X. Wang, J. Warren, J. Xu, and D. Attinger, “A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization,” J. Micromech. Microeng. 17(12), 2454–2460 (2007).
[Crossref]

2006 (2)

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6(11), 2592–2597 (2006).
[Crossref] [PubMed]

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

2004 (1)

P. Marmottant and S. Hilgenfeldt, “A bubble-driven microfluidic transport element for bioengineering,” Proc. Natl. Acad. Sci. U.S.A. 101(26), 9523–9527 (2004).
[Crossref] [PubMed]

2002 (1)

I. Akhatov, N. Vakhitova, A. Topolnikov, K. Zakirov, B. Wolfrum, T. Kurz, O. Lindau, R. Mettin, and W. Lauterborn, “Dynamics of laser-induced cavitation bubbles,” Exp. Therm. Fluid Sci. 26(6-7), 731–737 (2002).
[Crossref]

2001 (1)

C. Yang, C. Yang, T. Dabros, D. Li, J. Czarnecki, and J. H. Masliyah, “Measurement of the Zeta Potential of Gas Bubbles in Aqueous Solutions by Microelectrophoresis Method,” J. Colloid Interface Sci. 243(1), 128–135 (2001).
[Crossref]

1990 (1)

S. F. Rastopov and A. T. Sukhodol’sky, “Cluster nucleation in the process of CW laser induced thermocavitation,” Phys. Lett. A 149(4), 229–232 (1990).
[Crossref]

1983 (1)

N. B. Vargaftik, B. N. Volkov, and L. D. Voljak, “International tables of the surface tension of water,” J. Phys. Chem. Ref. Data 12(3), 817–820 (1983).
[Crossref]

Adleman, J. R.

D. A. Boyd, J. R. Adleman, D. G. Goodwin, and D. Psaltis, “Chemical separations by bubble-assisted interphase mass-transfer,” Anal. Chem. 80(7), 2452–2456 (2008).
[Crossref] [PubMed]

Aguilar, G.

J. P. Padilla-Martinez, C. Berrospe-Rodriguez, G. Aguilar, J. C. Ramirez-San-Juan, and R. Ramos-Garcial, “Optic cavitation with CW lasers: A review,” Phys. Fluids 26(12), 122007 (2014).
[Crossref]

Akhatov, I.

I. Akhatov, N. Vakhitova, A. Topolnikov, K. Zakirov, B. Wolfrum, T. Kurz, O. Lindau, R. Mettin, and W. Lauterborn, “Dynamics of laser-induced cavitation bubbles,” Exp. Therm. Fluid Sci. 26(6-7), 731–737 (2002).
[Crossref]

Angelsky, O. V.

Attinger, D.

J. Kao, X. Wang, J. Warren, J. Xu, and D. Attinger, “A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization,” J. Micromech. Microeng. 17(12), 2454–2460 (2007).
[Crossref]

Baffou, G.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

G. Baffou and H. Rigneault, “Femtosecond-Pulsed Optical Heating of Gold Nanoparticles,” Phys. Rev. B 84(3), 035415 (2011).
[Crossref]

Baldovino-Pantaleon, O.

Bäumler, H.

M. Delcea, N. Sternberg, A. M. Yashchenok, R. Georgieva, H. Bäumler, H. Möhwald, and A. G. Skirtach, “Nanoplasmonics for Dual-Molecule Release through Nanopores in the Membrane of Red Blood Cells,” ACS Nano 6(5), 4169–4180 (2012).
[Crossref] [PubMed]

Bekshaev, A. Y.

A. Y. Bekshaev, “Subwavelength particles in an inhomogeneous light field: optical forces associated with the spin and orbital energy flows,” J. Opt. 15(4), 044004 (2013).
[Crossref]

Bekshaev, A. Ya.

Beltrán-Pérez, G.

Berrospe-Rodriguez, C.

J. P. Padilla-Martinez, C. Berrospe-Rodriguez, G. Aguilar, J. C. Ramirez-San-Juan, and R. Ramos-Garcial, “Optic cavitation with CW lasers: A review,” Phys. Fluids 26(12), 122007 (2014).
[Crossref]

Boyd, D. A.

D. A. Boyd, J. R. Adleman, D. G. Goodwin, and D. Psaltis, “Chemical separations by bubble-assisted interphase mass-transfer,” Anal. Chem. 80(7), 2452–2456 (2008).
[Crossref] [PubMed]

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6(11), 2592–2597 (2006).
[Crossref] [PubMed]

Brongersma, M.

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6(11), 2592–2597 (2006).
[Crossref] [PubMed]

Carlson, M. T.

M. T. Carlson, A. J. Green, and H. H. Richardson, “Superheating water by CW excitation of gold nanodots,” Nano Lett. 12(3), 1534–1537 (2012).
[Crossref] [PubMed]

Chaplin, M.

M. Chaplin, “Theory vs Experiment: What is the Surface Charge of Water,” Water 1, 1–28 (2009).

Clare, S. E.

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-Enabled Photothermal Cancer Therapy: Impending Clinical Impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
[Crossref] [PubMed]

Czarnecki, J.

C. Yang, C. Yang, T. Dabros, D. Li, J. Czarnecki, and J. H. Masliyah, “Measurement of the Zeta Potential of Gas Bubbles in Aqueous Solutions by Microelectrophoresis Method,” J. Colloid Interface Sci. 243(1), 128–135 (2001).
[Crossref]

Dabros, T.

C. Yang, C. Yang, T. Dabros, D. Li, J. Czarnecki, and J. H. Masliyah, “Measurement of the Zeta Potential of Gas Bubbles in Aqueous Solutions by Microelectrophoresis Method,” J. Colloid Interface Sci. 243(1), 128–135 (2001).
[Crossref]

Dahmen, C.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

De, M.

P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, “Gold Nanoparticles in Delivery Applications,” Adv. Drug Deliv. Rev. 60(11), 1307–1315 (2008).
[Crossref] [PubMed]

Delcea, M.

M. Delcea, N. Sternberg, A. M. Yashchenok, R. Georgieva, H. Bäumler, H. Möhwald, and A. G. Skirtach, “Nanoplasmonics for Dual-Molecule Release through Nanopores in the Membrane of Red Blood Cells,” ACS Nano 6(5), 4169–4180 (2012).
[Crossref] [PubMed]

Dmitriev, V. Y.

S. V. Oshemkov, L. P. Dvorkin, and V. Y. Dmitriev, “Trapping and manipulating gas bubbles in water with ultrashort laser pulses at a high repetition rate,” Tech. Phys. Lett. 35(3), 282–285 (2009).
[Crossref]

Drezek, R. A.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

Dvorkin, L. P.

S. V. Oshemkov, L. P. Dvorkin, and V. Y. Dmitriev, “Trapping and manipulating gas bubbles in water with ultrashort laser pulses at a high repetition rate,” Tech. Phys. Lett. 35(3), 282–285 (2009).
[Crossref]

El-Naggar, M. Y.

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6(11), 2592–2597 (2006).
[Crossref] [PubMed]

Fang, N.

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[Crossref] [PubMed]

Fang, Z.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Flores-Flores, E.

García de Abajo, F. J.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Georgieva, R.

M. Delcea, N. Sternberg, A. M. Yashchenok, R. Georgieva, H. Bäumler, H. Möhwald, and A. G. Skirtach, “Nanoplasmonics for Dual-Molecule Release through Nanopores in the Membrane of Red Blood Cells,” ACS Nano 6(5), 4169–4180 (2012).
[Crossref] [PubMed]

Ghosh, P.

P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, “Gold Nanoparticles in Delivery Applications,” Adv. Drug Deliv. Rev. 60(11), 1307–1315 (2008).
[Crossref] [PubMed]

Goodwin, D. G.

D. A. Boyd, J. R. Adleman, D. G. Goodwin, and D. Psaltis, “Chemical separations by bubble-assisted interphase mass-transfer,” Anal. Chem. 80(7), 2452–2456 (2008).
[Crossref] [PubMed]

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6(11), 2592–2597 (2006).
[Crossref] [PubMed]

Green, A. J.

M. T. Carlson, A. J. Green, and H. H. Richardson, “Superheating water by CW excitation of gold nanodots,” Nano Lett. 12(3), 1534–1537 (2012).
[Crossref] [PubMed]

Greengard, L.

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6(11), 2592–2597 (2006).
[Crossref] [PubMed]

Hafner, J. H.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

Halas, N. J.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-Enabled Photothermal Cancer Therapy: Impending Clinical Impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
[Crossref] [PubMed]

Han, G.

P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, “Gold Nanoparticles in Delivery Applications,” Adv. Drug Deliv. Rev. 60(11), 1307–1315 (2008).
[Crossref] [PubMed]

Hanson, S. G.

Hashmi, A.

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref] [PubMed]

Heiman, G.

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref] [PubMed]

Hilgenfeldt, S.

P. Marmottant and S. Hilgenfeldt, “A bubble-driven microfluidic transport element for bioengineering,” Proc. Natl. Acad. Sci. U.S.A. 101(26), 9523–9527 (2004).
[Crossref] [PubMed]

Hu, B.

W. Jia, S. Ren, and B. Hu, “Effect of Water Chemistry on Zeta Potential of Air Bubbles,” Electrochem. Sci. 8, 5828–5837 (2013).

Hu, Y.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

Huang, T. J.

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[Crossref] [PubMed]

Jia, W.

W. Jia, S. Ren, and B. Hu, “Effect of Water Chemistry on Zeta Potential of Air Bubbles,” Electrochem. Sci. 8, 5828–5837 (2013).

Kao, J.

J. Kao, X. Wang, J. Warren, J. Xu, and D. Attinger, “A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization,” J. Micromech. Microeng. 17(12), 2454–2460 (2007).
[Crossref]

Kim, C. K.

P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, “Gold Nanoparticles in Delivery Applications,” Adv. Drug Deliv. Rev. 60(11), 1307–1315 (2008).
[Crossref] [PubMed]

Koratkar, N.

C. Li, Z. Wang, P. I. Wang, Y. Peles, N. Koratkar, and G. P. Peterson, “Nanostructured copper interfaces for enhanced boiling,” Small 4(8), 1084–1088 (2008).
[Crossref] [PubMed]

Korneev, N.

Kotaidis, V.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

Kurz, T.

I. Akhatov, N. Vakhitova, A. Topolnikov, K. Zakirov, B. Wolfrum, T. Kurz, O. Lindau, R. Mettin, and W. Lauterborn, “Dynamics of laser-induced cavitation bubbles,” Exp. Therm. Fluid Sci. 26(6-7), 731–737 (2002).
[Crossref]

Lal, S.

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-Enabled Photothermal Cancer Therapy: Impending Clinical Impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
[Crossref] [PubMed]

Lapotko, D. O.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

Latterini, L.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

Lauterborn, W.

I. Akhatov, N. Vakhitova, A. Topolnikov, K. Zakirov, B. Wolfrum, T. Kurz, O. Lindau, R. Mettin, and W. Lauterborn, “Dynamics of laser-induced cavitation bubbles,” Exp. Therm. Fluid Sci. 26(6-7), 731–737 (2002).
[Crossref]

Lee, S.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

Li, C.

C. Li, Z. Wang, P. I. Wang, Y. Peles, N. Koratkar, and G. P. Peterson, “Nanostructured copper interfaces for enhanced boiling,” Small 4(8), 1084–1088 (2008).
[Crossref] [PubMed]

Li, D.

C. Yang, C. Yang, T. Dabros, D. Li, J. Czarnecki, and J. H. Masliyah, “Measurement of the Zeta Potential of Gas Bubbles in Aqueous Solutions by Microelectrophoresis Method,” J. Colloid Interface Sci. 243(1), 128–135 (2001).
[Crossref]

Lindau, O.

I. Akhatov, N. Vakhitova, A. Topolnikov, K. Zakirov, B. Wolfrum, T. Kurz, O. Lindau, R. Mettin, and W. Lauterborn, “Dynamics of laser-induced cavitation bubbles,” Exp. Therm. Fluid Sci. 26(6-7), 731–737 (2002).
[Crossref]

Liu, Y.

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[Crossref] [PubMed]

Lukianova-Hleb, E.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

Maksimyak, A. P.

Maksimyak, P. P.

Marmottant, P.

P. Marmottant and S. Hilgenfeldt, “A bubble-driven microfluidic transport element for bioengineering,” Proc. Natl. Acad. Sci. U.S.A. 101(26), 9523–9527 (2004).
[Crossref] [PubMed]

Martinez-Canton, A. E.

Masliyah, J. H.

C. Yang, C. Yang, T. Dabros, D. Li, J. Czarnecki, and J. H. Masliyah, “Measurement of the Zeta Potential of Gas Bubbles in Aqueous Solutions by Microelectrophoresis Method,” J. Colloid Interface Sci. 243(1), 128–135 (2001).
[Crossref]

Mettin, R.

I. Akhatov, N. Vakhitova, A. Topolnikov, K. Zakirov, B. Wolfrum, T. Kurz, O. Lindau, R. Mettin, and W. Lauterborn, “Dynamics of laser-induced cavitation bubbles,” Exp. Therm. Fluid Sci. 26(6-7), 731–737 (2002).
[Crossref]

Möhwald, H.

M. Delcea, N. Sternberg, A. M. Yashchenok, R. Georgieva, H. Bäumler, H. Möhwald, and A. G. Skirtach, “Nanoplasmonics for Dual-Molecule Release through Nanopores in the Membrane of Red Blood Cells,” ACS Nano 6(5), 4169–4180 (2012).
[Crossref] [PubMed]

Monneret, S.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

Neale, S. L.

Neumann, O.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Nordlander, P.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Oshemkov, S. V.

S. V. Oshemkov, L. P. Dvorkin, and V. Y. Dmitriev, “Trapping and manipulating gas bubbles in water with ultrashort laser pulses at a high repetition rate,” Tech. Phys. Lett. 35(3), 282–285 (2009).
[Crossref]

Padilla-Martinez, J. P.

J. P. Padilla-Martinez, C. Berrospe-Rodriguez, G. Aguilar, J. C. Ramirez-San-Juan, and R. Ramos-Garcial, “Optic cavitation with CW lasers: A review,” Phys. Fluids 26(12), 122007 (2014).
[Crossref]

Páez, R.

Peles, Y.

C. Li, Z. Wang, P. I. Wang, Y. Peles, N. Koratkar, and G. P. Peterson, “Nanostructured copper interfaces for enhanced boiling,” Small 4(8), 1084–1088 (2008).
[Crossref] [PubMed]

Peterson, G. P.

C. Li, Z. Wang, P. I. Wang, Y. Peles, N. Koratkar, and G. P. Peterson, “Nanostructured copper interfaces for enhanced boiling,” Small 4(8), 1084–1088 (2008).
[Crossref] [PubMed]

Plech, A.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

Polleux, J.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

Polman, A.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Psaltis, D.

D. A. Boyd, J. R. Adleman, D. G. Goodwin, and D. Psaltis, “Chemical separations by bubble-assisted interphase mass-transfer,” Anal. Chem. 80(7), 2452–2456 (2008).
[Crossref] [PubMed]

Ramirez-San-Juan, J. C.

Ramos-Garcia, R.

Ramos-García, R.

Ramos-Garcial, R.

J. P. Padilla-Martinez, C. Berrospe-Rodriguez, G. Aguilar, J. C. Ramirez-San-Juan, and R. Ramos-Garcial, “Optic cavitation with CW lasers: A review,” Phys. Fluids 26(12), 122007 (2014).
[Crossref]

Rastopov, S. F.

S. F. Rastopov and A. T. Sukhodol’sky, “Cluster nucleation in the process of CW laser induced thermocavitation,” Phys. Lett. A 149(4), 229–232 (1990).
[Crossref]

Reilly-Collette, M.

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref] [PubMed]

Ren, S.

W. Jia, S. Ren, and B. Hu, “Effect of Water Chemistry on Zeta Potential of Air Bubbles,” Electrochem. Sci. 8, 5828–5837 (2013).

Richardson, H. H.

M. T. Carlson, A. J. Green, and H. H. Richardson, “Superheating water by CW excitation of gold nanodots,” Nano Lett. 12(3), 1534–1537 (2012).
[Crossref] [PubMed]

Rigneault, H.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

G. Baffou and H. Rigneault, “Femtosecond-Pulsed Optical Heating of Gold Nanoparticles,” Phys. Rev. B 84(3), 035415 (2011).
[Crossref]

Robledo-Martinez, A.

Rodriguez-Aboytes, E.

Rotello, V. M.

P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, “Gold Nanoparticles in Delivery Applications,” Adv. Drug Deliv. Rev. 60(11), 1307–1315 (2008).
[Crossref] [PubMed]

Ruiz, U.

Skirtach, A. G.

M. Delcea, N. Sternberg, A. M. Yashchenok, R. Georgieva, H. Bäumler, H. Möhwald, and A. G. Skirtach, “Nanoplasmonics for Dual-Molecule Release through Nanopores in the Membrane of Red Blood Cells,” ACS Nano 6(5), 4169–4180 (2012).
[Crossref] [PubMed]

Springer, F.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

Sternberg, N.

M. Delcea, N. Sternberg, A. M. Yashchenok, R. Georgieva, H. Bäumler, H. Möhwald, and A. G. Skirtach, “Nanoplasmonics for Dual-Molecule Release through Nanopores in the Membrane of Red Blood Cells,” ACS Nano 6(5), 4169–4180 (2012).
[Crossref] [PubMed]

Sukhodol’sky, A. T.

S. F. Rastopov and A. T. Sukhodol’sky, “Cluster nucleation in the process of CW laser induced thermocavitation,” Phys. Lett. A 149(4), 229–232 (1990).
[Crossref]

Tarpani, L.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

Topolnikov, A.

I. Akhatov, N. Vakhitova, A. Topolnikov, K. Zakirov, B. Wolfrum, T. Kurz, O. Lindau, R. Mettin, and W. Lauterborn, “Dynamics of laser-induced cavitation bubbles,” Exp. Therm. Fluid Sci. 26(6-7), 731–737 (2002).
[Crossref]

Torres-Hurtado, S. A.

Vakhitova, N.

I. Akhatov, N. Vakhitova, A. Topolnikov, K. Zakirov, B. Wolfrum, T. Kurz, O. Lindau, R. Mettin, and W. Lauterborn, “Dynamics of laser-induced cavitation bubbles,” Exp. Therm. Fluid Sci. 26(6-7), 731–737 (2002).
[Crossref]

Vargaftik, N. B.

N. B. Vargaftik, B. N. Volkov, and L. D. Voljak, “International tables of the surface tension of water,” J. Phys. Chem. Ref. Data 12(3), 817–820 (1983).
[Crossref]

Voljak, L. D.

N. B. Vargaftik, B. N. Volkov, and L. D. Voljak, “International tables of the surface tension of water,” J. Phys. Chem. Ref. Data 12(3), 817–820 (1983).
[Crossref]

Volkov, B. N.

N. B. Vargaftik, B. N. Volkov, and L. D. Voljak, “International tables of the surface tension of water,” J. Phys. Chem. Ref. Data 12(3), 817–820 (1983).
[Crossref]

von Plessen, G.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

Wang, P. I.

C. Li, Z. Wang, P. I. Wang, Y. Peles, N. Koratkar, and G. P. Peterson, “Nanostructured copper interfaces for enhanced boiling,” Small 4(8), 1084–1088 (2008).
[Crossref] [PubMed]

Wang, X.

J. Kao, X. Wang, J. Warren, J. Xu, and D. Attinger, “A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization,” J. Micromech. Microeng. 17(12), 2454–2460 (2007).
[Crossref]

Wang, Z.

C. Li, Z. Wang, P. I. Wang, Y. Peles, N. Koratkar, and G. P. Peterson, “Nanostructured copper interfaces for enhanced boiling,” Small 4(8), 1084–1088 (2008).
[Crossref] [PubMed]

Warren, J.

J. Kao, X. Wang, J. Warren, J. Xu, and D. Attinger, “A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization,” J. Micromech. Microeng. 17(12), 2454–2460 (2007).
[Crossref]

Wolfrum, B.

I. Akhatov, N. Vakhitova, A. Topolnikov, K. Zakirov, B. Wolfrum, T. Kurz, O. Lindau, R. Mettin, and W. Lauterborn, “Dynamics of laser-induced cavitation bubbles,” Exp. Therm. Fluid Sci. 26(6-7), 731–737 (2002).
[Crossref]

Xu, J.

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref] [PubMed]

J. Kao, X. Wang, J. Warren, J. Xu, and D. Attinger, “A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization,” J. Micromech. Microeng. 17(12), 2454–2460 (2007).
[Crossref]

Yang, C.

C. Yang, C. Yang, T. Dabros, D. Li, J. Czarnecki, and J. H. Masliyah, “Measurement of the Zeta Potential of Gas Bubbles in Aqueous Solutions by Microelectrophoresis Method,” J. Colloid Interface Sci. 243(1), 128–135 (2001).
[Crossref]

C. Yang, C. Yang, T. Dabros, D. Li, J. Czarnecki, and J. H. Masliyah, “Measurement of the Zeta Potential of Gas Bubbles in Aqueous Solutions by Microelectrophoresis Method,” J. Colloid Interface Sci. 243(1), 128–135 (2001).
[Crossref]

Yashchenok, A. M.

M. Delcea, N. Sternberg, A. M. Yashchenok, R. Georgieva, H. Bäumler, H. Möhwald, and A. G. Skirtach, “Nanoplasmonics for Dual-Molecule Release through Nanopores in the Membrane of Red Blood Cells,” ACS Nano 6(5), 4169–4180 (2012).
[Crossref] [PubMed]

Yu, G.

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref] [PubMed]

Zakirov, K.

I. Akhatov, N. Vakhitova, A. Topolnikov, K. Zakirov, B. Wolfrum, T. Kurz, O. Lindau, R. Mettin, and W. Lauterborn, “Dynamics of laser-induced cavitation bubbles,” Exp. Therm. Fluid Sci. 26(6-7), 731–737 (2002).
[Crossref]

Zenkova, C. Yu.

Zhao, C.

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[Crossref] [PubMed]

Zhao, Y.

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[Crossref] [PubMed]

Zhen, Y. R.

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-Enabled Photothermal Cancer Therapy: Impending Clinical Impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
[Crossref] [PubMed]

ACS Nano (2)

M. Delcea, N. Sternberg, A. M. Yashchenok, R. Georgieva, H. Bäumler, H. Möhwald, and A. G. Skirtach, “Nanoplasmonics for Dual-Molecule Release through Nanopores in the Membrane of Red Blood Cells,” ACS Nano 6(5), 4169–4180 (2012).
[Crossref] [PubMed]

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref] [PubMed]

Adv. Drug Deliv. Rev. (1)

P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, “Gold Nanoparticles in Delivery Applications,” Adv. Drug Deliv. Rev. 60(11), 1307–1315 (2008).
[Crossref] [PubMed]

Anal. Chem. (1)

D. A. Boyd, J. R. Adleman, D. G. Goodwin, and D. Psaltis, “Chemical separations by bubble-assisted interphase mass-transfer,” Anal. Chem. 80(7), 2452–2456 (2008).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Electrochem. Sci. (1)

W. Jia, S. Ren, and B. Hu, “Effect of Water Chemistry on Zeta Potential of Air Bubbles,” Electrochem. Sci. 8, 5828–5837 (2013).

Exp. Therm. Fluid Sci. (1)

I. Akhatov, N. Vakhitova, A. Topolnikov, K. Zakirov, B. Wolfrum, T. Kurz, O. Lindau, R. Mettin, and W. Lauterborn, “Dynamics of laser-induced cavitation bubbles,” Exp. Therm. Fluid Sci. 26(6-7), 731–737 (2002).
[Crossref]

J. Chem. Phys. (1)

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

J. Colloid Interface Sci. (1)

C. Yang, C. Yang, T. Dabros, D. Li, J. Czarnecki, and J. H. Masliyah, “Measurement of the Zeta Potential of Gas Bubbles in Aqueous Solutions by Microelectrophoresis Method,” J. Colloid Interface Sci. 243(1), 128–135 (2001).
[Crossref]

J. Micromech. Microeng. (1)

J. Kao, X. Wang, J. Warren, J. Xu, and D. Attinger, “A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization,” J. Micromech. Microeng. 17(12), 2454–2460 (2007).
[Crossref]

J. Opt. (1)

A. Y. Bekshaev, “Subwavelength particles in an inhomogeneous light field: optical forces associated with the spin and orbital energy flows,” J. Opt. 15(4), 044004 (2013).
[Crossref]

J. Phys. Chem. C (1)

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

J. Phys. Chem. Ref. Data (1)

N. B. Vargaftik, B. N. Volkov, and L. D. Voljak, “International tables of the surface tension of water,” J. Phys. Chem. Ref. Data 12(3), 817–820 (1983).
[Crossref]

Lab Chip (1)

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref] [PubMed]

Nano Lett. (3)

D. A. Boyd, L. Greengard, M. Brongersma, M. Y. El-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Lett. 6(11), 2592–2597 (2006).
[Crossref] [PubMed]

Z. Fang, Y. R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[Crossref] [PubMed]

M. T. Carlson, A. J. Green, and H. H. Richardson, “Superheating water by CW excitation of gold nanodots,” Nano Lett. 12(3), 1534–1537 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Fluids (1)

J. P. Padilla-Martinez, C. Berrospe-Rodriguez, G. Aguilar, J. C. Ramirez-San-Juan, and R. Ramos-Garcial, “Optic cavitation with CW lasers: A review,” Phys. Fluids 26(12), 122007 (2014).
[Crossref]

Phys. Lett. A (1)

S. F. Rastopov and A. T. Sukhodol’sky, “Cluster nucleation in the process of CW laser induced thermocavitation,” Phys. Lett. A 149(4), 229–232 (1990).
[Crossref]

Phys. Rev. B (1)

G. Baffou and H. Rigneault, “Femtosecond-Pulsed Optical Heating of Gold Nanoparticles,” Phys. Rev. B 84(3), 035415 (2011).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

P. Marmottant and S. Hilgenfeldt, “A bubble-driven microfluidic transport element for bioengineering,” Proc. Natl. Acad. Sci. U.S.A. 101(26), 9523–9527 (2004).
[Crossref] [PubMed]

Small (1)

C. Li, Z. Wang, P. I. Wang, Y. Peles, N. Koratkar, and G. P. Peterson, “Nanostructured copper interfaces for enhanced boiling,” Small 4(8), 1084–1088 (2008).
[Crossref] [PubMed]

Tech. Phys. Lett. (1)

S. V. Oshemkov, L. P. Dvorkin, and V. Y. Dmitriev, “Trapping and manipulating gas bubbles in water with ultrashort laser pulses at a high repetition rate,” Tech. Phys. Lett. 35(3), 282–285 (2009).
[Crossref]

Water (1)

M. Chaplin, “Theory vs Experiment: What is the Surface Charge of Water,” Water 1, 1–28 (2009).

Other (7)

Y. Y. Geguzin, Bubbles (Moscow, Nauka, 1985) (In Russian).

C. Mätzler, MATLAB Functions for Mie Scattering and Absorption, Version 2, IAP Research Report, No. 2002–11 (Institut für angewandte Physik, Universität Bern, 2002).

N. V. Tsederberg, Thermal Conductivity of Gases and Liquids (Massachusetts Institute of Technology, 1965).

M. Abramovitz, and I. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, Applied Mathematics Series, 55 1964).

G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University, 1967).

Viscopedia: A free encyclopedia for viscosity, “Water,” http://www.viscopedia.com/viscosity-tables/substances/water .

M.-R. Kalus, N. Bärsch, R. Streubel, E. Gökce, S. Barcikowski, and B. Gökce, “How persistent microbubbles shield nanoparticle productivity in laser synthesis of colloids – quantification of their volume, dwell dynamics, and gas composition,” Phys. Chem. Chem. Phys. 19, Accepted Manuscript (2017)
[Crossref]

Supplementary Material (2)

NameDescription
» Visualization 1: MP4 (4472 KB)      Visualization 1
» Visualization 2: MP4 (2758 KB)      Visualization 2

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The experimental setup: (1) IR laser, (2) objective, (3) cuvette with the water suspension of absorbing nanoparticles, (4) spectral filter to stop the IR radiation, (5) CCD camera, (6) white-light source for visible illumination.

Fig. 2
Fig. 2

Temperature distribution in the near-axial region of cuvette 3 of Fig. 1 calculated via Eq. (10) under conditions (1) and (6) for D = 10 mm, κ ≈0.6 W/(m⋅K) and different values of the incident laser power Q0 indicated near the curves. Left scale: local temperature excess with respect to its value at the cuvette wall (r = D/2); right scale: true local temperature.

Fig. 3
Fig. 3

(Visualization 1). View of the ensemble of bubbles 30 seconds after the generation by the IR beam of power 2.2 W. Note the overall displacement of the bubbles with respect to the bright spot, which is caused by the convective water flow schematically indicated by the arrow.

Fig. 4
Fig. 4

Consecutive views of the growing bubble at the IR radiation power Q0 = 2.0 W; the inserts indicate the time interval since the bubble birth.

Fig. 5
Fig. 5

Time dependencies of the bubble sizes for different IR laser powers indicated in the insert (cf. Fig. 2).

Fig. 6
Fig. 6

Synchronous growth of four bubbles at the IR radiation power 1.6 W.

Fig. 7
Fig. 7

(Visualization 2). The ensemble of bubbles with two scales, 15 mm and 40 mm.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

2b100 µm
k b 2 ~16 mm,
n w = 1.33,
σ ext = 0.587σ, σ abs = 0.543σ,
σ=π a p 2 = 3.14×1 0 10 cm 2 .
α= 0.60 cm 1 .
N= α σ abs 0.35 10 10 cm 3 .
κ 2 T+F=0,
F( r )=αI( r )= α Q 0 π b 2 exp( r 2 b 2 ),
ΔT( r )T( r ) T D = α Q 0 4πκ [ Ei( r 2 b 2 )Ei( D 2 4 b 2 )2ln( 2r D ) ],
F ST =π R 2 dγ dT T,
F EG =2π R 3 1ε 1+2ε W, | F EG |= 4 n w c R 3 b 3 1ε 1+2ε Q 0 [ r b exp( r 2 b 2 ) ],
F S =6πRηv,

Metrics