Abstract

We describe back-to-back (dual) tapers embedded within hollow Bragg waveguides clad by omnidirectional Si/SiO2-based mirrors, and fabricated using a thin film buckling approach. The back-reflection of light subject to mode cutoff in the narrowed tunnel section results in a short-pass transmission characteristic. Thus, the dual taper can act as a waveguide filter with the upper pass-band edge determined by the lithographically controlled height of the tunnel section. We also report preliminary results on the use of these dual tapers as in-plane reflectors (for operation in the cutoff regime), with potential to enable a novel class of open-access hollow-waveguide microcavities.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Out-of-plane coupling at mode cutoff in tapered hollow waveguides with omnidirectional reflector claddings

N. Ponnampalam and R. G. DeCorby
Opt. Express 16(5) 2894-2908 (2008)

Chip-scale spectrometry based on tapered hollow Bragg waveguides

R.G. DeCorby, N. Ponnampalam, E. Epp, T. Allen, and J.N. McMullin
Opt. Express 17(19) 16632-16645 (2009)

Visible-band dispersion by a tapered air-core Bragg waveguide

B. Drobot, A. Melnyk, M. Zhang, T.W. Allen, and R.G. DeCorby
Opt. Express 20(21) 23906-23911 (2012)

References

  • View by:
  • |
  • |
  • |

  1. G. F. Craven and C. K. Mok, “The design of evanescent waveguide mode bandpass filters for a prescribed insertion loss characteristic,” IEEE Trans. Microw. Theory Technol. 19(3), 295–308 (1971).
    [Crossref]
  2. P. W. Baumeister, “Optical tunneling and its applications to optical filters,” Appl. Opt. 6(5), 897–905 (1967).
    [Crossref] [PubMed]
  3. C. H. Tang, “Delay equalization by tapered cutoff waveguides,” IEEE Trans. Microw. Theory Technol. 12(6), 608–615 (1964).
    [Crossref]
  4. A. Enders and G. Nimtz, “Photonic-tunneling experiments,” Phys. Rev. B Condens. Matter 47(15), 9605–9609 (1993).
    [Crossref] [PubMed]
  5. B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects,” J. Appl. Phys. 105(4), 044905 (2009).
    [Crossref]
  6. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
    [Crossref] [PubMed]
  7. M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004).
    [Crossref]
  8. R. G. DeCorby, N. Ponnampalam, E. Epp, T. Allen, and J. N. McMullin, “Chip-scale spectrometry based on tapered hollow Bragg waveguides,” Opt. Express 17(19), 16632–16645 (2009).
    [Crossref] [PubMed]
  9. M. Giraud-Carrier, C. Hill, T. Decker, J. A. Black, H. Schmidt, and A. Hawkins, “Perforated hollow-core optical waveguides for on-chip atomic spectroscopy and gas sensing,” Appl. Phys. Lett. 108(13), 131105 (2016).
    [Crossref] [PubMed]
  10. G. Bappi, J. Flannery, R. A. Maruf, and M. Bajcsy, “Prospects and limitations of bottom-up fabricated hollow-core waveguides,” Opt. Mater. Express 7(1), 148–157 (2017).
    [Crossref]
  11. H.-K. Chiu, C.-H. Chang, C.-H. Hou, C.-C. Chen, and C.-C. Lee, “Wavelength-selective filter based on a hollow optical waveguide,” Appl. Opt. 50(2), 227–230 (2011).
    [Crossref] [PubMed]
  12. P. Measor, B. S. Phillips, A. Chen, A. R. Hawkins, and H. Schmidt, “Tailorable integrated optofluidic filters for biomolecular detection,” Lab Chip 11(5), 899–904 (2011).
    [Crossref] [PubMed]
  13. U. Vogl, A. Saß, F. Vewinger, M. Weitz, A. Solovev, Y. Mei, and O. G. Schmidt, “Light confinement by a cylindrical metallic waveguide in a dense buffer-gas environment,” Phys. Rev. A 83(5), 053403 (2011).
    [Crossref]
  14. A. J. Kruchkov, “One-dimensional Bose-Einstein condensation of photons in a microtube,” Phys. Rev. A 93(4), 043817 (2016).
    [Crossref]
  15. E. Epp, N. Ponnampalam, W. Newman, B. Drobot, J. N. McMullin, A. F. Meldrum, and R. G. DeCorby, “Hollow Bragg waveguides fabricated by controlled buckling of Si/SiO2 mutlilayers,” Opt. Express 18(24), 24917–24925 (2010).
    [Crossref] [PubMed]
  16. W. Wang, W. Zhang, W. Xing, L. Shi, Y. Huang, and J. Peng, “A novel 3-D microcavity based on Bragg fiber dual-tapers,” J. Lightwave Technol. 27(18), 4145–4150 (2009).
    [Crossref]
  17. M. H. Bitarafan, H. Ramp, T. W. Allen, C. Potts, X. Rojas, A. J. R. MacDonald, J. P. Davis, and R. G. DeCorby, “Thermomechanical characterization of on-chip buckled dome Fabry-Perot microcavities,” J. Opt. Soc. Am. B 32(6), 1214–1220 (2015).
    [Crossref]
  18. G. R. Hadley, J. G. Fleming, and S.-Y. Lin, “Bragg fiber design for linear polarization,” Opt. Lett. 29(8), 809–811 (2004).
    [Crossref] [PubMed]
  19. S.-Y. Chou, K.-C. Hsu, N.-K. Chen, S.-K. Liaw, Y.-S. Chih, Y. Lai, and S. Chi, “Analysis of thermo-optic tunable dispersion-engineered short-wavelength-pass tapered-fiber filters,” J. Lightwave Technol. 27(13), 2208–2215 (2009).
    [Crossref]
  20. D. I. Babic and S. W. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28(2), 514–524 (1992).
    [Crossref]
  21. W. Shen, X. Liu, B. Huang, Y. Zhu, and P. Gu, “The effects of reflection phase shift on the optical properties of a micro-opto-electro-mechanical system Fabry-Perot tunable filter,” J. Opt. A 6(9), 853–858 (2004).
    [Crossref]

2017 (1)

2016 (2)

A. J. Kruchkov, “One-dimensional Bose-Einstein condensation of photons in a microtube,” Phys. Rev. A 93(4), 043817 (2016).
[Crossref]

M. Giraud-Carrier, C. Hill, T. Decker, J. A. Black, H. Schmidt, and A. Hawkins, “Perforated hollow-core optical waveguides for on-chip atomic spectroscopy and gas sensing,” Appl. Phys. Lett. 108(13), 131105 (2016).
[Crossref] [PubMed]

2015 (1)

2011 (3)

H.-K. Chiu, C.-H. Chang, C.-H. Hou, C.-C. Chen, and C.-C. Lee, “Wavelength-selective filter based on a hollow optical waveguide,” Appl. Opt. 50(2), 227–230 (2011).
[Crossref] [PubMed]

P. Measor, B. S. Phillips, A. Chen, A. R. Hawkins, and H. Schmidt, “Tailorable integrated optofluidic filters for biomolecular detection,” Lab Chip 11(5), 899–904 (2011).
[Crossref] [PubMed]

U. Vogl, A. Saß, F. Vewinger, M. Weitz, A. Solovev, Y. Mei, and O. G. Schmidt, “Light confinement by a cylindrical metallic waveguide in a dense buffer-gas environment,” Phys. Rev. A 83(5), 053403 (2011).
[Crossref]

2010 (1)

2009 (4)

2004 (3)

W. Shen, X. Liu, B. Huang, Y. Zhu, and P. Gu, “The effects of reflection phase shift on the optical properties of a micro-opto-electro-mechanical system Fabry-Perot tunable filter,” J. Opt. A 6(9), 853–858 (2004).
[Crossref]

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004).
[Crossref]

G. R. Hadley, J. G. Fleming, and S.-Y. Lin, “Bragg fiber design for linear polarization,” Opt. Lett. 29(8), 809–811 (2004).
[Crossref] [PubMed]

1998 (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

1993 (1)

A. Enders and G. Nimtz, “Photonic-tunneling experiments,” Phys. Rev. B Condens. Matter 47(15), 9605–9609 (1993).
[Crossref] [PubMed]

1992 (1)

D. I. Babic and S. W. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28(2), 514–524 (1992).
[Crossref]

1971 (1)

G. F. Craven and C. K. Mok, “The design of evanescent waveguide mode bandpass filters for a prescribed insertion loss characteristic,” IEEE Trans. Microw. Theory Technol. 19(3), 295–308 (1971).
[Crossref]

1967 (1)

1964 (1)

C. H. Tang, “Delay equalization by tapered cutoff waveguides,” IEEE Trans. Microw. Theory Technol. 12(6), 608–615 (1964).
[Crossref]

Allen, T.

Allen, T. W.

Alu, A.

B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects,” J. Appl. Phys. 105(4), 044905 (2009).
[Crossref]

Babic, D. I.

D. I. Babic and S. W. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28(2), 514–524 (1992).
[Crossref]

Bajcsy, M.

Bappi, G.

Baumeister, P. W.

Bitarafan, M. H.

Black, J. A.

M. Giraud-Carrier, C. Hill, T. Decker, J. A. Black, H. Schmidt, and A. Hawkins, “Perforated hollow-core optical waveguides for on-chip atomic spectroscopy and gas sensing,” Appl. Phys. Lett. 108(13), 131105 (2016).
[Crossref] [PubMed]

Chang, C.-H.

Chen, A.

P. Measor, B. S. Phillips, A. Chen, A. R. Hawkins, and H. Schmidt, “Tailorable integrated optofluidic filters for biomolecular detection,” Lab Chip 11(5), 899–904 (2011).
[Crossref] [PubMed]

Chen, C.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Chen, C.-C.

Chen, N.-K.

Chi, S.

Chih, Y.-S.

Chiu, H.-K.

Chou, S.-Y.

Corzine, S. W.

D. I. Babic and S. W. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28(2), 514–524 (1992).
[Crossref]

Craven, G. F.

G. F. Craven and C. K. Mok, “The design of evanescent waveguide mode bandpass filters for a prescribed insertion loss characteristic,” IEEE Trans. Microw. Theory Technol. 19(3), 295–308 (1971).
[Crossref]

Davis, J. P.

Decker, T.

M. Giraud-Carrier, C. Hill, T. Decker, J. A. Black, H. Schmidt, and A. Hawkins, “Perforated hollow-core optical waveguides for on-chip atomic spectroscopy and gas sensing,” Appl. Phys. Lett. 108(13), 131105 (2016).
[Crossref] [PubMed]

DeCorby, R. G.

Drobot, B.

Edwards, B.

B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects,” J. Appl. Phys. 105(4), 044905 (2009).
[Crossref]

Enders, A.

A. Enders and G. Nimtz, “Photonic-tunneling experiments,” Phys. Rev. B Condens. Matter 47(15), 9605–9609 (1993).
[Crossref] [PubMed]

Engheta, N.

B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects,” J. Appl. Phys. 105(4), 044905 (2009).
[Crossref]

Epp, E.

Fan, S.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Fink, Y.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Flannery, J.

Fleming, J. G.

Giraud-Carrier, M.

M. Giraud-Carrier, C. Hill, T. Decker, J. A. Black, H. Schmidt, and A. Hawkins, “Perforated hollow-core optical waveguides for on-chip atomic spectroscopy and gas sensing,” Appl. Phys. Lett. 108(13), 131105 (2016).
[Crossref] [PubMed]

Gu, P.

W. Shen, X. Liu, B. Huang, Y. Zhu, and P. Gu, “The effects of reflection phase shift on the optical properties of a micro-opto-electro-mechanical system Fabry-Perot tunable filter,” J. Opt. A 6(9), 853–858 (2004).
[Crossref]

Hadley, G. R.

Hawkins, A.

M. Giraud-Carrier, C. Hill, T. Decker, J. A. Black, H. Schmidt, and A. Hawkins, “Perforated hollow-core optical waveguides for on-chip atomic spectroscopy and gas sensing,” Appl. Phys. Lett. 108(13), 131105 (2016).
[Crossref] [PubMed]

Hawkins, A. R.

P. Measor, B. S. Phillips, A. Chen, A. R. Hawkins, and H. Schmidt, “Tailorable integrated optofluidic filters for biomolecular detection,” Lab Chip 11(5), 899–904 (2011).
[Crossref] [PubMed]

Hill, C.

M. Giraud-Carrier, C. Hill, T. Decker, J. A. Black, H. Schmidt, and A. Hawkins, “Perforated hollow-core optical waveguides for on-chip atomic spectroscopy and gas sensing,” Appl. Phys. Lett. 108(13), 131105 (2016).
[Crossref] [PubMed]

Hou, C.-H.

Hsu, K.-C.

Huang, B.

W. Shen, X. Liu, B. Huang, Y. Zhu, and P. Gu, “The effects of reflection phase shift on the optical properties of a micro-opto-electro-mechanical system Fabry-Perot tunable filter,” J. Opt. A 6(9), 853–858 (2004).
[Crossref]

Huang, Y.

Ibanescu, M.

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004).
[Crossref]

Joannopoulos, J. D.

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004).
[Crossref]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Johnson, S. G.

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004).
[Crossref]

Kruchkov, A. J.

A. J. Kruchkov, “One-dimensional Bose-Einstein condensation of photons in a microtube,” Phys. Rev. A 93(4), 043817 (2016).
[Crossref]

Lai, Y.

Lee, C.-C.

Liaw, S.-K.

Lin, S.-Y.

Liu, X.

W. Shen, X. Liu, B. Huang, Y. Zhu, and P. Gu, “The effects of reflection phase shift on the optical properties of a micro-opto-electro-mechanical system Fabry-Perot tunable filter,” J. Opt. A 6(9), 853–858 (2004).
[Crossref]

MacDonald, A. J. R.

Maruf, R. A.

McMullin, J. N.

Measor, P.

P. Measor, B. S. Phillips, A. Chen, A. R. Hawkins, and H. Schmidt, “Tailorable integrated optofluidic filters for biomolecular detection,” Lab Chip 11(5), 899–904 (2011).
[Crossref] [PubMed]

Mei, Y.

U. Vogl, A. Saß, F. Vewinger, M. Weitz, A. Solovev, Y. Mei, and O. G. Schmidt, “Light confinement by a cylindrical metallic waveguide in a dense buffer-gas environment,” Phys. Rev. A 83(5), 053403 (2011).
[Crossref]

Meldrum, A. F.

Michel, J.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Mok, C. K.

G. F. Craven and C. K. Mok, “The design of evanescent waveguide mode bandpass filters for a prescribed insertion loss characteristic,” IEEE Trans. Microw. Theory Technol. 19(3), 295–308 (1971).
[Crossref]

Newman, W.

Nimtz, G.

A. Enders and G. Nimtz, “Photonic-tunneling experiments,” Phys. Rev. B Condens. Matter 47(15), 9605–9609 (1993).
[Crossref] [PubMed]

Peng, J.

Phillips, B. S.

P. Measor, B. S. Phillips, A. Chen, A. R. Hawkins, and H. Schmidt, “Tailorable integrated optofluidic filters for biomolecular detection,” Lab Chip 11(5), 899–904 (2011).
[Crossref] [PubMed]

Ponnampalam, N.

Potts, C.

Povinelli, M. L.

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004).
[Crossref]

Ramp, H.

Rojas, X.

Saß, A.

U. Vogl, A. Saß, F. Vewinger, M. Weitz, A. Solovev, Y. Mei, and O. G. Schmidt, “Light confinement by a cylindrical metallic waveguide in a dense buffer-gas environment,” Phys. Rev. A 83(5), 053403 (2011).
[Crossref]

Schmidt, H.

M. Giraud-Carrier, C. Hill, T. Decker, J. A. Black, H. Schmidt, and A. Hawkins, “Perforated hollow-core optical waveguides for on-chip atomic spectroscopy and gas sensing,” Appl. Phys. Lett. 108(13), 131105 (2016).
[Crossref] [PubMed]

P. Measor, B. S. Phillips, A. Chen, A. R. Hawkins, and H. Schmidt, “Tailorable integrated optofluidic filters for biomolecular detection,” Lab Chip 11(5), 899–904 (2011).
[Crossref] [PubMed]

Schmidt, O. G.

U. Vogl, A. Saß, F. Vewinger, M. Weitz, A. Solovev, Y. Mei, and O. G. Schmidt, “Light confinement by a cylindrical metallic waveguide in a dense buffer-gas environment,” Phys. Rev. A 83(5), 053403 (2011).
[Crossref]

Shen, W.

W. Shen, X. Liu, B. Huang, Y. Zhu, and P. Gu, “The effects of reflection phase shift on the optical properties of a micro-opto-electro-mechanical system Fabry-Perot tunable filter,” J. Opt. A 6(9), 853–858 (2004).
[Crossref]

Shi, L.

Silveirinha, M. G.

B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects,” J. Appl. Phys. 105(4), 044905 (2009).
[Crossref]

Solovev, A.

U. Vogl, A. Saß, F. Vewinger, M. Weitz, A. Solovev, Y. Mei, and O. G. Schmidt, “Light confinement by a cylindrical metallic waveguide in a dense buffer-gas environment,” Phys. Rev. A 83(5), 053403 (2011).
[Crossref]

Tang, C. H.

C. H. Tang, “Delay equalization by tapered cutoff waveguides,” IEEE Trans. Microw. Theory Technol. 12(6), 608–615 (1964).
[Crossref]

Thomas, E. L.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Vewinger, F.

U. Vogl, A. Saß, F. Vewinger, M. Weitz, A. Solovev, Y. Mei, and O. G. Schmidt, “Light confinement by a cylindrical metallic waveguide in a dense buffer-gas environment,” Phys. Rev. A 83(5), 053403 (2011).
[Crossref]

Vogl, U.

U. Vogl, A. Saß, F. Vewinger, M. Weitz, A. Solovev, Y. Mei, and O. G. Schmidt, “Light confinement by a cylindrical metallic waveguide in a dense buffer-gas environment,” Phys. Rev. A 83(5), 053403 (2011).
[Crossref]

Wang, W.

Weitz, M.

U. Vogl, A. Saß, F. Vewinger, M. Weitz, A. Solovev, Y. Mei, and O. G. Schmidt, “Light confinement by a cylindrical metallic waveguide in a dense buffer-gas environment,” Phys. Rev. A 83(5), 053403 (2011).
[Crossref]

Winn, J. N.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Xing, W.

Zhang, W.

Zhu, Y.

W. Shen, X. Liu, B. Huang, Y. Zhu, and P. Gu, “The effects of reflection phase shift on the optical properties of a micro-opto-electro-mechanical system Fabry-Perot tunable filter,” J. Opt. A 6(9), 853–858 (2004).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004).
[Crossref]

M. Giraud-Carrier, C. Hill, T. Decker, J. A. Black, H. Schmidt, and A. Hawkins, “Perforated hollow-core optical waveguides for on-chip atomic spectroscopy and gas sensing,” Appl. Phys. Lett. 108(13), 131105 (2016).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

D. I. Babic and S. W. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28(2), 514–524 (1992).
[Crossref]

IEEE Trans. Microw. Theory Technol. (2)

C. H. Tang, “Delay equalization by tapered cutoff waveguides,” IEEE Trans. Microw. Theory Technol. 12(6), 608–615 (1964).
[Crossref]

G. F. Craven and C. K. Mok, “The design of evanescent waveguide mode bandpass filters for a prescribed insertion loss characteristic,” IEEE Trans. Microw. Theory Technol. 19(3), 295–308 (1971).
[Crossref]

J. Appl. Phys. (1)

B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects,” J. Appl. Phys. 105(4), 044905 (2009).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. A (1)

W. Shen, X. Liu, B. Huang, Y. Zhu, and P. Gu, “The effects of reflection phase shift on the optical properties of a micro-opto-electro-mechanical system Fabry-Perot tunable filter,” J. Opt. A 6(9), 853–858 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

Lab Chip (1)

P. Measor, B. S. Phillips, A. Chen, A. R. Hawkins, and H. Schmidt, “Tailorable integrated optofluidic filters for biomolecular detection,” Lab Chip 11(5), 899–904 (2011).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. A (2)

U. Vogl, A. Saß, F. Vewinger, M. Weitz, A. Solovev, Y. Mei, and O. G. Schmidt, “Light confinement by a cylindrical metallic waveguide in a dense buffer-gas environment,” Phys. Rev. A 83(5), 053403 (2011).
[Crossref]

A. J. Kruchkov, “One-dimensional Bose-Einstein condensation of photons in a microtube,” Phys. Rev. A 93(4), 043817 (2016).
[Crossref]

Phys. Rev. B Condens. Matter (1)

A. Enders and G. Nimtz, “Photonic-tunneling experiments,” Phys. Rev. B Condens. Matter 47(15), 9605–9609 (1993).
[Crossref] [PubMed]

Science (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Conceptual cross-sectional diagram of a dual taper in a slab Bragg waveguide. The red dotted line depicts the trajectory of a guided ray, at a wavelength not subject to cutoff in the tunnel section. (b) Microscope image showing an as-fabricated dual taper. (b) Surface relief plot of a dual taper extracted using an optical profilometer.
Fig. 2
Fig. 2 (a) Theoretical mode-field profiles for the 3 lowest-loss modes (all TE-polarized) of a waveguide with W = 60 μm and H = 2 μm. The predicted effective indices are ~0.92, 0.91, and 0.90, respectively. (b) Spectrally-dependent transmission for a waveguide with H ~1.8 μm, as measured using a supercontinuum source and OSA (solid), and as predicted by a slab-waveguide model (symbols).
Fig. 3
Fig. 3 (a) Scattered light image for a waveguide containing a dual taper, excited by the supercontinuum source. The locations of the dual taper (dt) and the output facet (of) are labeled. (b) Scattered light image for excitation by a laser tuned to 1602 nm, which is subject to cutoff within the tunnel section for the case shown. The waveguide boundaries are indicated by the dashed line. Inset: higher magnification image of a portion of the standing wave, with period ~1 μm. (c) Experimental versus theoretically predicted transmission for a dual taper with h ~0.73 μm. (d) Experimental short-pass transition edges for various dual tapers. (e) Cut-off wavelength versus tunnel height, as measured for a variety of dual tapers and as predicted by an analytical slab model.
Fig. 4
Fig. 4 (a) Microscope image of a microcavity bounded by dual-taper mirrors. (b) Surface relief image. (c) Scattered light image for a typical resonant mode. (d) Simulated mode field intensity plot for an analogous slab waveguide cavity. (e) Simulated transmission for the analogous slab structure. The red dashed line shows the predicted transmission for a single dual taper in this case. Insets: experimental long- and short-range transmission scans.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ C = [ ( L T + L B )/2 ] λ B +2h [ ( L T + L B )/2 ]+m .

Metrics