Abstract

Through slight modification on typical photon multiplier tube (PMT) receiver output statistics, a generalized received response model considering both scattered propagation and random detection is presented to investigate the impact of inter-symbol interference (ISI) on link data rate of short-range non-line-of-sight (NLOS) ultraviolet communication. Good agreement with the experimental results by numerical simulation is shown. Based on the received response characteristics, a heuristic check matrix construction algorithm of low-density-parity-check (LDPC) code is further proposed to approach the data rate bound derived in a delayed sampling (DS) binary pulse position modulation (PPM) system. Compared to conventional LDPC coding methods, better bit error ratio (BER) below 1E-05 is achieved for short-range NLOS UVC systems operating at data rate of 2Mbps.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Performance of short-range non-line-of-sight LED-based ultraviolet communication receivers

Qunfeng He, Zhengyuan Xu, and Brian M. Sadler
Opt. Express 18(12) 12226-12238 (2010)

Experimental research and comparison of LDPC and RS channel coding in ultraviolet communication systems

Menglong Wu, Dahai Han, Xiang Zhang, Feng Zhang, Min Zhang, and Guangxin Yue
Opt. Express 22(5) 5422-5430 (2014)

Experimental demonstration of ultraviolet pulse broadening in short-range non-line-of-sight communication channels

Gang Chen, Zhengyuan Xu, and Brian M. Sadler
Opt. Express 18(10) 10500-10509 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. Uysal and H. Nouri, “Optical wireless communications – an emerging technology”, in Proceedings of IEEE International Conference on Transparent Optical Networks (IEEE, 2014), pp. 1–7.
  2. Z. Xu, “Opportunities and challenges in ultraviolet communications”, in Proceedings of IEEE Summer Topicals Meeting Series (IEEE, 2015), pp. 171 – 172.
  3. R. Yuan and J. Ma, “Review of ultraviolet non-line-of-sight communication,” China Commun. 13(6), 63–75 (2016).
    [Crossref]
  4. R. J. Drost and B. M. Sadler, “Survey of ultraviolet non-line-of-sight communications,” Semicond. Sci. Technol. 29(8), 84006–84016 (2014).
    [Crossref]
  5. M. Wraback, “Semiconductor Ultraviolet emitters and detectors with potential for wireless communications,” in Proceedings of IEEE Photonics Society Summer Topical Meeting Series (IEEE, 2012), pp. 134–135.
    [Crossref]
  6. Z. Xu and B. M. Sadler, “Ultraviolet communications: potential and state-of-the-Art,” IEEE Commun. Mag. 46(5), 67–73 (2008).
    [Crossref]
  7. G. Shaw, A. Siegel, and J. Model, “Ultraviolet comm links for distributed sensor networks,” in LEOS Summer Topical Meetings (Optical Society of America, 2005), paper TuA2.4.
    [Crossref]
  8. D. Moriarty and B. Hombs, “System design of tactical communications with solar blind ultraviolet non-line-of-sight systems,” in Proceedings of IEEE Military Communications Conference (IEEE, 2009), pp. 1–7.
    [Crossref]
  9. A. Vavoulas, H. Sandalidis, and D. Varoutas, “Connectivity issues for ultraviolet UV-C networks,” J. Opt. Commun. Netw. 3(3), 199–205 (2011).
    [Crossref]
  10. Y. Tang, X. Xie, and W. Zhao, “Simulation research of short range non-line-of-sight ultraviolet communication performance,” in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2012), pp.567–570.
    [Crossref]
  11. P. Luo, M. Zhang, Y. Liu, D. Han, and Q. Li, “A moving average filter based method of performance improvement for ultraviolet communication system,” in Proceedings of IEEE International Symposium on Communication Systems, Networks and Digital Signal Processing (IEEE, 2012), pp. 1–4.
  12. C. Li, M. Zhang, X. Chen, and Q. Li., P. Luo, and Y. Liu, “Experimental performance evaluation of mobile sensor and communication system based on ultraviolet,” in Proceedings of IEEE Control and Decision Conference (IEEE, 2012), pp. 218–220.
  13. T. Zhao, X. Zhang, L. Liu, and S. Grath, “Fast frame synchronization for wireless ultraviolet image unidirectional communication,” in Proceedings of China-Ireland International Conference on Information and Communications Technologies (IET, 2014), pp.322–327.
  14. H. Xiao, Y. Zuo, J. Wu, Y. Li, and J. Lin, “Non-line-of-sight ultraviolet single-scatter propagation model in random turbulent medium,” Opt. Lett. 38(17), 3366–3369 (2013).
    [Crossref] [PubMed]
  15. M. H. Ardakani, A. R. Heidarpour, and M. Uysal, “Non-kine-of-sight ultraviolet communications over stmospheric turbulence channels,” in Proceedings of IEEE International Workshop on Optical Wireless Communications (IEEE, 2015), pp.55–59.
  16. H. Ding, G. Chen, A. Majumdar, B. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Comm. 27(9), 1535–1544 (2009).
    [Crossref]
  17. H. Xiao, Y. Zuo, J. Wu, H. Guo, and J. Lin, “Non-line-of-sight ultraviolet single-scatter propagation model,” Opt. Express 19(18), 17864–17875 (2011).
    [Crossref] [PubMed]
  18. H. Ding, G. Chen, Z. Xu, and B. M. Sadler, “Channel modeling and performance of non-line-of-sight ultraviolet scattering communications,” IET Commun. 6(5), 514–524 (2012).
    [Crossref]
  19. G. Chen, Z. Xu, and B. M. Sadler, “Experimental demonstration of ultraviolet pulse broadening in short-range non-line-of-sight communication channels,” Opt. Express 18(10), 10500–10509 (2010).
    [Crossref] [PubMed]
  20. Y. Jiao and L. Bai, “Ultraviolet pulse broadening in non-line-of-sight communication system,” in Proceedings of IEEE Asia-Pacific Conference on Antennas and Propagation (IEEE, 2014), pp. 753–756.
    [Crossref]
  21. Q. He, Z. Xu, and B. M. Sadler, “Performance of short-range non-line-of-sight LED-based ultraviolet communication receivers,” Opt. Express 18(12), 12226–12238 (2010).
    [Crossref] [PubMed]
  22. D. J. Costello and G. D. Forney, “Channel coding: the road to channel capacity,” Proc. IEEE 95(6), 1150–1177 (2007).
    [Crossref]
  23. M. A. El-Shimy and S. Hranilovic, “Binary-Input non-line-of-sight solar-blind UV channels: Modeling, Capacity and Coding,” J. Opt. Commun. Netw. 4(12), 1008–1017 (2012).
    [Crossref]
  24. M. Wu, D. Han, X. Zhang, F. Zhang, M. Zhang, and G. Yue, “Experimental research and comparison of LDPC and RS channel coding in ultraviolet communication systems,” Opt. Express 22(5), 5422–5430 (2014).
    [Crossref] [PubMed]
  25. Z. Xu, H. Ding, B. M. Sadler, and G. Chen, “Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links,” Opt. Lett. 33(16), 1860–1862 (2008).
    [Crossref] [PubMed]
  26. C. Li, M. Zhang, Q Li, P Luo, D Han, X Zheng, and Y Liu, “Study on the modulation methods for ultraviolet communication,” J. Comput. Inf. Syst. 7(9), 2085–2091 (2011).
  27. C. Xu and H. Zhang, “Packet error rate analysis of IM/DD systems for ultraviolet scattering communications”, in Proceedings of IEEE Military Communications Conference (IEEE, 2015), pp. 1188–1193.
    [Crossref]
  28. R. Shedsale, “A review of construction methods for regular LDPC codes,” Indian J. Comput. Sci. Eng. 3(2), 380–385 (2012).
  29. X. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular progressive edge-growth Tanner graphs,” IEEE Trans. Inf. Theory 51(1), 386–398 (2005).
    [Crossref]
  30. S. Papaharalabos, P. Sweeney, B. G. Evans, P. T. Mathiopoulos, G. Albertazzi, A. Vanelli-Coralli, and G. E. Corazza, “Modified sum-product algorithms for decoding low-density parity-check codes,” IET Commun. 1(3), 294–300 (2007).
    [Crossref]

2016 (1)

R. Yuan and J. Ma, “Review of ultraviolet non-line-of-sight communication,” China Commun. 13(6), 63–75 (2016).
[Crossref]

2014 (2)

2013 (1)

2012 (3)

M. A. El-Shimy and S. Hranilovic, “Binary-Input non-line-of-sight solar-blind UV channels: Modeling, Capacity and Coding,” J. Opt. Commun. Netw. 4(12), 1008–1017 (2012).
[Crossref]

H. Ding, G. Chen, Z. Xu, and B. M. Sadler, “Channel modeling and performance of non-line-of-sight ultraviolet scattering communications,” IET Commun. 6(5), 514–524 (2012).
[Crossref]

R. Shedsale, “A review of construction methods for regular LDPC codes,” Indian J. Comput. Sci. Eng. 3(2), 380–385 (2012).

2011 (3)

2010 (2)

2009 (1)

H. Ding, G. Chen, A. Majumdar, B. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Comm. 27(9), 1535–1544 (2009).
[Crossref]

2008 (2)

2007 (2)

S. Papaharalabos, P. Sweeney, B. G. Evans, P. T. Mathiopoulos, G. Albertazzi, A. Vanelli-Coralli, and G. E. Corazza, “Modified sum-product algorithms for decoding low-density parity-check codes,” IET Commun. 1(3), 294–300 (2007).
[Crossref]

D. J. Costello and G. D. Forney, “Channel coding: the road to channel capacity,” Proc. IEEE 95(6), 1150–1177 (2007).
[Crossref]

2005 (1)

X. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular progressive edge-growth Tanner graphs,” IEEE Trans. Inf. Theory 51(1), 386–398 (2005).
[Crossref]

Albertazzi, G.

S. Papaharalabos, P. Sweeney, B. G. Evans, P. T. Mathiopoulos, G. Albertazzi, A. Vanelli-Coralli, and G. E. Corazza, “Modified sum-product algorithms for decoding low-density parity-check codes,” IET Commun. 1(3), 294–300 (2007).
[Crossref]

Ardakani, M. H.

M. H. Ardakani, A. R. Heidarpour, and M. Uysal, “Non-kine-of-sight ultraviolet communications over stmospheric turbulence channels,” in Proceedings of IEEE International Workshop on Optical Wireless Communications (IEEE, 2015), pp.55–59.

Arnold, D. M.

X. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular progressive edge-growth Tanner graphs,” IEEE Trans. Inf. Theory 51(1), 386–398 (2005).
[Crossref]

Bai, L.

Y. Jiao and L. Bai, “Ultraviolet pulse broadening in non-line-of-sight communication system,” in Proceedings of IEEE Asia-Pacific Conference on Antennas and Propagation (IEEE, 2014), pp. 753–756.
[Crossref]

Chen, G.

H. Ding, G. Chen, Z. Xu, and B. M. Sadler, “Channel modeling and performance of non-line-of-sight ultraviolet scattering communications,” IET Commun. 6(5), 514–524 (2012).
[Crossref]

G. Chen, Z. Xu, and B. M. Sadler, “Experimental demonstration of ultraviolet pulse broadening in short-range non-line-of-sight communication channels,” Opt. Express 18(10), 10500–10509 (2010).
[Crossref] [PubMed]

H. Ding, G. Chen, A. Majumdar, B. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Comm. 27(9), 1535–1544 (2009).
[Crossref]

Z. Xu, H. Ding, B. M. Sadler, and G. Chen, “Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links,” Opt. Lett. 33(16), 1860–1862 (2008).
[Crossref] [PubMed]

Corazza, G. E.

S. Papaharalabos, P. Sweeney, B. G. Evans, P. T. Mathiopoulos, G. Albertazzi, A. Vanelli-Coralli, and G. E. Corazza, “Modified sum-product algorithms for decoding low-density parity-check codes,” IET Commun. 1(3), 294–300 (2007).
[Crossref]

Costello, D. J.

D. J. Costello and G. D. Forney, “Channel coding: the road to channel capacity,” Proc. IEEE 95(6), 1150–1177 (2007).
[Crossref]

Ding, H.

H. Ding, G. Chen, Z. Xu, and B. M. Sadler, “Channel modeling and performance of non-line-of-sight ultraviolet scattering communications,” IET Commun. 6(5), 514–524 (2012).
[Crossref]

H. Ding, G. Chen, A. Majumdar, B. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Comm. 27(9), 1535–1544 (2009).
[Crossref]

Z. Xu, H. Ding, B. M. Sadler, and G. Chen, “Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links,” Opt. Lett. 33(16), 1860–1862 (2008).
[Crossref] [PubMed]

Drost, R. J.

R. J. Drost and B. M. Sadler, “Survey of ultraviolet non-line-of-sight communications,” Semicond. Sci. Technol. 29(8), 84006–84016 (2014).
[Crossref]

Eleftheriou, E.

X. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular progressive edge-growth Tanner graphs,” IEEE Trans. Inf. Theory 51(1), 386–398 (2005).
[Crossref]

El-Shimy, M. A.

Evans, B. G.

S. Papaharalabos, P. Sweeney, B. G. Evans, P. T. Mathiopoulos, G. Albertazzi, A. Vanelli-Coralli, and G. E. Corazza, “Modified sum-product algorithms for decoding low-density parity-check codes,” IET Commun. 1(3), 294–300 (2007).
[Crossref]

Forney, G. D.

D. J. Costello and G. D. Forney, “Channel coding: the road to channel capacity,” Proc. IEEE 95(6), 1150–1177 (2007).
[Crossref]

Grath, S.

T. Zhao, X. Zhang, L. Liu, and S. Grath, “Fast frame synchronization for wireless ultraviolet image unidirectional communication,” in Proceedings of China-Ireland International Conference on Information and Communications Technologies (IET, 2014), pp.322–327.

Guo, H.

Han, D

C. Li, M. Zhang, Q Li, P Luo, D Han, X Zheng, and Y Liu, “Study on the modulation methods for ultraviolet communication,” J. Comput. Inf. Syst. 7(9), 2085–2091 (2011).

Han, D.

M. Wu, D. Han, X. Zhang, F. Zhang, M. Zhang, and G. Yue, “Experimental research and comparison of LDPC and RS channel coding in ultraviolet communication systems,” Opt. Express 22(5), 5422–5430 (2014).
[Crossref] [PubMed]

P. Luo, M. Zhang, Y. Liu, D. Han, and Q. Li, “A moving average filter based method of performance improvement for ultraviolet communication system,” in Proceedings of IEEE International Symposium on Communication Systems, Networks and Digital Signal Processing (IEEE, 2012), pp. 1–4.

He, Q.

Heidarpour, A. R.

M. H. Ardakani, A. R. Heidarpour, and M. Uysal, “Non-kine-of-sight ultraviolet communications over stmospheric turbulence channels,” in Proceedings of IEEE International Workshop on Optical Wireless Communications (IEEE, 2015), pp.55–59.

Hombs, B.

D. Moriarty and B. Hombs, “System design of tactical communications with solar blind ultraviolet non-line-of-sight systems,” in Proceedings of IEEE Military Communications Conference (IEEE, 2009), pp. 1–7.
[Crossref]

Hranilovic, S.

Hu, X.

X. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular progressive edge-growth Tanner graphs,” IEEE Trans. Inf. Theory 51(1), 386–398 (2005).
[Crossref]

Jiao, Y.

Y. Jiao and L. Bai, “Ultraviolet pulse broadening in non-line-of-sight communication system,” in Proceedings of IEEE Asia-Pacific Conference on Antennas and Propagation (IEEE, 2014), pp. 753–756.
[Crossref]

Li, C.

C. Li, M. Zhang, Q Li, P Luo, D Han, X Zheng, and Y Liu, “Study on the modulation methods for ultraviolet communication,” J. Comput. Inf. Syst. 7(9), 2085–2091 (2011).

Li, Q

C. Li, M. Zhang, Q Li, P Luo, D Han, X Zheng, and Y Liu, “Study on the modulation methods for ultraviolet communication,” J. Comput. Inf. Syst. 7(9), 2085–2091 (2011).

Li, Q.

P. Luo, M. Zhang, Y. Liu, D. Han, and Q. Li, “A moving average filter based method of performance improvement for ultraviolet communication system,” in Proceedings of IEEE International Symposium on Communication Systems, Networks and Digital Signal Processing (IEEE, 2012), pp. 1–4.

Li, Y.

Lin, J.

Liu, L.

T. Zhao, X. Zhang, L. Liu, and S. Grath, “Fast frame synchronization for wireless ultraviolet image unidirectional communication,” in Proceedings of China-Ireland International Conference on Information and Communications Technologies (IET, 2014), pp.322–327.

Liu, Y

C. Li, M. Zhang, Q Li, P Luo, D Han, X Zheng, and Y Liu, “Study on the modulation methods for ultraviolet communication,” J. Comput. Inf. Syst. 7(9), 2085–2091 (2011).

Liu, Y.

P. Luo, M. Zhang, Y. Liu, D. Han, and Q. Li, “A moving average filter based method of performance improvement for ultraviolet communication system,” in Proceedings of IEEE International Symposium on Communication Systems, Networks and Digital Signal Processing (IEEE, 2012), pp. 1–4.

Luo, P

C. Li, M. Zhang, Q Li, P Luo, D Han, X Zheng, and Y Liu, “Study on the modulation methods for ultraviolet communication,” J. Comput. Inf. Syst. 7(9), 2085–2091 (2011).

Luo, P.

P. Luo, M. Zhang, Y. Liu, D. Han, and Q. Li, “A moving average filter based method of performance improvement for ultraviolet communication system,” in Proceedings of IEEE International Symposium on Communication Systems, Networks and Digital Signal Processing (IEEE, 2012), pp. 1–4.

Ma, J.

R. Yuan and J. Ma, “Review of ultraviolet non-line-of-sight communication,” China Commun. 13(6), 63–75 (2016).
[Crossref]

Majumdar, A.

H. Ding, G. Chen, A. Majumdar, B. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Comm. 27(9), 1535–1544 (2009).
[Crossref]

Mathiopoulos, P. T.

S. Papaharalabos, P. Sweeney, B. G. Evans, P. T. Mathiopoulos, G. Albertazzi, A. Vanelli-Coralli, and G. E. Corazza, “Modified sum-product algorithms for decoding low-density parity-check codes,” IET Commun. 1(3), 294–300 (2007).
[Crossref]

Moriarty, D.

D. Moriarty and B. Hombs, “System design of tactical communications with solar blind ultraviolet non-line-of-sight systems,” in Proceedings of IEEE Military Communications Conference (IEEE, 2009), pp. 1–7.
[Crossref]

Nouri, H.

M. Uysal and H. Nouri, “Optical wireless communications – an emerging technology”, in Proceedings of IEEE International Conference on Transparent Optical Networks (IEEE, 2014), pp. 1–7.

Papaharalabos, S.

S. Papaharalabos, P. Sweeney, B. G. Evans, P. T. Mathiopoulos, G. Albertazzi, A. Vanelli-Coralli, and G. E. Corazza, “Modified sum-product algorithms for decoding low-density parity-check codes,” IET Commun. 1(3), 294–300 (2007).
[Crossref]

Sadler, B.

H. Ding, G. Chen, A. Majumdar, B. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Comm. 27(9), 1535–1544 (2009).
[Crossref]

Sadler, B. M.

R. J. Drost and B. M. Sadler, “Survey of ultraviolet non-line-of-sight communications,” Semicond. Sci. Technol. 29(8), 84006–84016 (2014).
[Crossref]

H. Ding, G. Chen, Z. Xu, and B. M. Sadler, “Channel modeling and performance of non-line-of-sight ultraviolet scattering communications,” IET Commun. 6(5), 514–524 (2012).
[Crossref]

Q. He, Z. Xu, and B. M. Sadler, “Performance of short-range non-line-of-sight LED-based ultraviolet communication receivers,” Opt. Express 18(12), 12226–12238 (2010).
[Crossref] [PubMed]

G. Chen, Z. Xu, and B. M. Sadler, “Experimental demonstration of ultraviolet pulse broadening in short-range non-line-of-sight communication channels,” Opt. Express 18(10), 10500–10509 (2010).
[Crossref] [PubMed]

Z. Xu, H. Ding, B. M. Sadler, and G. Chen, “Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links,” Opt. Lett. 33(16), 1860–1862 (2008).
[Crossref] [PubMed]

Z. Xu and B. M. Sadler, “Ultraviolet communications: potential and state-of-the-Art,” IEEE Commun. Mag. 46(5), 67–73 (2008).
[Crossref]

Sandalidis, H.

Shedsale, R.

R. Shedsale, “A review of construction methods for regular LDPC codes,” Indian J. Comput. Sci. Eng. 3(2), 380–385 (2012).

Sweeney, P.

S. Papaharalabos, P. Sweeney, B. G. Evans, P. T. Mathiopoulos, G. Albertazzi, A. Vanelli-Coralli, and G. E. Corazza, “Modified sum-product algorithms for decoding low-density parity-check codes,” IET Commun. 1(3), 294–300 (2007).
[Crossref]

Tang, Y.

Y. Tang, X. Xie, and W. Zhao, “Simulation research of short range non-line-of-sight ultraviolet communication performance,” in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2012), pp.567–570.
[Crossref]

Uysal, M.

M. Uysal and H. Nouri, “Optical wireless communications – an emerging technology”, in Proceedings of IEEE International Conference on Transparent Optical Networks (IEEE, 2014), pp. 1–7.

M. H. Ardakani, A. R. Heidarpour, and M. Uysal, “Non-kine-of-sight ultraviolet communications over stmospheric turbulence channels,” in Proceedings of IEEE International Workshop on Optical Wireless Communications (IEEE, 2015), pp.55–59.

Vanelli-Coralli, A.

S. Papaharalabos, P. Sweeney, B. G. Evans, P. T. Mathiopoulos, G. Albertazzi, A. Vanelli-Coralli, and G. E. Corazza, “Modified sum-product algorithms for decoding low-density parity-check codes,” IET Commun. 1(3), 294–300 (2007).
[Crossref]

Varoutas, D.

Vavoulas, A.

Wraback, M.

M. Wraback, “Semiconductor Ultraviolet emitters and detectors with potential for wireless communications,” in Proceedings of IEEE Photonics Society Summer Topical Meeting Series (IEEE, 2012), pp. 134–135.
[Crossref]

Wu, J.

Wu, M.

Xiao, H.

Xie, X.

Y. Tang, X. Xie, and W. Zhao, “Simulation research of short range non-line-of-sight ultraviolet communication performance,” in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2012), pp.567–570.
[Crossref]

Xu, C.

C. Xu and H. Zhang, “Packet error rate analysis of IM/DD systems for ultraviolet scattering communications”, in Proceedings of IEEE Military Communications Conference (IEEE, 2015), pp. 1188–1193.
[Crossref]

Xu, Z.

H. Ding, G. Chen, Z. Xu, and B. M. Sadler, “Channel modeling and performance of non-line-of-sight ultraviolet scattering communications,” IET Commun. 6(5), 514–524 (2012).
[Crossref]

Q. He, Z. Xu, and B. M. Sadler, “Performance of short-range non-line-of-sight LED-based ultraviolet communication receivers,” Opt. Express 18(12), 12226–12238 (2010).
[Crossref] [PubMed]

G. Chen, Z. Xu, and B. M. Sadler, “Experimental demonstration of ultraviolet pulse broadening in short-range non-line-of-sight communication channels,” Opt. Express 18(10), 10500–10509 (2010).
[Crossref] [PubMed]

H. Ding, G. Chen, A. Majumdar, B. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Comm. 27(9), 1535–1544 (2009).
[Crossref]

Z. Xu and B. M. Sadler, “Ultraviolet communications: potential and state-of-the-Art,” IEEE Commun. Mag. 46(5), 67–73 (2008).
[Crossref]

Z. Xu, H. Ding, B. M. Sadler, and G. Chen, “Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links,” Opt. Lett. 33(16), 1860–1862 (2008).
[Crossref] [PubMed]

Z. Xu, “Opportunities and challenges in ultraviolet communications”, in Proceedings of IEEE Summer Topicals Meeting Series (IEEE, 2015), pp. 171 – 172.

Yuan, R.

R. Yuan and J. Ma, “Review of ultraviolet non-line-of-sight communication,” China Commun. 13(6), 63–75 (2016).
[Crossref]

Yue, G.

Zhang, F.

Zhang, H.

C. Xu and H. Zhang, “Packet error rate analysis of IM/DD systems for ultraviolet scattering communications”, in Proceedings of IEEE Military Communications Conference (IEEE, 2015), pp. 1188–1193.
[Crossref]

Zhang, M.

M. Wu, D. Han, X. Zhang, F. Zhang, M. Zhang, and G. Yue, “Experimental research and comparison of LDPC and RS channel coding in ultraviolet communication systems,” Opt. Express 22(5), 5422–5430 (2014).
[Crossref] [PubMed]

C. Li, M. Zhang, Q Li, P Luo, D Han, X Zheng, and Y Liu, “Study on the modulation methods for ultraviolet communication,” J. Comput. Inf. Syst. 7(9), 2085–2091 (2011).

P. Luo, M. Zhang, Y. Liu, D. Han, and Q. Li, “A moving average filter based method of performance improvement for ultraviolet communication system,” in Proceedings of IEEE International Symposium on Communication Systems, Networks and Digital Signal Processing (IEEE, 2012), pp. 1–4.

Zhang, X.

M. Wu, D. Han, X. Zhang, F. Zhang, M. Zhang, and G. Yue, “Experimental research and comparison of LDPC and RS channel coding in ultraviolet communication systems,” Opt. Express 22(5), 5422–5430 (2014).
[Crossref] [PubMed]

T. Zhao, X. Zhang, L. Liu, and S. Grath, “Fast frame synchronization for wireless ultraviolet image unidirectional communication,” in Proceedings of China-Ireland International Conference on Information and Communications Technologies (IET, 2014), pp.322–327.

Zhao, T.

T. Zhao, X. Zhang, L. Liu, and S. Grath, “Fast frame synchronization for wireless ultraviolet image unidirectional communication,” in Proceedings of China-Ireland International Conference on Information and Communications Technologies (IET, 2014), pp.322–327.

Zhao, W.

Y. Tang, X. Xie, and W. Zhao, “Simulation research of short range non-line-of-sight ultraviolet communication performance,” in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2012), pp.567–570.
[Crossref]

Zheng, X

C. Li, M. Zhang, Q Li, P Luo, D Han, X Zheng, and Y Liu, “Study on the modulation methods for ultraviolet communication,” J. Comput. Inf. Syst. 7(9), 2085–2091 (2011).

Zuo, Y.

China Commun. (1)

R. Yuan and J. Ma, “Review of ultraviolet non-line-of-sight communication,” China Commun. 13(6), 63–75 (2016).
[Crossref]

IEEE Commun. Mag. (1)

Z. Xu and B. M. Sadler, “Ultraviolet communications: potential and state-of-the-Art,” IEEE Commun. Mag. 46(5), 67–73 (2008).
[Crossref]

IEEE J. Sel. Areas Comm. (1)

H. Ding, G. Chen, A. Majumdar, B. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Comm. 27(9), 1535–1544 (2009).
[Crossref]

IEEE Trans. Inf. Theory (1)

X. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular progressive edge-growth Tanner graphs,” IEEE Trans. Inf. Theory 51(1), 386–398 (2005).
[Crossref]

IET Commun. (2)

S. Papaharalabos, P. Sweeney, B. G. Evans, P. T. Mathiopoulos, G. Albertazzi, A. Vanelli-Coralli, and G. E. Corazza, “Modified sum-product algorithms for decoding low-density parity-check codes,” IET Commun. 1(3), 294–300 (2007).
[Crossref]

H. Ding, G. Chen, Z. Xu, and B. M. Sadler, “Channel modeling and performance of non-line-of-sight ultraviolet scattering communications,” IET Commun. 6(5), 514–524 (2012).
[Crossref]

Indian J. Comput. Sci. Eng. (1)

R. Shedsale, “A review of construction methods for regular LDPC codes,” Indian J. Comput. Sci. Eng. 3(2), 380–385 (2012).

J. Comput. Inf. Syst. (1)

C. Li, M. Zhang, Q Li, P Luo, D Han, X Zheng, and Y Liu, “Study on the modulation methods for ultraviolet communication,” J. Comput. Inf. Syst. 7(9), 2085–2091 (2011).

J. Opt. Commun. Netw. (2)

Opt. Express (4)

Opt. Lett. (2)

Proc. IEEE (1)

D. J. Costello and G. D. Forney, “Channel coding: the road to channel capacity,” Proc. IEEE 95(6), 1150–1177 (2007).
[Crossref]

Semicond. Sci. Technol. (1)

R. J. Drost and B. M. Sadler, “Survey of ultraviolet non-line-of-sight communications,” Semicond. Sci. Technol. 29(8), 84006–84016 (2014).
[Crossref]

Other (12)

M. Wraback, “Semiconductor Ultraviolet emitters and detectors with potential for wireless communications,” in Proceedings of IEEE Photonics Society Summer Topical Meeting Series (IEEE, 2012), pp. 134–135.
[Crossref]

M. Uysal and H. Nouri, “Optical wireless communications – an emerging technology”, in Proceedings of IEEE International Conference on Transparent Optical Networks (IEEE, 2014), pp. 1–7.

Z. Xu, “Opportunities and challenges in ultraviolet communications”, in Proceedings of IEEE Summer Topicals Meeting Series (IEEE, 2015), pp. 171 – 172.

Y. Tang, X. Xie, and W. Zhao, “Simulation research of short range non-line-of-sight ultraviolet communication performance,” in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2012), pp.567–570.
[Crossref]

P. Luo, M. Zhang, Y. Liu, D. Han, and Q. Li, “A moving average filter based method of performance improvement for ultraviolet communication system,” in Proceedings of IEEE International Symposium on Communication Systems, Networks and Digital Signal Processing (IEEE, 2012), pp. 1–4.

C. Li, M. Zhang, X. Chen, and Q. Li., P. Luo, and Y. Liu, “Experimental performance evaluation of mobile sensor and communication system based on ultraviolet,” in Proceedings of IEEE Control and Decision Conference (IEEE, 2012), pp. 218–220.

T. Zhao, X. Zhang, L. Liu, and S. Grath, “Fast frame synchronization for wireless ultraviolet image unidirectional communication,” in Proceedings of China-Ireland International Conference on Information and Communications Technologies (IET, 2014), pp.322–327.

M. H. Ardakani, A. R. Heidarpour, and M. Uysal, “Non-kine-of-sight ultraviolet communications over stmospheric turbulence channels,” in Proceedings of IEEE International Workshop on Optical Wireless Communications (IEEE, 2015), pp.55–59.

G. Shaw, A. Siegel, and J. Model, “Ultraviolet comm links for distributed sensor networks,” in LEOS Summer Topical Meetings (Optical Society of America, 2005), paper TuA2.4.
[Crossref]

D. Moriarty and B. Hombs, “System design of tactical communications with solar blind ultraviolet non-line-of-sight systems,” in Proceedings of IEEE Military Communications Conference (IEEE, 2009), pp. 1–7.
[Crossref]

Y. Jiao and L. Bai, “Ultraviolet pulse broadening in non-line-of-sight communication system,” in Proceedings of IEEE Asia-Pacific Conference on Antennas and Propagation (IEEE, 2014), pp. 753–756.
[Crossref]

C. Xu and H. Zhang, “Packet error rate analysis of IM/DD systems for ultraviolet scattering communications”, in Proceedings of IEEE Military Communications Conference (IEEE, 2015), pp. 1188–1193.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic drawing of the NLOS UV link. A typical PMT/APD receiver is placed at distance r from a LED/laser transmitter. Common value and photon scattered propagation path are marked by red area and green solid line.
Fig. 2
Fig. 2 Block diagram of a NLOS UVC propagation model and detection process. A transmitting optical pulse converts to a response waveform distorted by receiver noise after the scattered propagation and detector operation.
Fig. 3
Fig. 3 System parameters.
Fig. 4
Fig. 4 Temporal responses of NLOS UVC systems with various transceiver configuration at distance = 100m. Term [θT, θR] denotes the elevation angles of transmitter and receiver and Δφ denotes the misalignment in non-coplanar geometry.
Fig. 5
Fig. 5 Normalized temporal responses under different baseline distances where the Tx and Rx elevation angles are 40° and 90°.
Fig. 6
Fig. 6 Received temporal response with additive noise at the detector side. Comparison is done between our model and former model. Experimental result is referred to [19].
Fig. 7
Fig. 7 BERs of BPPM and delayed sampling BPPM NLOS UVC system. Transmission power is 20mW and transmitting data rate is set at 1Mbps, 2Mbps and 4Mbps respectively.
Fig. 8
Fig. 8 Heuristic construction Tanner graph of the LDPC codes. Parameter [m n] denotes the size of the LDPC check matrix. The dash lines connecting the check nodes and symbol nodes represent the 1-compents in check matrix
Fig. 9
Fig. 9 Pseudo-code demonstration of the check matrix generation procedure.
Fig. 10
Fig. 10 BERs of the heuristic constructing LDPC coded DS BPPM NLOS UVC system working at data rate of 2Mbps with different code word lengths. Comparison is also done between our heuristic construction method and conventional construction methods.
Fig. 11
Fig. 11 BERs of LDPC coded DS BPPM NLOS UVC system with different decoding iteration numbers.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E p_r = A r P(μ)cos( μ r )exp( k e r R ) r R 2 ,
z=v+n,
p z (z/λ)= j=0 P k 1 (j|λ) G(z,jAe, σ 2 ),
σ 2 =j (ζAe) 2 +(2 k e T o / R L ) T P ,
p z (z/λ)= j=0 P k 1 (j|λ) G(z,jAhv/ T res , σ 2 ).

Metrics