Abstract

We propose and design a kind of heterogeneous rod-assisted and trench-assisted multi-core fiber (Hetero-RA-TA-MCF) with 32 cores arranged in square-lattice structure (SLS), and then we introduce the design method for Hetero-RA-TA-MCF. Simulation results show that the Hetero-RA-TA-32-Core-Fiber achieves average effective area (Aeff) of about 74 μm2, low crosstalk (XT) of about −31 dB/100km, threshold value of bending radius (Rpk) of 7.0 cm, relative core multiplicity factor (RCMF) of 8.74, and cable cutoff wavelength (λcc) of less than 1.53 μm.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Heterogeneous trench-assisted few-mode multi-core fiber with graded-index profile and square-lattice layout for low differential mode delay

Jiajing Tu, Kunimasa Saitoh, Yoshimichi Amma, Katsuhiro Takenaga, and Shoichiro Matsuo
Opt. Express 23(14) 17783-17792 (2015)

Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber

Jiajing Tu, Kunimasa Saitoh, Masanori Koshiba, Katsuhiro Takenaga, and Shoichiro Matsuo
Opt. Express 20(14) 15157-15170 (2012)

Heterogeneous trench-assisted few-mode multi-core fiber with low differential mode delay

Jiajing Tu, Kunimasa Saitoh, Katsuhiro Takenaga, and Shoichiro Matsuo
Opt. Express 22(4) 4329-4341 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. Qian, M. F. Huang, E. Ip, Y. K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370×294-Gb/s) PDM-128-QAM-OFDM transmission over 3 × 55-km SSMF using pilot-based phase noise mitigation,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB5.
  2. A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1Tb/s (432×171Gb/s) C-band extended L-band transmission over 240 km Using PDM-16-QAM modulation and digital coherent detection,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper PDPB7.
    [Crossref]
  3. J. Cai, Y. Cai, C. Davidson, A. Lucero, H. Zhang, D. G. Foursa, O. V. Sinkin, W. W. Patterson, A. Pilipetskii, G. Mohs, and N. Bergano, “20 Tbit/s capacity transmission over 6,860 km,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB4.
  4. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  5. T. Morioka, “New generation optical infrastructure technologies: ‘EXAT initiative’ towards 2020 and beyond,” in Proceedings of 14th OptoElectronics and Communications Conference (Institute of Electrical and Electronics Engineers, 2009), paper FT4.
    [Crossref]
  6. G. Bosco, P. Poggiolini, A. Carena, V. Curri, and F. Forghieri, “Analytical results on channel capacity in uncompensated optical links with coherent detection,” Opt. Express 19(26), B440–B449 (2011).
    [Crossref] [PubMed]
  7. A. Mecozzi and R.-J. Essiambre, “Nonlinear Shannon limit in pseudoliniear coherent systems,” J. Lightwave Technol. 30(12), 2011–2024 (2012).
    [Crossref]
  8. J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Optimized design method for bend-insensitive heterogeneous trench-assisted multi-core fiber with ultra-low crosstalk and high core density,” J. Lightwave Technol. 31(15), 2590–2598 (2013).
    [Crossref]
  9. J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber,” Opt. Express 20(14), 15157–15170 (2012).
    [Crossref] [PubMed]
  10. F. Ye, J. Tu, K. Saitoh, and T. Morioka, “Simple analytical expression for crosstalk estimation in homogeneous trench-assisted multi-core fibers,” Opt. Express 22(19), 23007–23018 (2014).
    [Crossref] [PubMed]
  11. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express 19(17), 16576–16592 (2011).
    [Crossref] [PubMed]
  12. K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by trench-assisted multi-core fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWJ4.
    [Crossref]
  13. K. Saitoh, T. Matsui, T. Sakamoto, M. Koshiba, and S. Tomita, “Multi-core hole-assisted fibers for high core density space division multiplexing,” in Proceedings of 15th OptoElectronics and Communications Conference (Institute of Electrical and Electronics Engineers, 2010), paper 7C2–1.
  14. B. Yao, K. Ohsono, N. Shiina, K. Fukuzato, A. Hongo, E. H. Sekiya, and K. Saito, “Reduction of crosstalk by hole-walled multi-core fibers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper OM2D5.
    [Crossref]
  15. M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
    [Crossref]
  16. J. Tu, K. Saitoh, K. Takenaga, and S. Matsuo, “Heterogeneous trench-assisted few-mode multi-core fiber with low differential mode delay,” Opt. Express 22(4), 4329–4341 (2014).
    [Crossref] [PubMed]
  17. Y. Amma, Y. Sasaki, K. Takenaga, S. Matsuo, J. Tu, K. Saitoh, M. Koshiba, T. Morioka, and Y. Miyamoto, “High-density multicore fiber with heterogeneous core arrangement,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2015), paper Th4C. 4.
    [Crossref]
  18. K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightwave Technol. 34(1), 55–66 (2016).
    [Crossref]
  19. M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photonics J. 4(5), 1987–1995 (2012).
    [Crossref]
  20. S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, K. Saitoh, and M. Koshiba, “Crosstalk behavior of cores in multi-core fiber under bent condition,” IEICE Electron. Express 8(6), 385–390 (2011).
    [Crossref]
  21. Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Saitoh, and M. Koshiba, “Investigation of crosstalk dependencies on bending radius of heterogeneous multicore fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2013), paper OTh3K. 3.
    [Crossref]
  22. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
    [Crossref]
  23. J. Tu, K. Long, and K. Saitoh, “An efficient core selection method for heterogeneous trench-assisted multi-core fiber,” IEEE Photonics Technol. Lett. 28(7), 810–813 (2016).
    [Crossref]
  24. K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19(26), B543–B550 (2011).
    [Crossref] [PubMed]
  25. S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett. 36(23), 4626–4628 (2011).
    [Crossref] [PubMed]
  26. S. Matsuo, Y. Sasaki, T. Akamatsu, I. Ishida, K. Takenaga, K. Okuyama, K. Saitoh, and M. Kosihba, “12-core fiber with one ring structure for extremely large capacity transmission,” Opt. Express 20(27), 28398–28408 (2012).
    [Crossref] [PubMed]
  27. A. Sano, H. Takara, T. Kobayashi, H. Kawakami, H. Kishikawa, T. Nakagawa, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, M. Nagatani, T. Mori, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, M. Yamada, H. Masuda, and T. Morioka, “409-Tb/s + 409-Tb/s crosstalk suppressed bidirectional MCF transmission over 450 km using propagation-direction interleaving,” Opt. Express 21(14), 16777–16783 (2013).
    [Crossref] [PubMed]
  28. J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber,” J. Lightwave Technol. 31(4), 554–562 (2013).
    [Crossref]
  29. J. Sakaguchi, W. Klaus, B. J. Puttnam, J. M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tsuchida, K. Maeda, M. Tadakuma, K. Imamura, R. Sugizaki, T. Kobayashi, Y. Tottori, M. Watanabe, and R. V. Jensen, “19-core MCF transmission system using EDFA with shared core pumping coupled via free-space optics,” Opt. Express 22(1), 90–95 (2014).
    [Crossref] [PubMed]
  30. S. Matsuo, K. Takenaga, Y. Sasaki, Y. Amma, S. Saito, K. Saitoh, T. Matsui, K. Nakajima, T. Mizuno, H. Takara, Y. Miyamoto, and T. Morioka, “High-spatial-multiplicity multicore fibers for future dense space-division-multiplexing systems,” J. Lightwave Technol. 34(6), 1464–1475 (2016).
    [Crossref]

2016 (3)

2014 (3)

2013 (4)

2012 (4)

2011 (5)

2009 (1)

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[Crossref]

2002 (1)

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[Crossref]

Abe, Y.

Akamatsu, T.

Amma, Y.

Arakawa, Y.

Awaji, Y.

Bosco, G.

Carena, A.

Curri, V.

Essiambre, R.-J.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Forghieri, F.

Hayashi, T.

Imamura, K.

Inaba, H.

Ishida, I.

Jensen, R. V.

Kanno, A.

Kawakami, H.

Kawanishi, T.

Kishikawa, H.

Klaus, W.

Kobayashi, T.

Kokubun, Y.

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[Crossref]

Koshiba, M.

A. Sano, H. Takara, T. Kobayashi, H. Kawakami, H. Kishikawa, T. Nakagawa, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, M. Nagatani, T. Mori, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, M. Yamada, H. Masuda, and T. Morioka, “409-Tb/s + 409-Tb/s crosstalk suppressed bidirectional MCF transmission over 450 km using propagation-direction interleaving,” Opt. Express 21(14), 16777–16783 (2013).
[Crossref] [PubMed]

J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Optimized design method for bend-insensitive heterogeneous trench-assisted multi-core fiber with ultra-low crosstalk and high core density,” J. Lightwave Technol. 31(15), 2590–2598 (2013).
[Crossref]

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photonics J. 4(5), 1987–1995 (2012).
[Crossref]

J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber,” Opt. Express 20(14), 15157–15170 (2012).
[Crossref] [PubMed]

S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett. 36(23), 4626–4628 (2011).
[Crossref] [PubMed]

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19(26), B543–B550 (2011).
[Crossref] [PubMed]

S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, K. Saitoh, and M. Koshiba, “Crosstalk behavior of cores in multi-core fiber under bent condition,” IEICE Electron. Express 8(6), 385–390 (2011).
[Crossref]

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[Crossref]

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[Crossref]

Kosihba, M.

Long, K.

J. Tu, K. Long, and K. Saitoh, “An efficient core selection method for heterogeneous trench-assisted multi-core fiber,” IEEE Photonics Technol. Lett. 28(7), 810–813 (2016).
[Crossref]

Maeda, K.

Masuda, H.

Matsui, T.

Matsuo, S.

K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightwave Technol. 34(1), 55–66 (2016).
[Crossref]

S. Matsuo, K. Takenaga, Y. Sasaki, Y. Amma, S. Saito, K. Saitoh, T. Matsui, K. Nakajima, T. Mizuno, H. Takara, Y. Miyamoto, and T. Morioka, “High-spatial-multiplicity multicore fibers for future dense space-division-multiplexing systems,” J. Lightwave Technol. 34(6), 1464–1475 (2016).
[Crossref]

J. Tu, K. Saitoh, K. Takenaga, and S. Matsuo, “Heterogeneous trench-assisted few-mode multi-core fiber with low differential mode delay,” Opt. Express 22(4), 4329–4341 (2014).
[Crossref] [PubMed]

J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Optimized design method for bend-insensitive heterogeneous trench-assisted multi-core fiber with ultra-low crosstalk and high core density,” J. Lightwave Technol. 31(15), 2590–2598 (2013).
[Crossref]

A. Sano, H. Takara, T. Kobayashi, H. Kawakami, H. Kishikawa, T. Nakagawa, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, M. Nagatani, T. Mori, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, M. Yamada, H. Masuda, and T. Morioka, “409-Tb/s + 409-Tb/s crosstalk suppressed bidirectional MCF transmission over 450 km using propagation-direction interleaving,” Opt. Express 21(14), 16777–16783 (2013).
[Crossref] [PubMed]

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photonics J. 4(5), 1987–1995 (2012).
[Crossref]

S. Matsuo, Y. Sasaki, T. Akamatsu, I. Ishida, K. Takenaga, K. Okuyama, K. Saitoh, and M. Kosihba, “12-core fiber with one ring structure for extremely large capacity transmission,” Opt. Express 20(27), 28398–28408 (2012).
[Crossref] [PubMed]

J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber,” Opt. Express 20(14), 15157–15170 (2012).
[Crossref] [PubMed]

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19(26), B543–B550 (2011).
[Crossref] [PubMed]

S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, K. Saitoh, and M. Koshiba, “Crosstalk behavior of cores in multi-core fiber under bent condition,” IEICE Electron. Express 8(6), 385–390 (2011).
[Crossref]

S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett. 36(23), 4626–4628 (2011).
[Crossref] [PubMed]

Mecozzi, A.

Mendinueta, J. M. D.

Miyamoto, Y.

Mizuno, T.

Mori, T.

Morioka, T.

Mukasa, K.

Nagatani, M.

Nakagawa, T.

Nakajima, K.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Okuyama, K.

Ono, H.

Poggiolini, P.

Puttnam, B. J.

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Saito, S.

Saitoh, K.

S. Matsuo, K. Takenaga, Y. Sasaki, Y. Amma, S. Saito, K. Saitoh, T. Matsui, K. Nakajima, T. Mizuno, H. Takara, Y. Miyamoto, and T. Morioka, “High-spatial-multiplicity multicore fibers for future dense space-division-multiplexing systems,” J. Lightwave Technol. 34(6), 1464–1475 (2016).
[Crossref]

K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightwave Technol. 34(1), 55–66 (2016).
[Crossref]

J. Tu, K. Long, and K. Saitoh, “An efficient core selection method for heterogeneous trench-assisted multi-core fiber,” IEEE Photonics Technol. Lett. 28(7), 810–813 (2016).
[Crossref]

F. Ye, J. Tu, K. Saitoh, and T. Morioka, “Simple analytical expression for crosstalk estimation in homogeneous trench-assisted multi-core fibers,” Opt. Express 22(19), 23007–23018 (2014).
[Crossref] [PubMed]

J. Tu, K. Saitoh, K. Takenaga, and S. Matsuo, “Heterogeneous trench-assisted few-mode multi-core fiber with low differential mode delay,” Opt. Express 22(4), 4329–4341 (2014).
[Crossref] [PubMed]

J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Optimized design method for bend-insensitive heterogeneous trench-assisted multi-core fiber with ultra-low crosstalk and high core density,” J. Lightwave Technol. 31(15), 2590–2598 (2013).
[Crossref]

A. Sano, H. Takara, T. Kobayashi, H. Kawakami, H. Kishikawa, T. Nakagawa, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, M. Nagatani, T. Mori, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, M. Yamada, H. Masuda, and T. Morioka, “409-Tb/s + 409-Tb/s crosstalk suppressed bidirectional MCF transmission over 450 km using propagation-direction interleaving,” Opt. Express 21(14), 16777–16783 (2013).
[Crossref] [PubMed]

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photonics J. 4(5), 1987–1995 (2012).
[Crossref]

S. Matsuo, Y. Sasaki, T. Akamatsu, I. Ishida, K. Takenaga, K. Okuyama, K. Saitoh, and M. Kosihba, “12-core fiber with one ring structure for extremely large capacity transmission,” Opt. Express 20(27), 28398–28408 (2012).
[Crossref] [PubMed]

J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber,” Opt. Express 20(14), 15157–15170 (2012).
[Crossref] [PubMed]

S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett. 36(23), 4626–4628 (2011).
[Crossref] [PubMed]

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19(26), B543–B550 (2011).
[Crossref] [PubMed]

S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, K. Saitoh, and M. Koshiba, “Crosstalk behavior of cores in multi-core fiber under bent condition,” IEICE Electron. Express 8(6), 385–390 (2011).
[Crossref]

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[Crossref]

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[Crossref]

Sakaguchi, J.

Sano, A.

Sasaki, T.

Sasaki, Y.

S. Matsuo, K. Takenaga, Y. Sasaki, Y. Amma, S. Saito, K. Saitoh, T. Matsui, K. Nakajima, T. Mizuno, H. Takara, Y. Miyamoto, and T. Morioka, “High-spatial-multiplicity multicore fibers for future dense space-division-multiplexing systems,” J. Lightwave Technol. 34(6), 1464–1475 (2016).
[Crossref]

A. Sano, H. Takara, T. Kobayashi, H. Kawakami, H. Kishikawa, T. Nakagawa, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, M. Nagatani, T. Mori, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, M. Yamada, H. Masuda, and T. Morioka, “409-Tb/s + 409-Tb/s crosstalk suppressed bidirectional MCF transmission over 450 km using propagation-direction interleaving,” Opt. Express 21(14), 16777–16783 (2013).
[Crossref] [PubMed]

S. Matsuo, Y. Sasaki, T. Akamatsu, I. Ishida, K. Takenaga, K. Okuyama, K. Saitoh, and M. Kosihba, “12-core fiber with one ring structure for extremely large capacity transmission,” Opt. Express 20(27), 28398–28408 (2012).
[Crossref] [PubMed]

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19(26), B543–B550 (2011).
[Crossref] [PubMed]

S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett. 36(23), 4626–4628 (2011).
[Crossref] [PubMed]

S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, K. Saitoh, and M. Koshiba, “Crosstalk behavior of cores in multi-core fiber under bent condition,” IEICE Electron. Express 8(6), 385–390 (2011).
[Crossref]

Sasaoka, E.

Shikama, K.

Shimakawa, O.

Sugizaki, R.

Tadakuma, M.

Takara, H.

Takenaga, K.

S. Matsuo, K. Takenaga, Y. Sasaki, Y. Amma, S. Saito, K. Saitoh, T. Matsui, K. Nakajima, T. Mizuno, H. Takara, Y. Miyamoto, and T. Morioka, “High-spatial-multiplicity multicore fibers for future dense space-division-multiplexing systems,” J. Lightwave Technol. 34(6), 1464–1475 (2016).
[Crossref]

J. Tu, K. Saitoh, K. Takenaga, and S. Matsuo, “Heterogeneous trench-assisted few-mode multi-core fiber with low differential mode delay,” Opt. Express 22(4), 4329–4341 (2014).
[Crossref] [PubMed]

A. Sano, H. Takara, T. Kobayashi, H. Kawakami, H. Kishikawa, T. Nakagawa, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, M. Nagatani, T. Mori, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, M. Yamada, H. Masuda, and T. Morioka, “409-Tb/s + 409-Tb/s crosstalk suppressed bidirectional MCF transmission over 450 km using propagation-direction interleaving,” Opt. Express 21(14), 16777–16783 (2013).
[Crossref] [PubMed]

J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Optimized design method for bend-insensitive heterogeneous trench-assisted multi-core fiber with ultra-low crosstalk and high core density,” J. Lightwave Technol. 31(15), 2590–2598 (2013).
[Crossref]

S. Matsuo, Y. Sasaki, T. Akamatsu, I. Ishida, K. Takenaga, K. Okuyama, K. Saitoh, and M. Kosihba, “12-core fiber with one ring structure for extremely large capacity transmission,” Opt. Express 20(27), 28398–28408 (2012).
[Crossref] [PubMed]

J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber,” Opt. Express 20(14), 15157–15170 (2012).
[Crossref] [PubMed]

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photonics J. 4(5), 1987–1995 (2012).
[Crossref]

S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, K. Saitoh, and M. Koshiba, “Crosstalk behavior of cores in multi-core fiber under bent condition,” IEICE Electron. Express 8(6), 385–390 (2011).
[Crossref]

S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett. 36(23), 4626–4628 (2011).
[Crossref] [PubMed]

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19(26), B543–B550 (2011).
[Crossref] [PubMed]

Taniagwa, S.

Tanigawa, S.

S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, K. Saitoh, and M. Koshiba, “Crosstalk behavior of cores in multi-core fiber under bent condition,” IEICE Electron. Express 8(6), 385–390 (2011).
[Crossref]

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19(26), B543–B550 (2011).
[Crossref] [PubMed]

Taru, T.

Tottori, Y.

Tsuchida, Y.

Tu, J.

Wada, N.

Watanabe, M.

Yamada, M.

Ye, F.

IEEE J. Quantum Electron. (1)

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[Crossref]

IEEE Photonics J. (1)

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photonics J. 4(5), 1987–1995 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Tu, K. Long, and K. Saitoh, “An efficient core selection method for heterogeneous trench-assisted multi-core fiber,” IEEE Photonics Technol. Lett. 28(7), 810–813 (2016).
[Crossref]

IEICE Electron. Express (2)

S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, K. Saitoh, and M. Koshiba, “Crosstalk behavior of cores in multi-core fiber under bent condition,” IEICE Electron. Express 8(6), 385–390 (2011).
[Crossref]

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[Crossref]

J. Lightwave Technol. (5)

Nat. Photonics (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Opt. Express (9)

G. Bosco, P. Poggiolini, A. Carena, V. Curri, and F. Forghieri, “Analytical results on channel capacity in uncompensated optical links with coherent detection,” Opt. Express 19(26), B440–B449 (2011).
[Crossref] [PubMed]

J. Tu, K. Saitoh, K. Takenaga, and S. Matsuo, “Heterogeneous trench-assisted few-mode multi-core fiber with low differential mode delay,” Opt. Express 22(4), 4329–4341 (2014).
[Crossref] [PubMed]

J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber,” Opt. Express 20(14), 15157–15170 (2012).
[Crossref] [PubMed]

F. Ye, J. Tu, K. Saitoh, and T. Morioka, “Simple analytical expression for crosstalk estimation in homogeneous trench-assisted multi-core fibers,” Opt. Express 22(19), 23007–23018 (2014).
[Crossref] [PubMed]

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express 19(17), 16576–16592 (2011).
[Crossref] [PubMed]

J. Sakaguchi, W. Klaus, B. J. Puttnam, J. M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tsuchida, K. Maeda, M. Tadakuma, K. Imamura, R. Sugizaki, T. Kobayashi, Y. Tottori, M. Watanabe, and R. V. Jensen, “19-core MCF transmission system using EDFA with shared core pumping coupled via free-space optics,” Opt. Express 22(1), 90–95 (2014).
[Crossref] [PubMed]

S. Matsuo, Y. Sasaki, T. Akamatsu, I. Ishida, K. Takenaga, K. Okuyama, K. Saitoh, and M. Kosihba, “12-core fiber with one ring structure for extremely large capacity transmission,” Opt. Express 20(27), 28398–28408 (2012).
[Crossref] [PubMed]

A. Sano, H. Takara, T. Kobayashi, H. Kawakami, H. Kishikawa, T. Nakagawa, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, M. Nagatani, T. Mori, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, M. Yamada, H. Masuda, and T. Morioka, “409-Tb/s + 409-Tb/s crosstalk suppressed bidirectional MCF transmission over 450 km using propagation-direction interleaving,” Opt. Express 21(14), 16777–16783 (2013).
[Crossref] [PubMed]

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19(26), B543–B550 (2011).
[Crossref] [PubMed]

Opt. Lett. (1)

Other (9)

Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Saitoh, and M. Koshiba, “Investigation of crosstalk dependencies on bending radius of heterogeneous multicore fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2013), paper OTh3K. 3.
[Crossref]

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by trench-assisted multi-core fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWJ4.
[Crossref]

K. Saitoh, T. Matsui, T. Sakamoto, M. Koshiba, and S. Tomita, “Multi-core hole-assisted fibers for high core density space division multiplexing,” in Proceedings of 15th OptoElectronics and Communications Conference (Institute of Electrical and Electronics Engineers, 2010), paper 7C2–1.

B. Yao, K. Ohsono, N. Shiina, K. Fukuzato, A. Hongo, E. H. Sekiya, and K. Saito, “Reduction of crosstalk by hole-walled multi-core fibers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper OM2D5.
[Crossref]

Y. Amma, Y. Sasaki, K. Takenaga, S. Matsuo, J. Tu, K. Saitoh, M. Koshiba, T. Morioka, and Y. Miyamoto, “High-density multicore fiber with heterogeneous core arrangement,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2015), paper Th4C. 4.
[Crossref]

T. Morioka, “New generation optical infrastructure technologies: ‘EXAT initiative’ towards 2020 and beyond,” in Proceedings of 14th OptoElectronics and Communications Conference (Institute of Electrical and Electronics Engineers, 2009), paper FT4.
[Crossref]

D. Qian, M. F. Huang, E. Ip, Y. K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370×294-Gb/s) PDM-128-QAM-OFDM transmission over 3 × 55-km SSMF using pilot-based phase noise mitigation,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB5.

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1Tb/s (432×171Gb/s) C-band extended L-band transmission over 240 km Using PDM-16-QAM modulation and digital coherent detection,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper PDPB7.
[Crossref]

J. Cai, Y. Cai, C. Davidson, A. Lucero, H. Zhang, D. G. Foursa, O. V. Sinkin, W. W. Patterson, A. Pilipetskii, G. Mohs, and N. Bergano, “20 Tbit/s capacity transmission over 6,860 km,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Schematic diagrams of (a) trench-assisted (TA) profile, (b) hole-assisted (HA) profile and (c) rod-assisted (RA) profile.

Fig. 2
Fig. 2

Core arrangement for high core density MCFs (a) hexagonal closed-packed structure (HCPS), (b) ring-lattice structure (RLS) and (c) square-lattice structure (SLS).

Fig. 3
Fig. 3

(a) Schematic structure and (b) core index profile of heterogeneous rod assisted 32-core fiber.

Fig. 4
Fig. 4

XT dependence on rod radius rh when Δ2 = −0.7%.

Fig. 5
Fig. 5

XT dependence on R at various Δ2 when rh = 6.0 μm.

Fig. 6
Fig. 6

Core effective index (neff) and effective area (Aeff) of LP01 mode at 1550-nm wavelength as function of core r1 and core Δ1 when rh = 6.0 μm and Δ2 = −0.7%.

Fig. 7
Fig. 7

Dependence of BL of LP01 mode at R = 140 mm and λ = 1625 nm on OCT for Core 1 and Core 2 when rh = 6.0 μm and Δ2 = −0.7%.

Fig. 8
Fig. 8

(a) Schematic structure and (b) heterogeneous core types of Hetero-RA-TA-32-Core-Fiber.

Fig. 9
Fig. 9

(a) BL, (b) Aeff and (c) neff of LP01 mode as function of W/r1 at various r2/r1.

Fig. 10
Fig. 10

Cutoff limit and OCT lower limit of 28 μm as function of r1 and Δ1 when (a) r2/r1 = 1.5, (b) r2/r1 = 1.6 and (c) r2/r1 = 1.7 at various W/r1, respectively.

Fig. 11
Fig. 11

Cutoff limit and OCT lower limit of 28 μm as function of r1 and Δ1 when (a) r2/r1 = 1.5, (b) r2/r1 = 1.6 and (c) r2/r1 = 1.7 at various W/r1, respectively.

Fig. 12
Fig. 12

BL of LP11 mode at λ = 1530 nm and R = 140 mm and BL of LP01 mode at λ = 1625 nm and R = 30 mm as function of r1 and Δ1 for RA core when (a) rh = 7.0 μm, (b) rh = 7.5 μm, and (c) rh = 8.0 μm.

Fig. 13
Fig. 13

BL of LP11 mode at λ = 1530 nm and R = 140 mm and BL of LP01 mode at λ = 1625 nm and R = 30 mm as function of r1 and Δ1 with target Aeff is 74 μm2 when (a) TA core, r2/r1 = 1.6, W/r1 = 1.2, rh = 7.5 μm and (b) RA core, r2/r1 = 1.6, W/r1 = 1.2, rh = 7.5 μm.

Fig. 14
Fig. 14

BL of LP11 mode at λ = 1530 nm and R = 140 mm and BL of LP01 mode at λ = 1625 nm and R = 30 mm as function of r1 and Δ1 with target Aeff is 78 μm2 when (a) TA core, r2/r1 = 1.5, W/r1 = 1.3, rh = 7.5 μm and (b) RA core, r2/r1 = 1.5, W/r1 = 1.3, rh = 7.5 μm.

Fig. 15
Fig. 15

Crosstalk dependence on bending radius of (a) Fiber A and (b) Fiber B.

Fig. 16
Fig. 16

Comparison of (a) RCMF and XT (b) core count and XT at λ of 1550 nm between the reported high-density MCFs and the proposed Hetero-RA-TA-32-Core-Fiber in this work. (ORS: one-ring structure, DRS: dual-ring structure, both ORS and DRS are RLS.)

Tables (2)

Tables Icon

Table 1 Design parameters of Fiber A

Tables Icon

Table 2 Design parameters of Fiber B

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R pk = n eff Δ n eff Λ,
34 Λ+2OCT= D cl .
CMF= N core A eff π ( D cl /2) 2 ,
RCMF= N core A eff π ( D cl /2) 2 / 80 π (125/2) 2 .

Metrics