Abstract

This study compared two nonlinear distortion compensation techniques, SSII cancellation (in the frequency domain) and Volterra filtering (in the time domain), in a >50-Gbps/λ OFDM-IMDD LR-PON. Experiment results for SNR, BER, and data rate (based on a bit-loading algorithm) revealed that the performance of frequency-domain SSII cancellation is unaffected by power fading; however, it depends heavily on the precision of the mathematical model. Conversely, although time-domain Volterra filtering is affected by the faded waveform, adaptive-weighting provides flexibility in dealing with mixed nonlinear distortion, particularly that associated with the interplay between fiber dispersion and fiber nonlinearity. 4-channel WDM-OFDM and 3rd-order Volterra filtering were used to demonstrate the feasibility of the proposed scheme in a 200-Gbps IMDD system. Based on 10-GHz EAM and PIN, we achieved 200-Gbps transmission over a distance of 60 km with a loss budget of >30 dB, while providing support for 128 ONUs at >1.6 Gbps/ONU without the need for an inline amplifier or pre-amplifier.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-Capacity and High-Loss-Budget OFDM Long-Reach PON Without an Optical Amplifier [Invited]

Hsing-Yu Chen, Chia-Chien Wei, I-Cheng Lu, Hsuan-Hao Chu, Yu-Chao Chen, and Jyehong Chen
J. Opt. Commun. Netw. 7(1) A59-A65 (2015)

EAM-based high-speed 100-km OFDM transmission featuring tolerant modulator operation enabled using SSII cancellation

Hsing-Yu Chen, Chia-Chien Wei, I-Cheng Lu, Yu-Chao Chen, Hsuan-Hao Chu, and Jyehong Chen
Opt. Express 22(12) 14637-14645 (2014)

Cost-effective 33-Gbps intensity modulation direct detection multi-band OFDM LR-PON system employing a 10-GHz-based transceiver

Dar-Zu Hsu, Chia-Chien Wei, Hsing-Yu Chen, Wei-Yuan Li, and Jyehong Chen
Opt. Express 19(18) 17546-17556 (2011)

References

  • View by:
  • |
  • |
  • |

  1. Cisco, “The Zettabyte Era—Trends and Analysis,” http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/VNI_Hyperconnectivity_WP.html , (2015).
  2. K.-I. Suzuki, M. Fujiwara, T. Imai, N. Yoshimoto, and H. Hadama, “128 x 8 split and 60 km Long-reach PON Transmission using 27 dB-gain hybrid burst-mode optical fiber amplifier and commercial giga-bit PON system,” in Proceedings of Optical Fiber Communication Conference, (2010), paper NWB3.
    [Crossref]
  3. D. Z. Hsu, C.-C. Wei, H.-Y. Chen, J. Chen, M. C. Yuang, S. H. Lin, and W. Y. Li, “21 Gb/s after 100 km OFDM long-reach PON transmission using a cost-effective electro-absorption modulator,” Opt. Express 18(26), 27758–27763 (2010).
    [Crossref] [PubMed]
  4. ITUT G.989.1, “40-Gigabit-capable passive optical networks (NG-PON2): General requirements,” (2013).
  5. N. Cvijetic and M. Cvijetic, “What is Next for DSP-based Optical Access and OFDMA-PON?” in Proceedings of European Conference on Optical Communication (2014), pp. 1–3.
    [Crossref]
  6. D. Shea and J. Mitchell, “A 10 Gb/s 1024-way-split 100-km long-reach optical-access network,” J. Lightwave Technol. 25(3), 658–693 (2007).
    [Crossref]
  7. D. Z. Hsu, C. C. Wei, H. Y. Chen, Y. C. Lu, and J. Chen, “A 40-Gbps OFDM LR-PON system over 100-km fiber employing an economical 10-GHz-based transceiver,” in Proceedings of Optical Fiber Communication Conference, (2012), paper OW4B.2.
    [Crossref]
  8. C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag. 51(3), 50–57 (2013).
    [Crossref]
  9. K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu,“Experimenal study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems,” Opt. Express 23(2), 1176–1189 (2015).
    [Crossref] [PubMed]
  10. FSAN, “FSAN Highlights & NG-PON2 Standards Update,” in Proceedings of FSAN and IEEE NG-EPON/1904 ANWG Joint Session (2015).
  11. H.-Y. Chen, C.-C. Wei, I. C. Lu, Y.-C. Chen, H.-H. Chu, and J. Chen, “EAM-based high-speed 100-km OFDM transmission featuring tolerant modulator operation enabled using SSII cancellation,” Opt. Express 22(12), 14637–14645 (2014).
    [Crossref] [PubMed]
  12. H. Y. Chen, C.-C. Wei, I.-C. Lu, H.-H. Chu, Y.-C. Chen, and J. Chen, “High-Capacity and High-Loss-Budget OFDM Long-Reach PON Without an Optical Amplifier [Invited],” J. Opt. Commun. Netw. 7(1), A59–A65 (2015).
    [Crossref]
  13. C.-C. Wei, H.-Y. Chen, H.-H. Chu, Y.-C. Chen, C.-Y. Song, I.-C. Lu, and J. Chen, “32-dB loss budget high-capacity OFDM long-reach PON over 60-km transmission without optical amplifier,” in Proceedings of Optical Fiber Communication Conference (2014), paper Th3G.1.
    [Crossref]
  14. W. Yan, B. Liu, L. Li, Z. Tao, T. Takahara, and J. C. Rasmussen, “Nonlinear distortion and DSP-based Compensation in Metro and Access Networks using Discrete Multi-tone,” in Proceedings of European Conference on Optical Communication (2012), paper Mo.1.B.2.
    [Crossref]
  15. H. Y. Chen, C. C. Wei, C. Y. Lin, L. W. Chen, I. C. Lu, and J. Chen, “A 200-Gbps OFDM long-reach PON over 60-km transmission without inline and pre-amplifier,” in Proceedings of Optical Fiber Communication Conference, (2015), paper Th1H.2.
    [Crossref]
  16. C. C. Wei, H. L. Chen, H. Y. Chen, Y. C. Chen, H. H. Chu, K. C. Chang, I. C. Lu, and J. Chen, “Analysis of nonlinear distortion and SSII cancellation in EAM-Based IMDD OFDM transmission,” J. Lightwave Technol. 33(14), 3069–3082 (2015).
    [Crossref]
  17. J. Tsimbinos and K. V. Lever, “Computational complexity of Volterra based nonlinear compensators,” Electron. Lett. 32(9), 852–854 (1996).
    [Crossref]
  18. T. N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low-bandwidth optical devices,” IEEE Photonics Technol. Lett. 21(12), 790–792 (2009).
    [Crossref]

2015 (3)

2014 (1)

2013 (1)

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag. 51(3), 50–57 (2013).
[Crossref]

2010 (1)

2009 (1)

T. N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low-bandwidth optical devices,” IEEE Photonics Technol. Lett. 21(12), 790–792 (2009).
[Crossref]

2007 (1)

D. Shea and J. Mitchell, “A 10 Gb/s 1024-way-split 100-km long-reach optical-access network,” J. Lightwave Technol. 25(3), 658–693 (2007).
[Crossref]

1996 (1)

J. Tsimbinos and K. V. Lever, “Computational complexity of Volterra based nonlinear compensators,” Electron. Lett. 32(9), 852–854 (1996).
[Crossref]

Chanclou, P.

T. N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low-bandwidth optical devices,” IEEE Photonics Technol. Lett. 21(12), 790–792 (2009).
[Crossref]

Chang, K. C.

Charbonnier, B.

T. N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low-bandwidth optical devices,” IEEE Photonics Technol. Lett. 21(12), 790–792 (2009).
[Crossref]

Chen, H. L.

Chen, H. Y.

Chen, H.-Y.

Chen, J.

Chen, W.

Chen, Y. C.

Chen, Y.-C.

Chu, H. H.

Chu, H.-H.

Cole, C.

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag. 51(3), 50–57 (2013).
[Crossref]

Cvijetic, M.

N. Cvijetic and M. Cvijetic, “What is Next for DSP-based Optical Access and OFDMA-PON?” in Proceedings of European Conference on Optical Communication (2014), pp. 1–3.
[Crossref]

Cvijetic, N.

N. Cvijetic and M. Cvijetic, “What is Next for DSP-based Optical Access and OFDMA-PON?” in Proceedings of European Conference on Optical Communication (2014), pp. 1–3.
[Crossref]

Duong, T. N.

T. N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low-bandwidth optical devices,” IEEE Photonics Technol. Lett. 21(12), 790–792 (2009).
[Crossref]

Gao, Y.

Genay, N.

T. N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low-bandwidth optical devices,” IEEE Photonics Technol. Lett. 21(12), 790–792 (2009).
[Crossref]

Ghiasi, A.

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag. 51(3), 50–57 (2013).
[Crossref]

Gui, T.

Hsu, D. Z.

D. Z. Hsu, C.-C. Wei, H.-Y. Chen, J. Chen, M. C. Yuang, S. H. Lin, and W. Y. Li, “21 Gb/s after 100 km OFDM long-reach PON transmission using a cost-effective electro-absorption modulator,” Opt. Express 18(26), 27758–27763 (2010).
[Crossref] [PubMed]

D. Z. Hsu, C. C. Wei, H. Y. Chen, Y. C. Lu, and J. Chen, “A 40-Gbps OFDM LR-PON system over 100-km fiber employing an economical 10-GHz-based transceiver,” in Proceedings of Optical Fiber Communication Conference, (2012), paper OW4B.2.
[Crossref]

Lau, A. P. T.

Le Masson, J.

T. N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low-bandwidth optical devices,” IEEE Photonics Technol. Lett. 21(12), 790–792 (2009).
[Crossref]

Lever, K. V.

J. Tsimbinos and K. V. Lever, “Computational complexity of Volterra based nonlinear compensators,” Electron. Lett. 32(9), 852–854 (1996).
[Crossref]

Li, W. Y.

Lin, S. H.

Lu, C.

Lu, I. C.

Lu, I.-C.

Lu, Y. C.

D. Z. Hsu, C. C. Wei, H. Y. Chen, Y. C. Lu, and J. Chen, “A 40-Gbps OFDM LR-PON system over 100-km fiber employing an economical 10-GHz-based transceiver,” in Proceedings of Optical Fiber Communication Conference, (2012), paper OW4B.2.
[Crossref]

Lyubomirsky, I.

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag. 51(3), 50–57 (2013).
[Crossref]

Man, J.

Mitchell, J.

D. Shea and J. Mitchell, “A 10 Gb/s 1024-way-split 100-km long-reach optical-access network,” J. Lightwave Technol. 25(3), 658–693 (2007).
[Crossref]

Ouzzif, M.

T. N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low-bandwidth optical devices,” IEEE Photonics Technol. Lett. 21(12), 790–792 (2009).
[Crossref]

Shea, D.

D. Shea and J. Mitchell, “A 10 Gb/s 1024-way-split 100-km long-reach optical-access network,” J. Lightwave Technol. 25(3), 658–693 (2007).
[Crossref]

Simon, J. C.

T. N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low-bandwidth optical devices,” IEEE Photonics Technol. Lett. 21(12), 790–792 (2009).
[Crossref]

Tao, L.

Telang, V.

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag. 51(3), 50–57 (2013).
[Crossref]

Tsimbinos, J.

J. Tsimbinos and K. V. Lever, “Computational complexity of Volterra based nonlinear compensators,” Electron. Lett. 32(9), 852–854 (1996).
[Crossref]

Wei, C. C.

C. C. Wei, H. L. Chen, H. Y. Chen, Y. C. Chen, H. H. Chu, K. C. Chang, I. C. Lu, and J. Chen, “Analysis of nonlinear distortion and SSII cancellation in EAM-Based IMDD OFDM transmission,” J. Lightwave Technol. 33(14), 3069–3082 (2015).
[Crossref]

D. Z. Hsu, C. C. Wei, H. Y. Chen, Y. C. Lu, and J. Chen, “A 40-Gbps OFDM LR-PON system over 100-km fiber employing an economical 10-GHz-based transceiver,” in Proceedings of Optical Fiber Communication Conference, (2012), paper OW4B.2.
[Crossref]

Wei, C.-C.

Yuang, M. C.

Zeng, L.

Zhong, K.

Zhou, X.

Electron. Lett. (1)

J. Tsimbinos and K. V. Lever, “Computational complexity of Volterra based nonlinear compensators,” Electron. Lett. 32(9), 852–854 (1996).
[Crossref]

IEEE Commun. Mag. (1)

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag. 51(3), 50–57 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

T. N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low-bandwidth optical devices,” IEEE Photonics Technol. Lett. 21(12), 790–792 (2009).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Commun. Netw. (1)

Opt. Express (3)

Other (9)

D. Z. Hsu, C. C. Wei, H. Y. Chen, Y. C. Lu, and J. Chen, “A 40-Gbps OFDM LR-PON system over 100-km fiber employing an economical 10-GHz-based transceiver,” in Proceedings of Optical Fiber Communication Conference, (2012), paper OW4B.2.
[Crossref]

ITUT G.989.1, “40-Gigabit-capable passive optical networks (NG-PON2): General requirements,” (2013).

N. Cvijetic and M. Cvijetic, “What is Next for DSP-based Optical Access and OFDMA-PON?” in Proceedings of European Conference on Optical Communication (2014), pp. 1–3.
[Crossref]

Cisco, “The Zettabyte Era—Trends and Analysis,” http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/VNI_Hyperconnectivity_WP.html , (2015).

K.-I. Suzuki, M. Fujiwara, T. Imai, N. Yoshimoto, and H. Hadama, “128 x 8 split and 60 km Long-reach PON Transmission using 27 dB-gain hybrid burst-mode optical fiber amplifier and commercial giga-bit PON system,” in Proceedings of Optical Fiber Communication Conference, (2010), paper NWB3.
[Crossref]

FSAN, “FSAN Highlights & NG-PON2 Standards Update,” in Proceedings of FSAN and IEEE NG-EPON/1904 ANWG Joint Session (2015).

C.-C. Wei, H.-Y. Chen, H.-H. Chu, Y.-C. Chen, C.-Y. Song, I.-C. Lu, and J. Chen, “32-dB loss budget high-capacity OFDM long-reach PON over 60-km transmission without optical amplifier,” in Proceedings of Optical Fiber Communication Conference (2014), paper Th3G.1.
[Crossref]

W. Yan, B. Liu, L. Li, Z. Tao, T. Takahara, and J. C. Rasmussen, “Nonlinear distortion and DSP-based Compensation in Metro and Access Networks using Discrete Multi-tone,” in Proceedings of European Conference on Optical Communication (2012), paper Mo.1.B.2.
[Crossref]

H. Y. Chen, C. C. Wei, C. Y. Lin, L. W. Chen, I. C. Lu, and J. Chen, “A 200-Gbps OFDM long-reach PON over 60-km transmission without inline and pre-amplifier,” in Proceedings of Optical Fiber Communication Conference, (2015), paper Th1H.2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Experiment setup of EAM-based OFDM-IMDD 60-km transmission.
Fig. 2
Fig. 2 SNR at 60 km and corresponding improvements obtained using various compensation methods: (a) prior to removal of any subcarriers and (b) following removal of 30 faded subcarriers.
Fig. 3
Fig. 3 Data rate as a function of the number of removed subcarriers at EAM bias voltages of (a) −0.75 and (b) −0.95 V.
Fig. 4
Fig. 4 SNR improvement using fiber launch power of 18 dBm and various compensation schemes.
Fig. 5
Fig. 5 Estimated data rate at each received power with fiber launch set to (a) 6 dBm and (b) 18 dBm.
Fig. 6
Fig. 6 SNR values with and without the application of the bit-loading algorithm: (a) without compensation; (b) SSII cancellation; (c) 2nd-order Volterra filtering; and (d) 3rd-order Volterra filtering.
Fig. 7
Fig. 7 The corresponding 64- and 128-QAM constellations of the 65.23-Gbps signal in Fig. 6(d) while employing different compensation schemes.
Fig. 8
Fig. 8 Experiment setup of 4-channel WDM-OFDM transmission system.
Fig. 9
Fig. 9 Optical spectrum after EDFA.
Fig. 10
Fig. 10 Estimated data rates at each wavelength using the proposed compensation methods under fiber launch power of (a) 13 dBm and (b) 24 dBm.
Fig. 11
Fig. 11 SNR of each subcarrier at each wavelength using 3rd-order Volterra filtering under fiber launch power of (a) 13 dBm and (b) 24 dBm.
Fig. 12
Fig. 12 BER curves of >50-Gbps OFDM signals in co-polarized configuration at wavelengths of (a) 1545.57 nm, (b) 1550.57 nm, (c) 1555.57 nm and (d) 1560.57 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E ¯ e j ϕ NL × [ 1+ 1+ α eff,0 2 2 e j θ α X (1+ α eff,0 2 4 p 2 )+j2( α eff,1 +2 α eff,0 p 2 ) 8 X 2 ]
I ph 1+ 1+ α eff,0 2 Xcos( n 2 θ D θ α )+ 1+ α eff,0 2 4 [ | Θ{X} | 2 μ{ Θ{ X 2 } e j θ p } ] SSII
y(m)= l 1 =0 N v 1 w 1 ( l 1 )r(m l 1 ) + l 1 =0 N v 1 l 2 =0 N v 1 w 2 ( l 1 , l 2 ) i=1 2 r(m l i ) + l 1 =0 N v 1 l 2 =0 N v 1 l k =0 N v 1 w k ( l 1 , l 2 ,, l k ) i=1 k r(m l i )

Metrics